# Introduction to Predicate Logic Part 2

Professor Anita Wasilewska Lecture Notes (2)

## Predicate Logic Introduction Part 2

- Predicate Logic Tautologies;
- Basic Laws of Quantifiers

Intuitive Semantics for Predicate Logic

## Basic Laws of Quantifiers Predicate Logic Tautologies

#### **De Morgan Laws**

$$\neg \forall x A(x) \equiv \exists x \neg A(x)$$

$$\neg \exists x A(x) \equiv \forall x \neg A(x)$$

where A(x) is any formula with free variable x,

≡ means "logically equivalent"

#### **Definability of Quantifiers**

$$\forall x A(x) \equiv \neg \exists x \neg A(x)$$

$$\exists x A(x) \equiv \neg \forall x \neg A(x)$$

## Example

De Morgan and other Laws Application in Mathematical Statements

$$\neg \forall x((x>0 \Rightarrow x+y>0) \land \exists y (y<0))$$

$$\equiv (by De Morgan's Law)$$

$$\exists x \neg ((x>0 \Rightarrow x+y>0) \land \exists y (y<0))$$

$$\equiv (by De Morgan's Law and 1., 2., 3., 4.)$$

$$\exists x((x>0 \land x+y \le 0) \lor \forall y(y \ge 0))$$

We used

1. 
$$\neg (A \Rightarrow B) \equiv (A \land \neg B), 2. \neg (A \land B) \equiv (\neg A \lor \neg B)$$
  
3.  $\neg (x + y) > 0) \equiv x + y \le 0$   
4.  $\neg \exists y (y < 0) \equiv \forall y \neg (y < 0)$   
 $\equiv \exists y (y \ge 0)$ 

## Math Statement--- Logic Formula

Mathematical statement

$$\neg \forall x((x>0 \Rightarrow x+y>0) \land \exists y (y<0))$$

**Corresponding Logic Formula is** 

$$\neg \forall x((P(x,c) \Rightarrow R(f(x,y),c)) \land \exists y P(y,c))$$

More general; A(x), B(x) any formulas

$$\neg \forall x((A(x) \Rightarrow B(x,y)) \land \exists y A(y))$$

$$\equiv \exists x \neg ((A(x) \Rightarrow B(x,y)) \land \exists y A(y))$$

$$\equiv \exists x((A(x) \land \neg B(x,y)) \lor \neg \exists y A(y))$$

$$\equiv \exists x ((A(x) \land \neg B(x,y)) \lor \forall y \neg A(y))$$

- ∃x(A(x) ∨ B(x)) ≡ (∃x A(x) ∨ ∃x B(x))
   Existential quantifier is distributive over ∨
   What we write (∃x, ∨)
- 2.  $\forall x (A(x) \land B(x)) \equiv (\forall x A(x) \land \forall x B(x))$ Universal quantifier is distributive over  $\land$ ,  $(\forall x, \land)$ Existential quantifier is distributive over  $\land$  only in one direction:
  - 3.  $\exists x(A(x) \land B(x)) \Rightarrow (\exists x A(x) \land \exists x B(x))$

We show that it is not true, that for any  $X \neq \phi$ and any A(x), B(x) the inverse implication  $(\exists x \ A(x) \land \exists x \ B(x)) \Rightarrow \exists x (A(x) \land B(x))$ **holds,** i.e. that there are  $X \neq \phi$  and any A(x), B(x) for which this implication is **FALSE**. **Example:** Take: X = R (real numbers), A(x) = x > 0, B(x) = x < 0 we get  $\exists x (x>0) \land \exists x(x>0)$  is a true statement in R and  $\exists x(x>0 \land x<0)$  is a false statement in R.

Universal quantifier is distributive over V in only one direction:

4.  $((\forall x \ A(x) \lor \forall x \ B(x)) \Rightarrow \forall x(A(x) \lor B(x)))$ 

Other direction implication counter example:

Take: X=R and A(x) = x < 0  $B(x) = x \ge 0$ 

 $\forall x (x<0 \lor x \ge 0)$  is a true statement in **R** (real numbers) and

 $\forall x(x<0) \lor \forall x(x \ge 0)$  is false

**Universal quantifier** is distributive over ⇒ in one direction only:

5. 
$$(\forall x(A(x) \Rightarrow B(x)) \Rightarrow (\forall x A(x) \Rightarrow \forall x B(x)))$$

Other direction implication counter example:

Take: 
$$X = R$$
,  $A(x) = x < 0$ ,  $B(x) = x+1 > 0$ 

 $(\forall x(x < 0)) \Rightarrow \forall x(x+1 > 0)$  is a **False** statement in set R of Real Numbers

