Chapter 8
Classical Predicate Semantics and Proof Systems

CHAPTER 8 SLIDES

Slides Set 3
Chapter 8
Classical Predicate Semantics and Proof Systems

Slides Set 3
PART 3: Predicate Tautologies, Equational Laws of Quantifiers
PART 4: Proof Systems: Soundness and Completeness
Chapter 8
Classical Predicate Semantics and Proof Systems

Slides Set 3
PART 3: Predicate Tautologies, Equational Laws of Quantifiers
Predicate Tautologies
Predicate Tautologies

We have already proved the **basic** predicate tautology

\[\models (\forall x A(x) \Rightarrow \exists x A(x)) \]

We prove now other three **basic** tautologies called **Dictum de Omni**

For any formula \(A(x) \) of \(L \),

\[\models (\forall x A(x) \Rightarrow A(t)), \quad \models (\forall x A(x) \Rightarrow A(x)) \]

\[\models (A(t) \Rightarrow \exists x A(x)) \]

where \(t \) is a term, \(A(t) \) is a result of substitution of \(t \) for all free occurrences of \(x \) in \(A(x) \), and \(t \) is **free for** \(x \) in \(A(x) \), i.e. **no** occurrence of a variable in \(t \) becomes a **bound** occurrence in \(A(t) \)
Proof of Dictum de Omni

Proof of

\[\models (\forall x A(x) \Rightarrow A(t)), \quad \models (\forall x A(x) \Rightarrow A(x)) \]

is constructed in a sequence of the following steps
We leave details to complete as an exercise

S1
Consider a structure \(M = [U, I] \) and \(s : \text{VAR} \rightarrow U \)
Let \(t, u \) be two terms
Denote by \(t' \) a result of replacing in \(t \) all occurrences of a variable \(x \) by the term \(u \), i.e.

\[t' = t(x/u) \]

Let \(s' \) results from \(s \) by replacing \(s(x) \) by \(s_I(u) \)
We prove by induction over the length of \(t \) that

\[s_I(t(x/u)) = s_I(t') = s'_I(u) \]
Proof of Dictum de Omni

S2
Let t be free for x in $A(x)$

$A(t)$ is a results from $A(x)$ by replacing t for all free occurrences of x in $A(x)$, i.e.

$$A(t) = A(x/t)$$

Let

$$s : \text{VAR} \rightarrow U$$

and s' be obtained from s by replacing $s(x)$ by $s_i(u)$

We use

$$s_i(t(x/u)) = s_i(t') = s'_i(u)$$

and induction on the number of connectives and quantifiers in $A(x)$ and prove

$$(M, s) \models A(x/t) \text{ if and only if } (M, s') \models A(x)$$
Proof of Dictum de Omni

S3

Directly from satisfaction definition and

\[(M, s) \models A(x/t) \iff (M, s') \models A(x)\]

we get that for any \(M = [U, I]\) and any \(s : VAR \rightarrow U\),

\[
\text{if } (M, s) \models \forall x A(x), \text{ then } (M, s) \models A(t)
\]

This proves

\[\models (\forall x A(x) \Rightarrow A(t))\]

Observe that obviously a term \(x\) is free for \(x\) in \(A(x)\), so we also get as a particular case of \(t = x\) that

\[\models (\forall x A(x) \Rightarrow A(x))\]
Dictum de Omni Restrictions

Proof of

\[\models (A(t) \Rightarrow \exists x A(x)) \]

is included in detail in Section 3

Remark

The *restrictions* on terms in Dictum de Omni tautologies are essential

Here is a simple example explaining why they are needed in

\[\models (\forall x A(x) \Rightarrow A(t)), \quad \models (\forall x A(x) \Rightarrow A(x)) \]

Let \(A(x) \) be a formula

\[\neg \forall y P(x, y) \quad \text{for} \quad P \in P \]

Notice that a **term** \(t = y \) is **not free for** \(y \) in \(A(x) \)
Dictum de Omni Restrictions

