
LOGICS FOR COMPUTER SCIENCE:
Classical and Non-Classical

Anita Wasilewska

Chapter 8
Classical Predicate Semantics and Proof Systems

CHAPTER 8 SLIDES

Slides Set 3

Chapter 8
Classical Predicate Semantics and Proof Systems

Slides Set 3

PART 3: Predicate Tautologies, Equational Laws of
Quantifiers

PART 4: Proof Systems: Soundness and Completeness

Chapter 8
Classical Predicate Semantics and Proof Systems

Slides Set 3

PART 3: Predicate Tautologies, Equational Laws of
Quantifiers

Predicate Tautologies

Predicate Tautologies

We have already proved the basic predicate tautology

|= (∀x A(x)⇒ ∃x A(x))

We prove now other three basic tautologies called

Dictum de Omni

For any formula A(x) of L,

|= (∀x A(x)⇒ A(t)), |= (∀x A(x)⇒ A(x))

|= (A(t)⇒ ∃x A(x))

where t is a term, A(t) is a result of substitution of t for all
free occurrences of x in A(x), and t is free for x in A(x), i.e.
no occurrence of a variable in t becomes a bound
occurrence in A(t)

Proof of Dictum de Omni

Proof of

|= (∀x A(x)⇒ A(t)), |= (∀x A(x)⇒ A(x))

is constructed in a sequence of the following steps
We leave details to complete as an exercise
S1
Consider a structure M = [U, I] and s : VAR −→ U
Let t , u be two terms
Denote by t ′ a result of replacing in t all occurrences of a
variable x by the term u, i.e.

t ′ = t(x/u)

Let s′ results from s by replacing s(x) by sI(u)
We prove by induction over the length of t that

sI(t(x/u)) = sI(t ′) = s′I(u)

Proof of Dictum de Omni

S2
Let t be free for x in A(x)
A(t) is a results from A(x) by replacing t for all free
occurrences of x in A(x), i.e.

A(t) = A(x/t)

Let
s : VAR −→ U

and s′ be obtained from s by replacing s(x) by sI(u)
We use

sI(t(x/u)) = sI(t ′) = s′I(u)

and induction on the number of connectives and quantifiers in
A(x) and prove

(M, s) |= A(x/t) if and only if (M, s′) |= A(x)

Proof of Dictum de Omni

S3

Directly from satisfaction definition and

(M, s) |= A(x/t) if and only if (M, s′) |= A(x)

we get that for any M = [U, I] and any s : VAR −→ U,

if (M, s) |= ∀xA(x), then (M, s) |= A(t)

This proves
|= (∀x A(x)⇒ A(t))

Observe that obviously a term x is free for x in A(x), so we
also get as a particular case of t = x that

|= (∀x A(x)⇒ A(x))

Dictum de Omni Restrictions

Proof of
|= (A(t)⇒ ∃x A(x))

is included in detail in Section 3

Remark

The restrictions on terms in Dictum de Omni tautologies are
essential

Here is a simple example explaining why they are needed in

|= (∀x A(x)⇒ A(t)), |= (∀x A(x)⇒ A(x))

Let A(x) be a formula

¬∀y P(x, y) for P ∈ P

Notice that a term t = y is not free for y in A(x)

Dictum de Omni Restrictions

Consider the first formula in Dictum de Omni for
A(x) = ¬∀y P(x, y) and term t = y

(∀x¬∀y P(x, y)⇒ ¬∀y P(y, y))

Take
M = [N, I] for I such that PI : =

Obviously,
M |= ∀x¬∀y P(x, y)

as
∀m ¬∀n(m = n)

is a true mathematical statement in the set N of natural
numbers

Dictum de Omni Restrictions

M 6|= ¬∀y P(y, y)

as
¬∀n (n = n)

is a false statement for n ∈ N

The second Dictum de Omni formula is a particular case of
the first

We have proved that without the restrictions on terms

6|= (∀x A(x)⇒ A(t)) and 6|= (∀x A(x)⇒ A(x))

The example for |= (A(t)⇒ ∃x A(x)) is similar

”t free for x in A(x)”

Here are some useful and easy to prove properties of the
notion ” term t free for x in A(x) ”

Properties

For any formula A ∈ F and any term t ∈ T the following
properties hold

P1. Closed term t , i.e. term with no variables is free for any
variable x in A

P2. Term t is free for any variable in A if none of the
variables in t is bound in A

