LOGICS FOR COMPUTER SCIENCE:
Classical and Non-Classical

Anita Wasilewska

Chapter 8
Classical Predicate Semantics and Proof Systems

CHAPTER 8 SLIDES

Slides Set 1

Chapter 8
Classical Predicate Semantics and Proof Systems

Slides Set 1
PART 1: Formal Predicate Languages

Slides Set 2
PART 2: Classical Semantics

Chapter 8
Classical Predicate Semantics and Proof Systems

Slides Set 3

PART 3: Predicate Tautologies, Equational Laws of
Quantifiers

PART 4: Proof Systems: Soundness and Completeness

Chapter 8
Classical Predicate Semantics and Proof Systems

Slides Set 1
PART 1: Formal Predicate Languages

Formal Predicate Languages

We define a predicate language £ following the pattern
established by the propositional languages

The predicate language £ is more complicated in its
structure and hence its alphabet ‘A is much richer

The definition of its set ¥ of formulas is more complicated

In order to define the set ¥ of formulas we introduce an
additional set T, called a set of terms

The terms play important role in the development of other
notions of predicate logic

Predicate Languages

Predicate languages are also called first order languages

The same applies to the use of terms for propositional and
predicate logics

Propositional and predicate logics are called zero order
and first order logics, respectively

We will use both terms equally

We work with many different predicate languages, depending
on what applications we have in mind

All of these languages have some common features, and we
begin with a following general definition

Predicate Language

Definition
By a predicate language £ we understand a triple

L=(ATTF)

where

A is a predicate alphabet
T is the set of terms

¥ is a set of formulas

Predicate Languages Components

The first component of £ is defined as follows
1. Alphabet A is the set

A=VARUCONUPARUQUPUFUC

where

VAR is set of predicate variables

CON is a set of propositional connectives
PAR is a set of parenthesis

Q is a set of quantifiers

P is a set of predicate symbols

F ia set of functions symbols, and

C is a set of constant symbols

We assume that all of the sets defining the alphabet are
disjoint

Alphabet Components

The component of the alphabet A are defined as follows
Variables

We assume that we always have a countably infinite set
VAR of variables, i.e. we assume that

cardVAR = Xg

We denote variables by x, y, z, ..., with indices, if necessary.
we often express it by writing

VAR = {X1, X2, }

Alphabet Components

Propositional Connectives

We define the set of propositional connectives CON in the
same way as in the propositional case

The set CON is a finite and non-empty and
CON = Cy U Co
where Cy, Co are the sets of one and two arguments

connectives, respectively

Parenthesis

As in the propositional case, we adopt the signs (and) for
our parenthesis., i.e. we define a set PAR as

PAR ={(,)}

Alphabet Components

The set of propositional connectives CON defines a
propositional part of the predicate language

What really differs one predicate language from the other is
the choice of the following additional symbols

These are quantifiers symbols, predicate symbols, function
symbols, and constant symbols

A particular predicate language is determined by specifying
the following sets of symbols of the alphabet

Alphabet Components

Quantifiers

We adopt two quantifiers;

universal quantifier denoted by V and
existential quantifier denoted by 1

We have the following set of quantifiers

Q={v,3)

Alphabet Components

In a case of the classical logic and the logics that extend it, it
is possible to adopt only one quantifier and to define the
other in terms of it and propositional connectives

Such definability of quantifiers is impossible in a case of
some non-classical logics, for example for the intuitionistic
logic

But even in the case of classical logic we often adopt the two
quantifiers as they express better the intuitive understanding
of formulas

Alphabet Components

Predicate symbols
Predicate symbols represent relations

Any predicate language contains a non empty, finite or
countably infinite set
P

of predicate symbols. We denote predicate symbols by
P,Q.R, ...

with indices, if necessary

Each predicate symbol P € P has a positive integer #P
assigned to it

When #P =n we call P an n-ary (n - place) predicate
symbol

Alphabet Components

Function symbols
Function symbols represent functions

Any predicate language contains a finite (may be empty) or
countably infinite set
F

of function symbols. We denote functional symbols by
f,g,h, ...

with indices, if necessary

When F = () we say that we deal with a language without
functional symbols

Each function symbol f € F has a positive integer #f
assigned to it

if #f=n then f iscalledan n-ary (n - place) function
symbol

Alphabet Components

Constant symbols
Any predicate language contains a finite (may be empty) or
countably infinite set
C
of constant symbols
The elements of C are denoted by

c,d,e, ...

with indices, if necessary

When the set C is empty we say that we deal with a
language without constant symbols