Consider the first formula in *Dictum de Omni* for
\[A(x) = \neg \forall y \ P(x, y) \] and term \(t = y \)

\[(\forall x \neg \forall y \ P(x, y) \Rightarrow \neg \forall y \ P(y, y)) \]

Take
\[M = [N, I] \] for \(I \) such that \(P_I : = \)

Obviously,
\[M \models \forall x \neg \forall y \ P(x, y) \]

as
\[\forall m \neg \forall n(m = n) \]

is a true mathematical statement in the set \(N \) of natural numbers
Dictum de Omni Restrictions

\[M \not\models \neg \forall y \ P(y, y) \]

as

\[\neg \forall n \ (n = n) \]

is a \textbf{false} statement for \(n \in N \)

The second \textbf{Dictum de Omni} formula is a particular case of the first

We have proved that without the \textbf{restrictions} on terms

\[\not\models (\forall x \ A(x) \Rightarrow A(t)) \quad \text{and} \quad \not\models (\forall x \ A(x) \Rightarrow A(x)) \]

The example for \(\models (A(t) \Rightarrow \exists x \ A(x)) \) is similar
"t free for x in A(x)"

Here are some **useful** and easy to prove **properties** of the notion "term *t free for* x in A(x)"

Properties

For any formula $A \in \mathcal{F}$ and any term $t \in \mathcal{T}$ the following properties hold

P1. *Closed* term t, i.e. term with no variables is free for any variable x in A

P2. Term t is free for any variable in A if none of the variables in t is bound in A

P3. Term $t = x$ is free for x in any formula A

P4. Any term is free for x in A if A contains no free occurrences of x
Predicate Tautologies

Here are some more important predicate tautologies

For any formulas $A(x), B(x), A, B$ of \mathcal{L}, where the formulas A, B do not contain any free occurrences of x the following holds

Generalization

\[\models ((B \Rightarrow A(x))) \Rightarrow (B \Rightarrow \forall x A(x))) \]

\[\models ((B(x) \Rightarrow A) \Rightarrow (\exists x B(x) \Rightarrow A)) \]

Distributivity 1

\[\models (\forall x(A \Rightarrow B(x))) \Rightarrow (A \Rightarrow \forall x B(x))) \]

\[\models \forall x(A(x) \Rightarrow B) \Rightarrow (\exists xA(x) \Rightarrow B) \]

\[\models \exists x(A(x) \Rightarrow B) \Rightarrow (\forall xA(x) \Rightarrow B) \]
Restrictions

The restrictions that the formulas \(A, B \) do not contain any free occurrences of \(x \) is essential for both Generalization and Distributivity 1 tautologies.

Here is a simple example explaining why they are needed.

The relaxation of the restrictions would lead to the following disaster.

Let \(A \) and \(B \) be both the same atomic formula \(P(x) \).

Thus \(x \) is free in \(A \) and we have the following instance of the first Distributivity 1 tautology:

\[
(\forall x (P(x) \Rightarrow P(x)) \Rightarrow (P(x) \Rightarrow \forall x P(x)))
\]
Restrictions

Take

\[M = [N, I] \quad \text{for } I \text{ such that } P_I = \text{ODD} \]

where \(\text{ODD} \subseteq N \) is the set of odd numbers.

Let \(s : \text{VAR} \rightarrow N \)

By definition of the interpretation \(i \),

\[s_I(x) \in P_I \quad \text{if and only if} \quad s_I(x) \in \text{ODD} \]

Then obviously

\[(M, s) \not| \forall x \, P(x) \]

and \(M = [N, I] \) is a \textbf{counter model} for

\[(\forall x (P(x) \Rightarrow P(x)) \Rightarrow (P(x) \Rightarrow \forall x P(x))) \]

as

\[|\forall x (P(x) \Rightarrow P(x)) \]

The examples for restrictions on other tautologies are similar.
Predicate Tautologies

Distributivity 2

For any formulas $A(x), B(x)$ of \mathcal{L}

\[
\vdash (\exists x (A(x) \cap B(x)) \Rightarrow (\exists x A(x) \cap \exists x B(x)))
\]

\[
\vdash ((\forall x A(x) \cup \forall x B(x)) \Rightarrow \forall x (A(x) \cup B(x)))
\]

\[
\vdash (\forall x (A(x) \Rightarrow B(x)) \Rightarrow (\forall x A(x) \Rightarrow \forall x B(x)))
\]

The converse implications to the above are not predicate tautologies.