P3. Term t = x is free for x in any formula A

P4. Any term is free for x in A if A contains no free
occurrences of x

Predicate Tautologies

Here are some more important predicate tautologies

For any formulas A(x),B(x),A ,B of L, where the formulas
A, B do not contain any free occurrences of x the following
holds

Generalization

|= ((B ⇒ A(x))⇒ (B ⇒ ∀x A(x)))

|= ((B(x)⇒ A)⇒ (∃xB(x)⇒ A))

Distributivity 1

|= (∀x(A ⇒ B(x))⇒ (A ⇒ ∀x B(x)))

|= ∀x(A(x)⇒ B)⇒ (∃xA(x)⇒ B)

|= ∃x(A(x)⇒ B)⇒ (∀xA(x)⇒ B)

Restrictions

The restrictions that the formulas A, B do not contain any
free occurrences of x is essential for both Generalization
and Distributivity 1 tautologies

Here is a simple example explaining why they are needed

The relaxation of the restrictions would lead to the following
disaster

Let A and B be both the same atomic formula P(x)

Thus x is free in A and we have the following instance of the
first .Distributivity 1 tautology

.(∀x(P(x)⇒ P(x))⇒ (P(x)⇒ ∀x P(x)))

Restrictions

Take
M = [N, I] for I such that PI = ODD

where ODD ⊆ N is the set of odd numbers
Let s : VAR −→ N
By definition of the interpretation i,

sI(x) ∈ PI if and only if sI(x) ∈ ODD

Then obviously
(M, s) 6|= ∀x P(x)

and M = [N, I] is a counter model for

(∀x(P(x)⇒ P(x))⇒ (P(x)⇒ ∀x P(x)))

as
|= ∀x(P(x)⇒ P(x))

The examples for restrictions on other tautologies are similar.

Predicate Tautologies

Distributivity 2

For any formulas A(x),B(x) of L

|= (∃x (A(x) ∩ B(x)) ⇒ (∃xA(x) ∩ ∃xB(x)))

|= ((∀xA(x) ∪ ∀xB(x))⇒ ∀x (A(x) ∪ B(x)))

|= (∀x(A(x)⇒ B(x))⇒ (∀xA(x)⇒ ∀xB(x)))

The converse implications to the above are not predicate
tautologies

The counter models are provided in the Section 3

De Morgan Laws

De Morgan Laws

For any formulas A(x),B(x) of L,

|= (¬∀xA(x)⇒ ∃x¬A(x))

|= (¬∃xA(x)⇒ ∀x¬A(x))

|= (∃x¬A(x)⇒ ¬∀xA(x))

|= (¬∃xA(x)⇒ ∀x¬A(x))

We prove the first law as an example

The proofs of all other laws are similar

De Morgan Laws

Proof of
|= (¬∀xA(x)⇒ ∃x¬A(x))

We carry the proof by contradiction

Assume that

6|=|= (¬∀xA(x)⇒ ∃x¬A(x))

By definition, there is

M = [U, I] and s : VAR −→ U

such that

(M, s) |= ¬∀xA(x)) and (M, s) 6|= ∃x¬A(x)

De Morgan Laws

Consider
(M, s) |= ¬∀xA(x)

By satisfaction definition

(M, s) 6|= ∀xA(x)

This holds only if for all s′, such that s, s′ agree on all
variables except on x,

(M, s′) 6|= A(x)

De Morgan Laws

Consider now
(M, s) 6|= ∃x¬A(x)

This holds only if there is no s′, such that

(M, s′) |= ¬A(x)

i.e. there is no s′, such that (M, s′) 6|= A(x)

This means that for all s′,

(M, s′) |= A(x)

Contradiction with already proved

(M, s′) 6|= A(x)

This ends the proof

Quantifiers Alternations

Quantifiers Alternations

For any formula A(x, y) of L,

|= (∃x∀yA(x, y)⇒ ∀y∃xA(x, y))

The converse implication

(∀y∃xA(x, y)⇒ ∃x∀yA(x, y))

is not a predicate tautology

Here is a proof

Take as A(x, y) an atomic formula R(x, y)

Consider the instance formula

(∀y∃xR(x, y)⇒ ∃x∀yR(x, y))

Quantifiers Alternations

We construct now a counter model for the instance formula

(∀y∃xR(x, y)⇒ ∃x∀yR(x, y))