Sometimes the constant symbols are defined as 0-ary
function symbolsi.e. CCF

We single them out as a separate set for our convenience

Predicate Language

Given an alphabet
A=VARUCONUPARUQUPUFUC
What distinguishes one predicate language
L=(ATYF)

from the other is the choice of the components CON and
the sets P, F, C of its alphabet A

We hence will write
Lcon(P.F,C)

to denote the predicate language £ determined by P, F, C
and the set of propositional connectives CON

Predicate Language Notation

Once the set CON of propositional connectives is fixed, the
predicate language
Lcon(P,F,C)

is determined by the sets P, F and C
We write
L(P.F.C)
for the predicate language £ determined by P, F,.C (with a
fixed set of propositional connectives)

If there is no danger of confusion, we may abbreviate
L(P,F,C) tojust £

Predicate Languages Notation

We sometimes allow the same symbol to be used as an
n-place predicate symbol, and also as an m-place one

No confusion should arise because the different uses can be
told apart easily

Example

If we write P(x, y) , the symbol P denotes 2-argument
predicate symbol

If we write P(x, y, z), the symbol P denotes 3-argument
predicate symbol

Similarly for function symbols

Predicate Language

Having defined the basic element of syntax, the alphabet A,
we can now complete the formal definition of the predicate
language

L=(AT,F)
by defining next two more complex components:
the set T of all terms and

the set ¥ of all well formed formulas of the language
L= Lcon(P.F,C)

Set of Terms

Terms

The set T of terms of the predicate language £(P.F,C)
is the smallest set
TCcA

meeting the conditions:
1. any variable is a term, i.e. VARCT
2. any constant symbol is aterm,i.e. CC T
3. if fis an n-place function symbol,i.e. fe F and #f=n
and ti, to,....ty € T, then f(t,to,....,1,) €T

Terms Examples

Example 1
Let feF, #f=1,ie. fisa1-place function symbol
Let x,y be variables, c,d be constants, i.e.

x,ye VAR and c¢,deC
Then the following expressions are terms:
X, y, f(x), f(y), f(c), f(d), ...

f(f(x)), f(f(y)), f(f(c)), f(f(d)). ...
F(H(H(x))), f(f(f(v))), f((f(c))), f(f(f(d))), ...

Terms Examples

Example 2
LetF=0,C =10
In this case terms consists of variables only, i.e.

T = VAR = {x1, %2, ... }
Directly from the Example 2 we get the following

Remark

For any predicate language £(P,F,C), the set T of its
terms is always non-empty

Terms Examples
Example 3
Consider a case of L(P,F,C) where
F={f, g} for #f=1and #g=2

Let x,ye VAR and ¢, deC
Some of the terms are the following:

f9(x.y)), f(gle,x)), g(f(f(c)), 9(x.),
g(c.g(x.f(c))). a(f(a(x.y)).a(x.(c))). ..

Terms Notation

From time to time, the logicians are and so we may be also
informal about the way we write terms

Example
If we denote a 2- place function symbol g by +, we may
write

x +y instead of writing +(x.)
Because in this case we can think of x + y as an unofficial
way of designating the "real” term g(x, y)

Atomic Formulas

Atomic Formulas

Before we define formally the set ¥ of formulas, we need to
define one more set, namely the set of atomic, or
elementary formulas

Atomic formulas are the simplest formulas

They building blocks for other formulas the way the
propositional variables were in the case of propositional
languages

Atomic Formulas

Definition
An atomic formula of a predicate language L(P,F,C) is any
element of A" of the form

R(ti, b, ..., 1)

where ReP, #R=nand ty,to,....1, €T

l.e. R is n-ary predicate (relational) symbol and ti, o, ..., t,
are any terms

The set of all atomic formulas is denoted by A7 and is
defined as

AT:{R(H,tQ,...,tn)Eﬂ*Z ReP, t1,to,....th T, n>1}

Atomic Formulas Examples
Example
Consider a language

L=L({P},0,0) for #P =1

L is a predicate language without neither functional, nor
constant symbols, and with only one, 1-place predicate
symbol P

The set A¥ of atomic formulas contains all formulas of the
form P(x), for x any variable, i.e.

AF ={P(x): x € VAR}

Atomic Formulas Examples

Example
Let now consider a predicate language

L=L{R}L{f.g}, {c.d})

for#f=1,#g=2,#R =2

The language £ has two functional symbols: 1-place
symbol f and 2-place symbol g, one 2-place predicate
symbol R, and two constants: c,d

Some of the atomic formulas in this case are the following.
R(c.d). R(x.f(c)). R((a(x.y)).f(g(c.x))),

R(y, g(c.g(x,f(d)))) ...