Take x= -2, we get  $(-2 < 0 \Rightarrow -2+1 > 0)$  False

#### Introduction and Elimination Laws

**B** - Formula without free variable x

6. 
$$\forall x(A(x) \Rightarrow B) \equiv (\exists x A(x) \Rightarrow B)$$

7. 
$$\exists x(A(x) \Rightarrow B) \equiv (\forall x A(x) \Rightarrow B)$$

8. 
$$\forall x(B \Rightarrow A(x)) \equiv (B \Rightarrow \forall x A(x))$$

9. 
$$\exists x(B \Rightarrow A(x)) \equiv (B \Rightarrow \exists x A(x))$$

#### Introduction and Elimination Laws

- **B** Formula without free variable x
- 10.  $\forall x(A(x) \lor B) \equiv (\forall x A(x) \lor B)$
- 11.  $\forall x(A(x) \land B) \equiv (\forall x A(x) \land B)$
- 12.  $\exists x(A(x) \lor B) \equiv (\exists x A(x) \lor B)$
- 13.  $\exists x(A(x) \land B) \equiv (\exists x A(x) \land B)$

**Remark:** we prove 6 -9 from 10 – 13 + de Morgan + definability of implication

#### **TRUTH SETS**

We use truth sets for predicates in a set X ≠ φ to define an intuitive semantics for predicate logic.

Given a set  $X \neq \phi$  and a predicate P(x),

 $\{x \in X: P(x)\}\$  is called a truth set for the predicate P(x) in the domain  $X \neq \varphi$ 

#### **TRUTH SETS, Interpretations**

#### Example1:

```
Take P(x) as x+1=3-it is called an interpretation of P(x) in a set X \neq \phi
```

Let  $X=\{1, 2, 3\}$ , then the truth set  $\{x \in X: P(x)\} = \{x \in X: x+1=3\} = \{2\}$ , and we say that P(x) is TRUE in X under the interpretation P(x): x+1=3

#### **TRUTH SETS, Interpretations**

#### **Example2:**

```
Take:
  P(x): x^2 \le 0 - Interpretation of P(x) in
X = N, the TRUTH Set is
      \{x \in N: P(x)\} = \{x \in N: x^2 \le 0\} = \{0\}
Take: P(x): x^2 \le 0 - Interpretation of P(x) in
x = N-\{0\}, the TRUTH Set is
\{x \in N-\{0\}: P(x)\} = \{x \in N-\{0\}: x^2 \le 0\} = \phi
```

#### TRUTH SETS semantics for Connectives

We use truth sets for predicates always for  $X \neq \phi$ 

#### **Conjunction:**

```
\{x \in X: (P(x) \land Q(x))\} = \{x: P(x)\} \land \{x: Q(x)\}
```

Truth set for conjunction  $(P(x) \land Q(x))$  is the set intersection of truth sets for its components.

#### **Disjunction:**

```
\{x \in X: (P(x) \lor Q(x))\} = \{x: P(x) \lor \{x: Q(x)\}\}
```

Truth set for disjunction  $(P(x) \lor Q(x))$  is the set union of truth sets for its components.

#### **Negation:**

$${x \in X: \neg P(x)} = X - {x \in X: P(x)}$$

¬ is the negation and − is the set complement

#### **Truth sets semantics for Connectives**

#### Implication:

```
{x∈ X: (P(x) \Rightarrow Q(x))} = X- {x:P(x)} ∨ {x : Q(x)}

= -{ x:P(x)} ∨ {x : Q(x)}

={x: ¬P(x)} ∨ {x : Q(x)}

Example:

{x ∈ N: n>0 \Rightarrow n<sup>2</sup><0} = {x ∈ N x ≤ 0} ∨ {{x ∈ N :
```

$$n^2 < 0$$
}  
= $\{0\} \lor \varphi = \{0\}$ 

#### **Truth Sets Semantics for Universal Quantifier**

#### **Definition:**

$$\forall x \ A(x) = T \quad \text{iff} \quad \{x \in X: A(x)\} = X$$

where

 $X \neq \varphi$  and A(x) is any formula with a free variable x

#### **Definition:**

$$\forall x A(x) = F \text{ iff } \{x \in X: A(x)\} \neq X$$

where

 $X \neq \phi$  and A(x) is any formula with a free variable x

## Truth Sets semantics for Existential Quantifier

#### **Definition:**

$$\exists x \ A(x) = T \ (in \ x \neq \varphi) \ iff \{x \in X : A(x)\} \neq \varphi$$

#### **Definition:**

$$\exists x \ A(x) = F \ (in \ x \neq \varphi) \ iff \{x \in X : A(x)\} = \varphi$$

Where  $X \neq \varphi$  and A(x) is a formula with a free variable x.