The **counter models** are provided in the Section 3.
De Morgan Laws

For any formulas $A(x), B(x)$ of \mathcal{L},

\[
\models (\neg \forall x A(x) \Rightarrow \exists x \neg A(x))
\]

\[
\models (\neg \exists x A(x) \Rightarrow \forall x \neg A(x))
\]

\[
\models (\exists x \neg A(x) \Rightarrow \neg \forall x A(x))
\]

\[
\models (\neg \exists x A(x) \Rightarrow \forall x \neg A(x))
\]

We prove the first law as an example

The proofs of all other laws are similar
De Morgan Laws

Proof of

\[\models (\neg \forall x A(x) \Rightarrow \exists x \neg A(x)) \]

We carry the proof by contradiction.

Assume that

\[\not\models (\neg \forall x A(x) \Rightarrow \exists x \neg A(x)) \]

By definition, there is

\[M = [U, I] \text{ and } s : VAR \rightarrow U \]

such that

\[(M, s) \models \neg \forall x A(x)) \text{ and } (M, s) \not\models \exists x \neg A(x) \]
De Morgan Laws

Consider

\[(M, s) \models \neg \forall x A(x)\]

By satisfaction definition

\[(M, s) \not\models \forall x A(x)\]

This holds only if for all \(s'\), such that \(s, s'\) agree on all variables except on \(x\),

\[(M, s') \not\models A(x)\]
De Morgan Laws

Consider now

$$(M, s) \not\models \exists x \neg A(x)$$

This holds only if there is no s', such that

$$(M, s') \models \neg A(x)$$

i.e. there is no s', such that $(M, s') \not\models A(x)$

This means that for all s',

$$(M, s') \models A(x)$$

Contradiction with already proved

$$(M, s') \not\models A(x)$$

This ends the proof
Quantifiers Alternations

For any formula $A(x, y)$ of \mathcal{L},

$$\models (\exists x \forall y A(x, y) \Rightarrow \forall y \exists x A(x, y))$$

The converse implication

$$(\forall y \exists x A(x, y) \Rightarrow \exists x \forall y A(x, y))$$

is not a predicate tautology

Here is a proof

Take as $A(x, y)$ an atomic formula $R(x, y)$

Consider the instance formula

$$(\forall y \exists x R(x, y) \Rightarrow \exists x \forall y R(x, y))$$
Quantifiers Alternations

We construct now a counter model for the instance formula

$$(\forall y \exists x R(x, y) \Rightarrow \exists x \forall y R(x, y))$$

Take a structure

$$M = [R, I]$$

where R is the set of real numbers and $R_I :<$

The instance formula becomes a mathematical statement

$$(\forall y \exists x (x < y) \Rightarrow \exists x \forall y (x < y))$$

that obviously false in the set of real numbers

We proved

$$\not\models (\forall y \exists x A(x, y) \Rightarrow \exists x \forall y A(x, y))$$
Equational Laws of Quantifiers
Logical Equivalence

The most frequently used laws of quantifiers have a form of a logical equivalence, symbolically written as \equiv.

Logical equivalence \equiv is not a new logical connective but just a very useful symbol.

Logical equivalence \equiv has the same properties as the mathematical equality $=$ and can be used in a similar way as we use the equality.

Note that we use the same equivalence symbol \equiv and the tautology symbol \models for propositional and predicate languages when there is no confusion.
Logical Equivalence

We define formally the **logical equivalence** \equiv as follows.