Set of Formulas Definition

Set ¥ of Formulas

Given a predicate language
L = Lcon(P,F,C),

where CON is non-empty, finite set of propositional
connectives such that CON = C; U C» for C4 a finite set
(possibly empty) of unary connectives, C, a finite set (possibly
empty) of binary connectives of the language £

We define the set ¥ of all well formed formulas of the
predicate language £ = Lcon(P,F,C) as follows

Set of Formulas Definition

Definition

The set 7 of all well formed formulas, of the language

L = Lcon(P,F,C) is the smallest set meeting the following
conditions

1. Any atomic formula of £ is a formula, i.e.
AF CF

2. If A is aformula of £, v is an one argument
propositional connective, then VA is a formula of £, i.e. the
following recursive condition holds

if Ae F,veCqy then VAeF

Set of Formulas Definition

3. If A,B are formulas of £ and o is atwo argument
propositional connective, then (A o B) is a formula of £,
i.e. the following recursive condition holds

If AeF,veCy, then (AoB)eF

4. If A is aformula of £ and x is a variable, ¥, € Q , then
¥xA, dxA are formulas of £, i.e. the following recursive
condition holds

If AeF, xe VAR, V¥,de€Q, then VYxA, IxA e F

Scope of Quantifiers

Scope of Quantifiers

Another important notion of the predicate language is the
notion of scope of a quantifier

Definition
Given formulas
VXA, 3dxA

The formula A is said to be in the scope of a quantifier
¥, 1, respectively.

Scope of Quantifiers

Example

Let £ be a language of the previous Example with the set of
connectives {N,U, =, -}, i.e.

-£ - L{m.u.:,ﬁ}({f’ g}’ {R}v {Cs d})

for #f=1, #g=2, #R=2
Some of the formulas of £ are the following.

R(c,d), 3AyR(y.f(c)), -R(x.y),
(AxR(x,f(c)) = =R(x.y)), (R(c,d)NnYzR(z f(c))),
VyR(y, g(c,9(x,f(c)))), Vy-IxR(x,y)

Scope of Quantifiers

The formula R(x, f(c)) is in scope of the quantifier 3 in the
formula
AxR(x, f(c))

The formula (3x R(x,f(c)) = —=R(x,y)) is notin scope
of any quantifier

The formula (3xR(x,f(c)) = —R(x,y)) is in scope of
quantifier ¥ in the formula

Yy(AxR(x, f(c)) = —=R(x.,y))

Scope of Quantifiers

Example

Let £ be a first order language of some modal logic defined
as follow
-£ - -L{—!,D.O.Q.U.::’}({R}s {f7 g}7 {Cs d}7)

where
#f=1, #g=2, #R =2

Some of the formulas of L are the following.
0-R(c,f(d)), ¢o3IxoR(x,f(c)), —OR(x,y),
Vz(3AxR(x, f(c)) = =R(x, y)),

(R(c.d)nAxR(x,f(c))), YyoR(y,g(c,9g(x.f(c)))),
avy-03axR(x,y)

Scope of Quantifiers

The formula ©R(x,f(c)) isinthe scope of the quantifier 3
in ¢3dxaR(x, f(c))

The formula (3xR(x,f(c)) = —=R(x,y)) is not in a scope
of any quantifier

The formula (IxR(x,f(c)) = —R(x,y)) isinthe scope of
the quantifier V in Vz(3xR(x,f(c)) = =R(x,y))

Formula —¢03dxR(x,y) isinthe scope of the quantifier V in
avy—¢3dxR(x, y)

Free and Bound Variables
Given a predicate language £ = (A, T,7)
We want to distinguish between formulas like
P(x,y), VYxP(x,y) and Vx3dyP(x,y)

This is done by introducing the notion of free and bound
variables as well as the notion of open and closed formulas
(sentences)

Before we formulate proper definitions, here are some simple
observations

Free and Bound Variables

1. Some formulas are without quantifiers
For example formulas

R(cr.ce). R(x.y). (R(y.d)= R(a,2))

Variables x,y in R(x,y) are called free variables
The variables y in R(y,d), and z in R(a,z) are also free

A formula without quantifiers is called an open formula

Free and Bound Variables

2. Quantifiers bind variables within formulas
In the formula
YyP(x.y)
the variable x is free, the variable y is bounded by the the
quantifier ¥
In the formula
YzP(x,y)
both x and y are free
In both formulas

VYzP(z,y), VxP(x,y)

only the variable y is free

Free and Bound Variables

3. The formula AxYyR(x,y) does not contain any free
variables, neither does the formula R(cy, c2)

A formula without any free variables is called called a closed
formula or a sentence