Take a structure
M = [R , I]

where R is the set of real numbers and RI :<

The instance formula becomes a mathematical statement

(∀y∃x(x < y)⇒ ∃x∀y(x < y))

that obviously false in the set of real numbers

We proved

6|= (∀y∃xA(x, y)⇒ ∃x∀yA(x, y))

Equational Laws of Quantifiers

Logical Equivalence

The most frequently used laws of quantifiers have a form of
a logical equivalence, symbolically written as ≡

Logical equivalence ≡ is not a new logical connective but
just a very useful symbol

Logical equivalence ≡ has the same properties as the
mathematical equality = and can be used in a similar way as
we use the equality

Note that we use the same equivalence symbol ≡ and the
tautology symbol |= for propositional and predicate
languages when there is no confusion

Logical Equivalence

We define formally the logical equivalence ≡ as follows.

Definition of Logical Equivalence

For any formulas A , B of the predicate language L,

A ≡ B if and only if |= (A ⇒ B) and |= (B ⇒ A)

Remark that the predicate language L we defined the
semantics for does not include the equivalence connective
⇔. If it does we extend the satisfaction definition in a natural
way and adopt the following, natural definition

Definition
For any formulas A ,B ∈ F of the predicate language L with
the equivalence connective⇔

A ≡ B if and only if |= (A ⇔ B)

Logical Equivalence Theorems

The basic theorems establishing relationship between
propositional and some predicate tautologies are as follows

Tautologies Theorem

If a formula A is a propositional tautology,

then by substituting for propositional variables in A any
formula of the predicate language L we obtain a formula
which is a predicate tautology

Logical Equivalence Theorems

Equivalences Theorem

Given propositional formulas A , B

If A ≡ B is a propositional equivalence, and

A ′, B′ are formulas of the predicate language L obtained by
a substitution of any formulas of L for propositional
variables in A and B, respectively,

then
A ′ ≡ B′

holds under predicate semantics

Logical Equivalence Example

Example

Consider the following propositional logical equivalence

(a ⇒ b) ≡ (¬a ∪ b)

Substituting

∃xP(x, z) for a and ∀yR(y, z) for b

we get by the EquivalencesTheorem that the following
logical equivalence holds

(∃xP(x, z)⇒ ∀yR(y, z)) ≡ (¬∃xP(x, z) ∪ ∀yR(y, z))

Equivalence Substitution

We prove in similar way as in the propositional case the
following.

Equivalence Substitution Theorem

Let a formula B1 be obtained from a formula A1 by a
substitution of a formula B for one or more occurrences of
a sub-formula A of A1, what we denote as

B1 = A1(A/B)

Then the following holds for any formulas A , A1, B , B1 of L

If A ≡ B , then A1 ≡ B1

Logical Equivalence Theorem

Directly from the Dictum de Omi and theGeneralization
tautologies we get the proof of the following theorem useful for
building new logical equivalences from the old, known ones

E- Theorem

For any formulas A(x),B(x) of L

if A(x) ≡ B(x), then ∀xA(x) ≡ ∀xB(x)

if A(x) ≡ B(x), then ∃xA(x) ≡ ∃xB(x)

Logical Equivalence Example

Example

We know from the previous example that

(∃xP(x, z)⇒ ∀yR(y, z)) ≡ (¬∃xP(x, z) ∪ ∀yR(y, z))

We get, as the direct consequence of the above theorem the
following logical equivalence

∀z(∃xP(x, z)⇒ ∀yR(y, z)) ≡ ∀z(¬∃xP(x, z) ∪ ∀yR(y, z))

∃z(∃xP(x, z)⇒ ∀yR(y, z)) ≡ ∃z(¬∃xP(x, z) ∪ ∀yR(y, z))

Equational Laws of Quantifiers

We concentrate now only on these laws of quantifiers which
have a form of a logical equivalence

They are called the equational laws of quantifiers

Directly from the logical equivalence definition and the De
Morgan tautologies we get the following

De Morgan Laws

For any formulas A(x), B(x) of L

¬∀xA(x) ≡ ∃x¬A(x)

¬∃xA(x) ≡ ∀x¬A(x)

We now apply them to show that the quantifiers can be
defined one by the other i.e. that the following Definability
Laws hold

Equational Laws of Quantifiers

Definability Laws

For any formula A(x) of L

∀xA(x) ≡ ¬∃x¬A(x)

∃xA(x) ≡ ¬∀x¬A(x)

The first law is often used as a definition of the universal
quantifier in terms of the existential one (and negation)