Definition of Logical Equivalence

For any formulas A, B of the **predicate** language L,

$$A \equiv B \text{ if and only if } \models (A \Rightarrow B) \text{ and } \models (B \Rightarrow A)$$

Remark that the predicate language L we defined the **semantics** for does not include the equivalence connective \iff. If it does we **extend** the satisfaction definition in a natural way and adopt the following, natural definition

Definition

For any formulas $A, B \in F$ of the **predicate language** L with the equivalence connective \iff

$$A \equiv B \text{ if and only if } \models (A \iff B)$$
Logical Equivalence Theorems

The **basic** theorems establishing **relationship** between propositional and some **predicate tautologies** are as follows.

Tautologies Theorem

If a formula A is a **propositional tautology**, then by **substituting** for propositional variables in A any formula of the **predicate language** \mathcal{L} we obtain a formula which is a **predicate tautology**.
Equivalences Theorem

Given propositional formulas A, B

If $A \equiv B$ is a propositional equivalence, and A', B' are formulas of the predicate language L obtained by a substitution of any formulas of L for propositional variables in A and B, respectively, then

$$A' \equiv B'$$

holds under predicate semantics
Logical Equivalence Example

Example
Consider the following propositional logical equivalence

\[(a \Rightarrow b) \equiv (\neg a \cup b)\]

Substituting

\[\exists x P(x, z)\] for \(a\) and \[\forall y R(y, z)\] for \(b\)

we get by the Equivalences Theorem that the following logical equivalence holds

\[(\exists x P(x, z) \Rightarrow \forall y R(y, z)) \equiv (\neg \exists x P(x, z) \cup \forall y R(y, z))\]
Equivalence Substitution

We prove in similar way as in the propositional case the following.

Equivalence Substitution Theorem

Let a formula B_1 be obtained from a formula A_1 by a substitution of a formula B for one or more occurrences of a sub-formula A of A_1, what we denote as

$$B_1 = A_1(A/B)$$

Then the following holds for any formulas A, A_1, B, B_1 of \mathcal{L}

If $A \equiv B$, then $A_1 \equiv B_1$
Logical Equivalence Theorem

Directly from the Dictum de Omi and the Generalization tautologies we get the proof of the following theorem useful for building new logical equivalences from the old, known ones.

E- Theorem

For any formulas $A(x), B(x)$ of \mathcal{L}

if $A(x) \equiv B(x)$, then $\forall xA(x) \equiv \forall xB(x)$

if $A(x) \equiv B(x)$, then $\exists xA(x) \equiv \exists xB(x)$
Logical Equivalence Example

Example
We know from the previous example that

$$(\exists x P(x, z) \Rightarrow \forall y R(y, z)) \equiv (\neg \exists x P(x, z) \cup \forall y R(y, z))$$

We get, as the direct consequence of the above theorem the following logical equivalence

$$\forall z (\exists x P(x, z) \Rightarrow \forall y R(y, z)) \equiv \forall z (\neg \exists x P(x, z) \cup \forall y R(y, z))$$

$$\exists z (\exists x P(x, z) \Rightarrow \forall y R(y, z)) \equiv \exists z (\neg \exists x P(x, z) \cup \forall y R(y, z))$$
Equational Laws of Quantifiers

We concentrate now only on these laws of quantifiers which have a form of a logical equivalence. They are called the **equational laws** of quantifiers. Directly from the logical equivalence definition and the De Morgan tautologies we get the following:

De Morgan Laws

For any formulas $A(x), B(x)$ of \mathcal{L}

$$
\neg\forall x A(x) \equiv \exists x \neg A(x)
$$

$$
\neg\exists x A(x) \equiv \forall x \neg A(x)
$$

We now apply them to show that the quantifiers can be defined one by the other i.e. that the following Definability Laws hold.
Equational Laws of Quantifiers

Definability Laws
For any formula $A(x)$ of \mathcal{L}

$$\forall x A(x) \equiv \neg \exists x \neg A(x)$$

$$\exists x A(x) \equiv \neg \forall x \neg A(x)$$

The first law is often used as a definition of the universal quantifier in terms of the existential one (and negation).