The formula
VYx(P(x) = 3yQ(x,y))

is a closed formula (sentence), the formula
(YxP(x) = AyQ(x.y))

is not a sentence

Free and Bound Variables

Sometimes in order to distinguish more easily which variable
is free and which is bound in the formula we might use the
bold face type for the quantifier bound variables and write the
formulas as follows

(VxQ(x,y), 3JyP(y). YyR(y.g(c.9(x.1(c))))
(VxP(x) = JyQ(x,y)), (Yx(P(x)= JyQ(x.y)))
Observe that the formulas
JyP(y). (Yx(P(x) = JyQ(x.y)))

are sentences

Free and Bound Variables Formal Definition

Definition
The set FV(A) of free variables of a formula A is defined by
the induction of the degree of the formula as follows
1. If A is an atomic formula, i.e. A € AF, then FV(A) is just
the set of variables appearing in A;
2. for any unary propositional connective, i.e. for any v € C4

FV(VA) = FV(A)

i.e. the free variables of VA are the free variables of A;
3. for any binary propositional connective, i.e, for any o € C,

FV(A o B) = FV(A) U FV(B)

i.e. the free variables of (A o B) are the free variables of A
together with the free variables of B;

4. FV(VXA) = FV(AxA) = FV(A) — {x}
i.e. the free variables of VXA and JxA are the free variables
of A, except for x

Important Notation

It is common practice to use the notation
A(X1, X2, e Xp)

to indicate that
FV(A) g {X1 s X27 ceey Xn}

without implying that all of x1, xo, ..., X, are actually free in A

This is similar to the practice in algebra of writing

w(ao, at,...an) =a + a1 Xx+..... + apx" for a polynomial w
without implying that all of the coefficients ag, a4, ..., a, are
nonzero

Replacements
Replacing x by t in Ax
Given a formula A(x) and a term t. We denote by
A(x/t) orsimply by A(t)

the result of replacing all occurrences of the free variable x
in A by the term ¢

When performing the replacement we always assume that
none of the variables in t occur as bound variables in A

Replacement

Reminder

When replacing a variable x by atermt € T in a formula
A(x), we denote the result as

A(t)

We do it under the assumption that none of the variables in t
occur as bound variables in A

The assumption that none of the variables in t occur as
bound variables in A(t) is essential because otherwise by
substituting t on the place of x we would distort the meaning
of A(t)

Example

Example
Lett =y and A(x) is
dy(x #y)

i.e. the variable y int is bound in A

The substitution of t = y for the variable x produces a
formula A(t) of the form

Jy(y #y)
which has a different meaning than

Ay(x #y)

Example

Let now t = z and the formula A(x) is

Ay(x #y)

i.e. the variable z int is not bound in A

The substitution of t = z for the variable x produces a
formula A(t) of the form

Ay(z#y)

which express the same meaning as A(x)

Special Terms

Here an important notion we will depend on

Definition

GivenAeF andteT

The term t is said to be free for a variable x in a formula A
if and only if

no free occurrence of x lies within the scope of any

quantifier bounding variables in t

Special Terms

Example
Given formulas

VyP(f(x.y).y), VYyP(f(x,z),y)

The term t = f(x,y) is free for x in VyP(f(x,y),y)
and t = f(x,y) is notfree fory in YyP(f(x,y),y)

The term
t =f(x,2)

is free for x and z in

YyP(f(x.2).y)

Special Terms

Example
Let A be a formula

(AxQ(f(x), g(x, 2)) N P(h(x.y).y))

The term t; = f(x) is not free for x in A
The term t = g(x, z) is free for z only

Term t3 = h(x,y) is free for y only
because x occurs as a bound variable in A

Replacemant Definition

Replacement Definition
Given

A(X), A(X1,X2, ...,Xn) €¥ and L, bbo,..,lh € T

Then
A(X/t), A(X1/t1,X2/t2,...,Xn/tn)

or, more simply just
A(t), A(ty, to, ..y tn)

denotes the result of replacing all occurrences of the free
variables x, x1, Xo, ..., Xn, by the terms ¢, t, 11, bo, ..., Iy,
respectively, assuming that t, i, 1,,t, are free for all
theirs variables in A

Classical Restricted Domain Quantifiers

Restricted Domain Quantifiers

We often use logic symbols, while writing mathematical
statements

For example, mathematicians in order to say

“all natural numbers are greater then zero and some integers
are equal 1”

often write it as
X>0,Yxen and Jyez, y =1

Some of them, who are more “logic oriented”, would also write
it as
Vxen X220 N Jyez y =1

or even as

Restricted Domain Quantifiers

None of the above symbolic statements are formulas of the
predicate language £

These are mathematical statement written with
mathematical and logic symbols

They are written with different degree of “logical precision”
the last being, from a logician point of view the most precise