The second law is a definition of the existential quantifier in
terms of the universal one (and negation)

Equational Laws of Quantifiers

Proof of
∀xA(x) ≡ ¬∃x¬A(x)

Substituting any formula A(x) for a variable a in the
propositional equivalence a ≡ ¬¬a
we get by the Equivalence Theorem that

A(x) ≡ ¬¬A(x)

Applying the E-Theorem to the above we obtain

∃xA(x) ≡ ∃x¬¬A(x)

By the De Morgan Law

∃x¬¬A(x) ≡ ¬∀x¬A(x)

By the Equivalence Substitution Theorem

∃xA(x) ≡ ¬∀x¬A(x)

This ends the proof

Equational Laws of Quantifiers

Proof of
∀xA(x) ≡ ¬∃x¬A(x)

Substituting any formula A(x) for a variable a in the
propositional equivalence a ≡ ¬¬a
we get by the Equivalence Theorem that

A(x) ≡ ¬¬A(x)

Applying the E-Theorem to the above we obtain

∀xA(x) ≡ ∀x¬¬A(x)

By the De Morgan Law and Equivalence Substitution
Theorem

∀x¬¬A(x) ≡ ¬∃x¬A(x)

∀xA(x) ≡ ¬∃x¬A(x)

This ends the proof

Equational Laws of Quantifiers

Other important equational laws are the following
introduction and elimination laws
Listed equivalences are not independent, some of them are
the consequences of the others

Introduction and Elimination Laws
If B is a formula such that B does not contain any free
occurrence of x, then the following logical equivalences hold
for any formula A(x) of L

∀x(A(x) ∪ B) ≡ (∀xA(x) ∪ B)

∀x(A(x) ∩ B) ≡ (∀xA(x) ∩ B)

∃x(A(x) ∪ B) ≡ (∃xA(x) ∪ B)

∃x(A(x) ∩ B) ≡ (∃xA(x) ∩ B)

Equational Laws of Quantifiers

Introduction and Elimination Laws

∀x(A(x)⇒ B) ≡ (∃xA(x)⇒ B)

∃x(A(x)⇒ B) ≡ (∀xA(x)⇒ B)

∀x(B ⇒ A(x)) ≡ (B ⇒ ∀xA(x))

∃x(B ⇒ A(x)) ≡ (B ⇒ ∃xA(x))

As we said before, the equivalences are not independent

We show now as an example the proof of the third one from
the first two

Equational Laws of Quantifiers

We write this proof in a short, symbolic way as follows

∃x(A(x) ∪ B)
law
≡ ¬∀x¬(A(x) ∪ B)

thms
≡ ¬∀x(¬A(x) ∩ ¬B)

law
≡ ¬(∀x¬A(x) ∩ ¬B)

law,thm
≡ (¬∀x¬A(x) ∪ ¬¬B)

thm
≡ (∃xA(x) ∪ B)

We leave completion and explanation of all details as it as
and exercise

Equational Laws of Quantifiers

Distributivity Laws

Let A(x),B(x) be any formulas with a free variable x

Law of distributivity of universal quantifier over conjunction

∀x (A(x) ∩ B(x)) ≡ (∀xA(x) ∩ ∀xB(x))

Law of distributivity of existential quantifier over disjunction

∃x (A(x) ∪ B(x)) ≡ (∃xA(x) ∪ ∃xB(x))

Equational Laws of Quantifiers

Alternations of Quantifiers

Let A(x, y) be any formula with a free variables x, y

∀x∀y (A(x, y) ≡ ∀y∀x (A(x, y)

∃x∃y (A(x, y) ≡ ∃y∃x (A(x, y)

Equational Laws of Quantifiers

Renaming the Variables

Let A(x) be any formula with a free variablex and let y be a
variable that does not occur in A(x) y, then the following
holds

∀xA(x) ≡ ∀yA(y)

∃xA(x) ≡ ∃yA(y)

Equational Laws of Quantifiers

Restricted De Morgan Laws

For any formulas A(x),B(x) of L

¬∀B(x) A(x) ≡ ∃B(x) ¬A(x)

¬∃B(x) A(x) ≡ ∀B(x)¬A(x)

Equational Laws of Quantifiers

Here is a poof of first equality

The proof of the second one is similar and is left as an
exercise.