The second law is a definition of the existential quantifier in terms of the universal one (and negation).
Equational Laws of Quantifiers

Proof of
\[\forall x A(x) \equiv \neg \exists x \neg A(x) \]

Substituting any formula \(A(x) \) for a variable \(a \) in the propositional equivalence \(a \equiv \neg \neg a \) we get by the Equivalence Theorem that
\[A(x) \equiv \neg \neg A(x) \]

Applying the E-Theorem to the above we obtain
\[\exists x A(x) \equiv \exists x \neg \neg A(x) \]

By the De Morgan Law
\[\exists x \neg \neg A(x) \equiv \neg \forall x \neg A(x) \]

By the Equivalence Substitution Theorem
\[\exists x A(x) \equiv \neg \forall x \neg A(x) \]

This ends the proof
Equational Laws of Quantifiers

Proof of

\[\forall x A(x) \equiv \neg \exists x \neg A(x) \]

Substituting any formula \(A(x) \) for a variable \(a \) in the propositional equivalence \(a \equiv \neg \neg a \) we get by the Equivalence Theorem that

\[A(x) \equiv \neg \neg A(x) \]

Applying the E-Theorem to the above we obtain

\[\forall x A(x) \equiv \forall x \neg \neg A(x) \]

By the De Morgan Law and Equivalence Substitution Theorem

\[\forall x \neg \neg A(x) \equiv \neg \exists x \neg A(x) \]

\[\forall x A(x) \equiv \neg \exists x \neg A(x) \]

This ends the proof
Equational Laws of Quantifiers

Other important equational laws are the following introduction and elimination laws. Listed equivalences are not independent, some of them are the consequences of the others.

Introduction and Elimination Laws

If B is a formula such that B does not contain any free occurrence of x, then the following logical equivalences hold for any formula $A(x)$ of L:

\[
\forall x (A(x) \cup B) \equiv (\forall x A(x) \cup B)
\]

\[
\forall x (A(x) \cap B) \equiv (\forall x A(x) \cap B)
\]

\[
\exists x (A(x) \cup B) \equiv (\exists x A(x) \cup B)
\]

\[
\exists x (A(x) \cap B) \equiv (\exists x A(x) \cap B)
\]
Equational Laws of Quantifiers

Introduction and Elimination Laws

\[\forall x (A(x) \Rightarrow B) \equiv (\exists x A(x) \Rightarrow B) \]

\[\exists x (A(x) \Rightarrow B) \equiv (\forall x A(x) \Rightarrow B) \]

\[\forall x (B \Rightarrow A(x)) \equiv (B \Rightarrow \forall x A(x)) \]

\[\exists x (B \Rightarrow A(x)) \equiv (B \Rightarrow \exists x A(x)) \]

As we said before, the equivalences are not independent.
We show now as an example the proof of the third one from the first two.
Equational Laws of Quantifiers

We write this proof in a short, symbolic way as follows

\[\exists x (A(x) \cup B) \]

\[\equiv \text{law} \quad \neg \forall x \neg (A(x) \cup B) \]

\[\equiv \text{thms} \quad \neg \forall x (\neg A(x) \cap \neg B) \]

\[\equiv \text{law} \quad \neg (\forall x \neg A(x) \cap \neg B) \]

\[\equiv \text{law,thm} \quad (\neg \forall x \neg A(x) \cup \neg \neg B) \]

\[\equiv \text{thm} \quad (\exists x A(x) \cup B) \]

We leave completion and explanation of all details as an exercise.
Equational Laws of Quantifiers

Distributivity Laws
Let \(A(x), B(x) \) be any formulas with a free variable \(x \)

Law of distributivity of universal quantifier over conjunction
\[
\forall x (A(x) \cap B(x)) \equiv (\forall x A(x) \cap \forall x B(x))
\]

Law of distributivity of existential quantifier over disjunction
\[
\exists x (A(x) \cup B(x)) \equiv (\exists x A(x) \cup \exists x B(x))
\]
Equational Laws of Quantifiers