Restricted Domain Quantifiers

Observe that the quantifiers symbols
Vxen and dyez
used in all of the symbolic mathematical statements are not

the one used in the predicate language £

The quantifiers of this type are called quantifiers with
restricted domain

Our goal now is to correctly “translate ” mathematical and
natural language statement into well formed formulas of the
predicate language

-L = -£CON(P7 Fa C)

of the classical predicate logic

Restricted Domain Quantifiers

We say

” formulas of the predicate language £ of the classical
predicate logic”

to express the fact that we define all notions for the classical
semantics

One can extend these definitions to some non-classical logics,
but we describe and will investigate only the classical case

Restricted Domain Quantifiers

We introduce the quantifiers with restricted domain by
expressing them within the predicate language
Li-nu=)(P,F,C) as follows

Given a classical predicate logic language
‘L — L{—‘,Q,U,ﬁ,—\}(Pa F7 C)
The quantifiers
VA(X) and EIA(X)

are called quantifiers with restricted domain, or restricted
quantifiers, where A(x) € ¥ is any formula with any free
variable x € VAR

Restricted Domain Quantifiers

Definition

Aformula ¥4, B(x) is an abbreviation of a formula
Vx(A(x) = B(x)) e ¥

We write it symbolically as

(*) Yag B(x) = ¥x(A(x) = B(x))

Aformula J4(,)B(x) is an abbreviation of a formula
Ax(A(x) N B(x)) e F
We write it symbolically as

(%) Ja(x) B(x) = Ax(A(x) N B(x))

We call (+) and (+x) the transformations rules for restricted
quantifiers

Exercise

Exercise

Given the following mathematical statement S written with
logical symbols

(Vxen X >0 N Hyezy:‘l)

1. Translate the statement S into a proper logical formula A
that uses restricted quantifiers

2. Translate the obtained restricted quantifiers formula A
into a correct logical formula without restricted domain
quantifiers, i.e. into a well formed formula of £

Translation Steps

Given a mathematical statement S

We proceed to write this and other similar problems
translation in a sequence of the following steps

Step 1

We identify basic statements in S i.e. mathematical
statements that involve only relations

They are to be translated into atomic formulas

We identify the relations in the basic statements and choose
predicate symbols as their names

We identify all functions and constants (if any) in the basic
statements and choose function symbols and constant
symbols as their names

Translation Steps

Step 2

We write the basic statements as atomic formulas of £
Step 3

We re-write the statement S as a logical formula with
restricted quantifiers

Step 4

We apply the transformations rules (x) and () for restricted
quantifiers to the formula from Step 3

Such obtained formula A of £ is a representation, which we
call a translation, of the given mathematical statement S

Exercise Solution

Solution
The mathematical statement S is

Step 1 in this particular case is as follows
The basic statements in S are

xeN, x>0, yeZ, y=1

Therelationsare e N, €7, > =

We use one argument predicate symbols N, Z for relations
e N, € Z, respectively

We use two argument predicate symbol G for >

We use predicate symbol E for =

There are no functions

We have two constant symbols ¢y, ¢» for numbers 0 and 1,
respectively

Exercise Solution

Step 2

We write N(x),Z(x) for x € N, x € Z, respectively
We write G(x,cq) for x>0 and E(y,cp) for y =1
Atomic formulas are

N(x), Z(x), G(x.c1), E(y.ce)

Step 3
The statement S becomes a restricted quantifiers formula

(YN G(x,c1) N Tz E(y. c2))

Step 4
A formula A € ¥ that is a a translation of S is

(Vx (N(x) = G(x,c1)) n Ay (Z(y) N E(y. c2)))

Exercise Short Solution

Here is a perfectly acceptable short solution

We presented first the long solution in order to explain in
detail how one approaches the ” translations ” problems

This is why we identified the Steps 1 - 4 needed to be
performed when one does the translation

We use the word translation a short cut for saying

” The formula A is a formal predicate language £
representation of the given mathematical statement S”

Exercise Short Solution

Short Solution
The basic statements in S are

xeN, x>0, yeZ, y=1
The corresponding atomic formulas of £ are
N(x), Z(x), G(x.c1), E(y.cz)
The statement S becomes a restricted quantifiers formula
(VN G(x.c1) Nz E(y, c2))
Aformula A € 7 that is a a translation of S is

(Yx (N(x) = G(x,c1)) n Ay (Z(y) N E(y, c2)))