¬∀B(x) A(x) ≡ (¬∀x (B(x)⇒ A(x)) ≡

¬∀x (¬B(x) ∪ A(x)) ≡ ∃x ¬(¬B(x) ∪ A(x)) ≡

∃x (¬¬B(x) ∩ ¬A(x)) ≡ ∃x (B(x) ∩ ¬A(x)) ≡ ∃B(x) ¬A(x))

Equational Laws of Quantifiers

Restricted Introduction and Elimination Laws
Let B be a formula that does not contain any free
occurrence of x

then the following logical equivalences hold for any formulas
A(x),B(x),C(x) of L

∀C(x)(A(x) ∪ B) ≡ (∀C(x)A(x) ∪ B)

∃C(x) (A(x) ∩ B) ≡ (∃C(x) A(x) ∩ B)

∀C(x)(A(x)⇒ B) ≡ (∃C(x)A(x)⇒ B)

∀C(x)(B ⇒ A(x)) ≡ (B ⇒ ∀C(x)A(x))

The proofs are similar to the proof of the restricted De
Morgan Laws. The similar generalization of the other
Introduction and Elimination Laws for restricted domain
quantifiers fails

Equational Laws of Quantifiers

We prove by constructing proper counter-models the
following.

∃C(x)(A(x) ∪ B).(∃C(x)A(x) ∪ B)

∀C(x)(A(x) ∩ B).(∀C(x)A(x) ∩ B)

∃C(x)(A(x)⇒ B).(∀C(x)A(x)⇒ B)

∃C(x)(B ⇒ A(x)).(B ⇒ ∃xA(x))

Equational Laws of Quantifiers

Nevertheless it is possible to correctly generalize them all as
to cover quantifiers with restricted domain

We show now how we get the correct generalization of

∃C(x)(A(x) ∪ B).(∃C(x)A(x) ∪ B)

We leave the other cases an exercise

Equational Laws of Quantifiers

Example

The correct restricted quantifiers equality is

∃C(x)(A(x) ∪ B) ≡ (∃C(x)A(x) ∪ (∃x C(x) ∩ B))

We derive it as follows.

∃C(x)(A(x) ∪ B) ≡ ∃x(C(x) ∩ (A(x) ∪ B)) ≡

∃x((C(x)∩A(x))∪(C(x)∩B)) ≡ (∃x(C(x)∩A(x))∪∃x(C(x)∩B))

≡ ∃C(x)A(x) ∪ (∃x C(x) ∩ B))

We leave it as an exercise to specify and write references to
transformation or equational laws used at each step of the
computation

Chapter 8
Classical Predicate Semantics and Proof Systems

Slides Set 3

PART 4: Proof Systems: Soundness and Completeness

Proof Systems: Soundness and Completeness

We adopt now general definitions from chapter 4 concerning
proof systems to the case of classical first order (predicate)
logic

Chapters 4 and 5 contain a great array of examples,
exercises, homework problems explaining in a great detail all
notions we introduce here for the predicate case

The examples and f exercises we provide here are not
numerous and restricted to the laws of quantifiers

Proof Systems

Given a predicate language

L = L{¬,∩,∪,⇒,¬}(P,F,C)

Any proof system

S = (L, F , LA , R)

is a predicate (first order) proof system

The predicate proof system S is a Hilbert proof system if the
set R of its rules contains the Modus Ponens rule

(MP)
A ; (A ⇒ B)

B

where A ,B ∈ F

Proof Systems

Semantic Link: Logical Axioms LA

We want the set LA of logical axioms to be a non-empty set of
classical predicate tautologies, i.e.

LA ⊆ Tp

where

Tp = {A of L{¬,∩,∪,⇒,¬}(P,F,C) : |=p A }

We use symbols
|=p , Tp

to stress the fact that we talk about predicate language and
classical predicate tautologies

Rules of Inference

Semantic Link 2: Rules of Inference R

We want the the rules of inference r ∈ R of S to preserve
truthfulness. Rules that do so are called sound

Definition

Given an inference rule r ∈ R of the form

(r)
P1 ; P2 ; ; Pm

C

where P1.P2, . . . ,Pm,C ∈ F

We say that the rule (r) is sound if and only if the following
condition holds for all structures M = [U, I] for L

If M |= {P1,P2, .Pm} then M |= C

Rules of Inference

Exercise
Prove the soundness of the rule

(r)
∀xA(x)
∃xA(x)

Proof
Assume that (r) is not sound
It means that there is a structure M = [U, I], such that