Alternations of Quantifiers

Let $A(x, y)$ be any formula with a free variables x, y

\[\forall x \forall y (A(x, y)) \equiv \forall y \forall x (A(x, y)) \]

\[\exists x \exists y (A(x, y)) \equiv \exists y \exists x (A(x, y)) \]
Equational Laws of Quantifiers

Renaming the Variables
Let $A(x)$ be any formula with a free variable x and let y be a variable that does not occur in $A(x) y$, then the following holds

$$
\forall x A(x) \equiv \forall y A(y)
$$

$$
\exists x A(x) \equiv \exists y A(y)
$$
Equational Laws of Quantifiers

Restricted De Morgan Laws
For any formulas $A(x), B(x)$ of \mathcal{L}

$$\neg \forall_{B(x)} A(x) \equiv \exists_{B(x)} \neg A(x)$$

$$\neg \exists_{B(x)} A(x) \equiv \forall_{B(x)} \neg A(x)$$
Equational Laws of Quantifiers

Here is a proof of first equality
The proof of the second one is similar and is left as an exercise.

\[\neg \forall B(x) \ A(x) \equiv (\neg \forall x (B(x) \Rightarrow A(x))) \equiv \]
\[\neg \forall x (\neg B(x) \cup A(x)) \equiv \exists x \ (\neg (\neg B(x) \cup A(x))) \equiv \]
\[\exists x (\neg \neg B(x) \cap \neg A(x)) \equiv \exists x (B(x) \cap \neg A(x)) \equiv \exists_{B(x)} \neg A(x) \]
Equational Laws of Quantifiers

Restricted Introduction and Elimination Laws
Let B be a formula that does not contain any free occurrence of x
then the following logical equivalences hold for any formulas $A(x), B(x), C(x)$ of \mathcal{L}

\[
\forall_{C(x)}(A(x) \cup B) \equiv (\forall_{C(x)} A(x) \cup B)
\]

\[
\exists_{C(x)} (A(x) \cap B) \equiv (\exists_{C(x)} A(x) \cap B)
\]

\[
\forall_{C(x)}(A(x) \Rightarrow B) \equiv (\exists_{C(x)} A(x) \Rightarrow B)
\]

\[
\forall_{C(x)}(B \Rightarrow A(x)) \equiv (B \Rightarrow \forall_{C(x)} A(x))
\]

The proofs are similar to the proof of the restricted De Morgan Laws. The similar generalization of the other Introduction and Elimination Laws for restricted domain quantifiers fails
Equational Laws of Quantifiers

We prove by constructing proper counter-models the following.

\[\exists C(x)(A(x) \cup B) \not\equiv (\exists C(x) A(x) \cup B) \]
\[\forall C(x)(A(x) \cap B) \not\equiv (\forall C(x) A(x) \cap B) \]
\[\exists C(x)(A(x) \Rightarrow B) \not\equiv (\forall C(x) A(x) \Rightarrow B) \]
\[\exists C(x)(B \Rightarrow A(x)) \not\equiv (B \Rightarrow \exists x A(x)) \]
Equational Laws of Quantifiers

Nevertheless it is possible to correctly generalize them all as to cover quantifiers with restricted domain.

We show now how we get the correct generalization of

\[\exists C(x)(A(x) \cup B) \neq (\exists C(x) A(x) \cup B) \]

We leave the other cases as an exercise.
Equational Laws of Quantifiers

Example
The correct restricted quantifiers equality is

$$\exists_{C(x)}(A(x) \cup B) \equiv (\exists_{C(x)}A(x) \cup (\exists x \ C(x) \cap B))$$

We derive it as follows.

$$\exists_{C(x)}(A(x) \cup B) \equiv \exists x (C(x) \cap (A(x) \cup B)) \equiv$$

$$\exists x((C(x) \cap A(x)) \cup (C(x) \cap B)) \equiv (\exists x (C(x) \cap A(x)) \cup \exists x (C(x) \cap B))$$

$$\equiv \exists_{C(x)}A(x) \cup (\exists x \ C(x) \cap B))$$

We leave it as an exercise to specify and write references to transformation or equational laws used at each step of the computation.
Chapter 8
Classical Predicate Semantics and Proof Systems

Slides Set 3
PART 4: Proof Systems: Soundness and Completeness
Proof Systems: Soundness and Completeness

We adopt now general definitions from chapter 4 concerning proof systems to the case of classical first order (predicate) logic.