## Venn Diagrams For Existential Quantifier and Conjunction

 $\exists x(A(x) \land B(x)) = T \text{ iff } \{x:A(X)\} \land \{x:B(x)\} \neq \Phi$ 

#### **Picture**



## Venn Diagrams For Existential Quantifier and Conjunction

$$\exists x(A(x) \land B(x)) = F$$
 iff  $\{x:A(x) \land \{x:B(x)\} = \Phi$ 



Remember {x:A(x)}, {x:B(x)} Can be Φ!

Х≠Ф

## Venn Diagrams For Universal Quantifier and Implication

Observe that

$$\forall x (A(x) \Rightarrow B(x)) = T \text{ iff } \{x \in X : A(x) \Rightarrow B(x)\} = X$$

Iff

$${x:A(x)} \subseteq {x:B(x)}$$

Picture



Venn Diagrams For universal quantifier and Implication

#### **Exercise**

Draw a picture for a situation where (in  $X \neq \Phi$ )

1. 
$$\exists x P(x) = T$$
,

2. 
$$\exists x \, Q(x) = T$$
,

3. 
$$\exists x(P(x) \land Q(x)) = F$$
 and

4. 
$$\forall x (P(x) \lor Q(x) = F$$

#### **Exercise Solution**

1. 
$$\exists x P(x) = T$$
 iff  $\{x:P(x)\} \neq \Phi$ 

2. 
$$\exists x Q(x) = T$$
 iff  $\{x:Q(x)\} \neq \Phi$ 

3. 
$$\exists x(P(x) \land Q(x)) = F \text{ iff } \{x: P(x)\} \land \{x: Q(x)\} = \Phi$$

4. 
$$\forall x (P(x) \lor Q(x) = F \text{ iff } \{x:P(x)\} \lor \{x:Q(x)\} \neq X$$

## Picture:





#### **Proving Predicate Tautologies with TRUTH Sets**

Prove that

$$|= (\forall x \ A(x) \Rightarrow \exists x \ A(x))$$

#### Proof:

Assume that not True

(Proof by contradiction) i.e. that there are  $X \neq \Phi$ , A(x) such that.

$$(\forall x \ A(x) \Rightarrow \exists x \ A(x)) = \mathbf{F}$$

iff 
$$\forall x A(x)=T$$
 and  $\exists x A(x)=F$   $(A \Rightarrow B) = F$ 

iff  $X \neq \varphi$  and

$$\{x \in X : A(x)\} = X \text{ and } \{x \in X : A(x)\} = \phi$$

Contradiction with  $X \neq \phi$ , hence proved.

#### **Proving Predicate Tautologies with TRUTH Sets**

Prove:

$$\neg \forall x A(x) \equiv \exists x \neg A(x)$$

```
Case1: \exists x \neg A(x) = T in X \neq \varphi iff \{x: \neg A(x)\} \neq \varphi iff X - \{x: A(x)\} \neq \varphi iff \{x: A(x)\} \neq X iff \forall x A(x) = F iff \neg \forall x A(x) = T Case1: \exists x \neg A(x) = F in X \neq \varphi iff \{x: \neg A(x)\} = \varphi iff X - \{x: A(x)\} = \varphi iff \{x: A(x)\} = \varphi iff
```

#### Prove

$$\exists x(A(x) \lor B(x)) \equiv \exists x A(x) \lor \exists x B(x)$$

Case 1: 
$$\exists x(A(x) \lor B(x)) = T$$
 iff  
 $\{x: (A(x) \lor B(x)) \neq \varphi \text{ (definition)}$   
 $= \{x: (A(x)) \lor \{x: (B(x)) \neq \varphi \text{ iff}$   
 $\{x: A(x)\} \neq \varphi \text{ or } \{x: B(x)\} \neq \varphi \text{ iff}$   
 $= \exists x A(x) = T \text{ or } \exists x B(x) = T$   
We used: for any sets,  $A \lor B \neq \varphi \text{ iff}$   
 $A \neq \varphi \text{ and } B \neq \varphi$   
Case2 — similar

We assume that for any A(x), the TRUTH set  $\{x \in X: A(x)\}$  exists .

Russell Antinomy showed that that technique of TRUTH sets is not sufficient.

This is why we need a proper semantics!