M |= ∀xA(x) and M 6|= ∃x A(x)

Let (M, s) |= ∀x A(x) and (M, s) 6|= ∃x A(x)
It means that (M, s′) |= A(x) for all s′ such that s, s′ agree
on all variables except on x, and it is not true that there is s′

such that s, s′ agree on all variables except on x , and
(M, s′) |= A(x)
This is impossible and this contradiction proves soundness
of (r)

Rules of Inference

Exercise
Prove that the rule

(r)
∃xA(x)
∀xA(x)

is not sound
Proof
Observe that to prove that the rule (r) is not sound we have
to provide an example of an instance of a formula A(x) and
construct a counter model

Let A(x) be an atomic formula P(x,c), for any P ∈ P, #P = 2
We take as a counter model a structure

M = (N, PI :<, cI : 3)

where N is the set of natural numbers

Rules of Inference

Here is a ”shorthand” solution

The atomic formula (∃x P(x, c) becomes in

M = (N, PI :<, cI : 3)

a true mathematical statement (written with logical symbols):

∃n n < 3

The formula (∀x P(x, c) becomes a mathematical statement

∀n n < 3

which is an obviously false in the set N of natural numbers

This proves that the the rule (r) is not sound

Rules of Inference

Definition of Strongly Sound Rule

An inference rule r ∈ R of the form

(r)
P1 ; P2 ; ; Pm

C

is strongly sound if the following condition holds for

all structures M = [U, I] for L

M |= {P1,P2, .Pm} if and only if M |= C

We can, and we do state it informally as

(r) is strongly sound if and only if P1 ∩ P2 ∩ . . . ∩ Pm ≡ C

Rules of Inference

Example

The sound rule

(r1)
¬∀xA(x)
∃x¬A(x)

is strongly sound by De Morgan Laws

Example

The sound rule

(r2)
∀xA(x)
∃xA(x)

is not strongly sound by exercise above

Soundness

Definition of Sound Proof System

Given the predicate (first order) proof system

S = (L, F , LA , R)

We say that S is sound if the following conditions hold

(1) LA ⊆ Tp

(2) Each rule of inference r ∈ R is sound

The proof system S is strongly sound if the condition (2) is
replaced by the following condition (2’)

(2’) Each rule of inference r ∈ R is strongly sound

Soundness Theorem

When we define (develop) a proof system S our first goal is
to make sure that it is a ”sound” one

It means that that all we prove in it is true. The following
theorem establishes this goal

Soundness Theorem for S

Given a predicate proof system S

For any A ∈ F , the following implication holds.

If `S A then |=p A

We write it in a more concise form as

PS ⊆ Tp

Soundness Theorem

Proof of Soundness Theorem

Observe that if we have already proven that S is sound as
stated in the definition the proof of the implication

If `S A then |=p A

is a straightforward application of the mathematical induction
over the length of the formal proof of the formula A

It means that in order to prove the Soundness Theorem for a
proof system S it is enough to verify the two conditions of the
soundness definition, i.e. to verify

(1) LA ⊆ Tp and

(2) each rule of inference r ∈ R is sound

CompletessTheorem

Proving Soundness Theorem for any proof system S is
indispensable and moreover, the proof is quite easy

The next step in developing a logic (classical predicate logic
in our case now) is to answer the following necessary and
difficult question

Given a proof system S about which we know that all it
proves is true (tautology)

Can we prove all we know to be true ?. It means:

Can S prove all tautologies?

Proving the following theorem establishes this goal

CompletenessTheorem

Completeness Theorem for S

Given a predicate proof system S

For any A ∈ F , the following holds

`S A if and only if |=p A

We write it in a more concise form as

PS = Tp

CompletenessTheorem

The Completeness Theorem consists of two parts

Part 1: Soundness Theorem

PS ⊆ Tp

Part 2: Completeness part of the Completeness Theorem

Tp ⊆ PS

CompletenessTheorem

There are many methods and techniques fo rproving the
CompletenessTheorem

It applies even for classical proof systems (logics) alone

Non-classical logics often require new and usually very
sophisticated methods

CompletenessTheorem

We presented two very different proofs of the
Completeness Theorem for classical propositional Hilbert
style proof system in chapter 5

Then we presented yet another very different constructive
proofs for automated theorem proving systems for classical
propositional logic chapter 6

As a next step we present an old, standard proof of the
predicate Completeness Theorem for Hilbert style proof
system for classical logic in the next chapter 9