Chapters 4 and 5 contain a great array of examples, exercises, homework problems explaining in a great detail all notions we introduce here for the predicate case.

The examples and exercises we provide here are not numerous and restricted to the laws of quantifiers.
Proof Systems

Given a predicate language

\[\mathcal{L} = \mathcal{L}\{\neg, \cap, \cup, \Rightarrow, \neg\}(\mathcal{P}, \mathcal{F}, \mathcal{C}) \]

Any proof system \(S = (\mathcal{L}, \mathcal{F}, LA, R) \) is a predicate (first order) proof system.

The predicate proof system \(S \) is a Hilbert proof system if the set \(R \) of its rules contains the Modus Ponens rule

\[
\begin{align*}
(MP) & \quad \frac{A ; (A \Rightarrow B)}{B}
\end{align*}
\]

where \(A, B \in \mathcal{F} \).
Proof Systems

Semantic Link: Logical Axioms LA

We want the set LA of logical axioms to be a non-empty set of classical predicate tautologies, i.e.

\[LA \subseteq T_p \]

where

\[T_p = \{ A \text{ of } L_{\neg, \cap, \cup, \Rightarrow, \neg} (P, F, C) : \models_p A \} \]

We use symbols \(\models_p, T_p \) to stress the fact that we talk about predicate language and classical predicate tautologies.
Rules of Inference

Semantic Link 2: Rules of Inference \mathcal{R}

We want the the rules of inference $r \in \mathcal{R}$ of S to preserve truthfulness. Rules that do so are called sound

Definition

Given an inference rule $r \in \mathcal{R}$ of the form

$$(r) \quad \frac{P_1 ; P_2 ; \ldots ; P_m}{C}$$

where $P_1, P_2, \ldots, P_m, C \in \mathcal{F}$

We say that the rule (r) is sound if and only if the following condition holds for all structures $\mathbf{M} = [U, I]$ for \mathcal{L}

If $\mathbf{M} \models \{P_1, P_2, \ldots, P_m\}$ then $\mathbf{M} \models C$
Exercise
Prove the soundness of the rule

\[(r) \quad \frac{\forall x A(x)}{\exists x A(x)}\]

Proof
Assume that \((r)\) is **not sound**
It means that **there is** a structure \(M = [U, I]\), such that

\[M \models \forall x A(x) \quad \text{and} \quad M \not\models \exists x A(x)\]

Let \((M, s) \models \forall x A(x)\) and \((M, s) \not\models \exists x A(x)\)
It means that \((M, s') \models A(x)\) for all \(s'\) such that \(s, s'\) agree on all variables except on \(x\), and it is **not true** that there is \(s'\) such that \(s, s'\) agree on all variables except on \(x\), and \((M, s') \models A(x)\)
This is **impossible** and this **contradiction** proves soundness of \((r)\)
Rules of Inference

Exercise
Prove that the rule

$$
\begin{align*}
(r) & \quad \exists x A(x) \\
& \quad \forall x A(x)
\end{align*}
$$

is not sound

Proof
Observe that to prove that the rule (r) is not sound we have to provide an example of an instance of a formula \(A(x) \) and construct a counter model

Let \(A(x) \) be an atomic formula \(P(x,c) \), for any \(P \in P, \#P = 2 \)
We take as a counter model a structure

\[
M = (N, P_I : <, c_I : 3)
\]

where \(N \) is the set of natural numbers
Here is a "shorthand" solution

The atomic formula \((\exists x \ P(x, c))\) becomes in

\[M = (N, \ P_I : <, \ c_I : 3) \]

a true mathematical statement (written with logical symbols):

\[\exists n \ n < 3 \]

The formula \((\forall x \ P(x, c))\) becomes a mathematical statement

\[\forall n \ n < 3 \]

which is an obviously false in the set \(N\) of natural numbers

This proves that the the rule \((r)\) is not sound
Rules of Inference

Definition of Strongly Sound Rule
An inference rule \(r \in R \) of the form
\[
(r) \quad \frac{P_1 ; P_2 ; \ldots ; P_m}{C}
\]
is strongly sound if the following condition holds for all structures \(M = [U, I] \) for \(\mathcal{L} \)
\[
M \models \{P_1, P_2, \ldots, P_m\} \quad \text{if and only if} \quad M \models C
\]
We can, and we do state it informally as
\((r) \) is strongly sound if and only if \(P_1 \cap P_2 \cap \ldots \cap P_m \equiv C \)
Rules of Inference

Example
The sound rule
\[(r1) \quad \frac{\neg \forall x A(x)}{\exists x \neg A(x)}\]
is strongly sound by De Morgan Laws

Example
The sound rule
\[(r2) \quad \frac{\forall x A(x)}{\exists x A(x)}\]
is not strongly sound by exercise above
Soundness

Definition of Sound Proof System

Given the predicate (first order) proof system

\[S = (\mathcal{L}, \mathcal{F}, \text{LA}, \mathcal{R}) \]

We say that \(S \) is sound if the following conditions hold

(1) \(\text{LA} \subseteq T_p \)

(2) Each rule of inference \(r \in \mathcal{R} \) is sound

The proof system \(S \) is strongly sound if the condition (2) is replaced by the following condition (2’)

(2’) Each rule of inference \(r \in \mathcal{R} \) is strongly sound
Soundness Theorem

When we define (develop) a proof system \(S \) our first goal is to make sure that it is a "sound" one. It means that all we prove in it is true. The following theorem establishes this goal.

Soundness Theorem for \(S \)

Given a predicate proof system \(S \), for any \(A \in \mathcal{F} \), the following implication holds.

\[
\text{If } \vdash_S A \text{ then } \models_p A
\]

We write it in a more concise form as

\[
P_S \subseteq T_p
\]
Soundness Theorem

Proof of Soundness Theorem
Observe that if we have already proven that S is sound as stated in the definition the proof of the implication

If $\vdash_S A$ then $\models_\rho A$

is a straightforward application of the mathematical induction over the length of the formal proof of the formula A

It means that in order to prove the Soundness Theorem for a proof system S it is enough to verify the two conditions of the soundness definition, i.e. to verify

(1) $LA \subseteq T_\rho$ and
(2) each rule of inference $r \in R$ is sound
Completeness Theorem

Proving **Soundness Theorem** for any proof system S is indispensable and moreover, the proof is quite easy.

The next step in developing a logic (classical predicate logic in our case now) is to answer the following necessary and difficult question:

Given a proof system S about which we know that all it proves is true (tautology),

Can we prove all we know to be true? It means:

Can S prove all tautologies?

Proving the following theorem establishes this goal.
Completeness Theorem

Completeness Theorem for S

Given a *predicate* proof system S

For any $A \in \mathcal{F}$, the following holds

$$\vdash_S A \iff \models_{\rho} A$$

We write it in a more concise form as

$$\mathcal{P}_S = T_{\rho}$$
Completeness Theorem

The **Completeness Theorem** consists of two parts

Part 1: Soundness Theorem

\[P_S \subseteq T_p \]

Part 2: Completeness part of the Completeness Theorem

\[T_p \subseteq P_S \]
CompletenessTheorem

There are many methods and techniques for proving the CompletenessTheorem.

It applies even for classical proof systems (logics) alone.

Non-classical logics often require new and usually very sophisticated methods.
Completeness Theorem

We presented two very different proofs of the Completeness Theorem for classical propositional Hilbert style proof system in chapter 5.

Then we presented yet another very different constructive proofs for automated theorem proving systems for classical propositional logic chapter 6.

As a next step we present an old, standard proof of the predicate Completeness Theorem for Hilbert style proof system for classical logic in the next chapter 9.