Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 1
PART 1 Introduction
PART 2 Syntax: Definition of Proof System, Formal Proofs
PART 3 Syntactic Decidability
PART 4 Consequence Operation, Non Monotonic Reasoning and Syntactic Consistency

Slides Set 2
PART 5 Semantics: Soundness and Completeness
PART 6 Exercises and Examples
Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 1

PART 1 Introduction
Chapter 4
General Proof Systems: Introduction

Proof systems are built to prove, it means to construct formal proofs of statements formulated in a given language.

First component of any proof system is hence its formal language \(L \).

Proof systems are inference machines with statements called provable statements being their final products.
Chapter 4
General Proof Systems: Axioms

The starting points of the inference machine of a proof system S are called its axioms.

We distinguish two kinds of axioms: logical axioms LA and specific axioms SA.

Semantical link: we usually build a proof systems for a given language and its semantics i.e. for a logic defined semantically.
General Proof Systems: Logical Axioms

We choose as a set of logical axioms LA some subset of tautologies, under a given semantics.

We will consider here only proof systems with finite sets of logical or specific axioms, i.e., we will examine only finitely axiomatizable proof systems.
General Proof Systems: Logical Axioms

We can, and we often do, consider proof systems with languages without yet established semantics.

In this case the logical axioms LA serve as description of tautologies under a future semantics yet to be built.

Logical axioms LA of a proof system S are hence not only tautologies under an established semantics, but they can also guide us how to define a semantics when it is yet unknown.
General Proof Systems: Specific Axioms

The specific axioms SA consist of statements that describe a specific knowledge of an universe we want to use the proof system S to prove facts about.

Specific axioms SA are not universally true.

Specific axioms SA are true only in the universe we are interested to describe and investigate by the use of the proof system S.
General Proof Systems: Formal Theory

Given a proof system S with logical axioms LA

We choose as specific axioms SA of the proof system S any finite set of formulas that are not tautologies, and hence the specific axioms SA are always disjoint with the set LA of logical axioms LA of S

The proof system S with added set of specific axioms SA is called a formal theory based on S
General Proof Systems: Inference Machine

The *inference* machine of a proof system S is defined by a *finite* set of inference rules.

The *inference rules* describe the way we are allowed to transform the information *within* the proof system S with the *logical* axioms LA as a *starting* point.

We depict it *informally* on the next slide.
General Proof Systems: Inference Machine

AXIOMS

↓ ↓ ↓

RULES applied to AXIOMS

↓ ↓ ↓

RULES applied to any expressions above

↓ ↓ ↓

Provable formulas
General Proof Systems: Semantical Link

Rules of inference of a system S have to preserve the truthfulness of what they are being used to prove.

The notion of truthfulness is always defined by a given semantics M.

Rules of inference that preserve the truthfulness are called sound rules under a given a semantics M.

Rules of inference can be sound under one semantics and not sound under another.
Goal 1
When developing a proof system S the first goal is to prove the following theorem about it and its semantics M:

Soundness Theorem
For any formula A of the language of the system S:
If a formula A is provable from logical axioms LA of S only, then A is a tautology under the semantics M.
By definition, the notion of soundness is connected with a given semantics.

A proof system S can be sound under one semantics and not sound under the other.

For example, a set of axioms and rules sound under the classical semantics might not be sound under L semantics, or K semantics, or others.
General Proof Systems: Completeness Property

Denote by T_M the set of all tautologies defined by the semantics M, i.e.

$$T_M = \{A \in \mathcal{F} : \models_M A\}$$

A natural question arises:
are all tautologies i.e formulas $A \in T_M$ provable in the proof system S ??

The positive answer to this question is called completeness property of the system S
General Proof Systems: Completeness Theorem

Goal 2
Given for a sound proof system S under the semantics M, our second goal is to prove the following theorem about S

Completeness Theorem
For any formula A of the language of S

A is provable in S if and only if A is a tautology under the semantics M

We write the Completeness Theorem symbolically as

$\vdash_S A$ if and only if $\models_M A$
Proving Soundness and Completeness

The **Completeness Theorem** is composed of two parts. The **soundness** part, i.e. the **Soundness Theorem** and the **completeness** part that proves the **completeness property** of already **sound** proof system.

Proving the **Soundness Theorem** for S under a semantics M is usually a **straightforward** and not a very difficult task.

We **first** prove that all **logical axioms** LA are **tautologies** under the given semantics and then we **prove** that all **inference rules** of the system S **preserve** the notion of the **truth** under it.
Proving Soundness and Completeness

Proving the completeness part of the **Completeness Theorem** is always the crucial, difficult and sometimes impossible task.

We study two proofs of the **Completeness Theorem** for classical propositional proof system in Chapter 5.

We present a constructive proofs of the **Completeness Theorem** for different Gentzen style *automated* theorem proving systems for classical semantics in Chapter 6.

We discuss the *Intuitionistic* and *Modal* Logics in Chapter 7. The **Predicate** Logics are discussed Chapters 8, 9, 10, 11.
Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 1

PART 2 Syntax: Definition of Proof System, Formal Proofs
Syntax : Definition of Proof System

When **defining** a proof system \(S \) *we specify*, as the first step,
its formal language \(L \)

This is a **first component** of the proof system \(S \)

Given a set \(F \) of well formed **formulas** of the language \(L \),
we often **extend** this set, and hence the language \(L \) to
a set \(E \) of **expressions** build out of the language \(L \) and
some **additional symbols**, if needed

It is a **second component** of the proof system \(S \)
Proof systems act as an inference machine, with provable expressions being its final products.

This inference machine is defined by setting, as a starting point a certain non-empty, proper subset \(LA \) of \(\mathcal{E} \), called a set of logical axioms of the system \(S \).

The production of provable statements is to be done by the means of inference rules.

The inference rules transform an expression, or finite string of expressions, called premises, into another expression, called a conclusion.
At this stage the inference rules don’t carry any meaning. They only define how to transform strings of symbols of a language into another string of symbols.

This is a reason why investigation of proof systems is called syntax or syntactic investigation as opposed to semantical methods.

The syntax-semantics connection within proof systems is established by Soundness and Completeness theorems and is discussed in detail in the Slides Set 2.
Syntax: Definition of Proof System

Definition

By a **proof system** we understand a quadruple

$$S = (\mathcal{L}, \mathcal{E}, \text{LA}, \mathcal{R})$$

where

- $\mathcal{L} = \{\mathcal{A}, \mathcal{F}\}$ is a *language* of S with a set \mathcal{F} of formulas
- \mathcal{E} is a set of *expressions* of S
- In particular case $\mathcal{E} = \mathcal{F}$
- $\text{LA} \subseteq \mathcal{E}$ is a *non-empty, finite set* of *logical axioms* of S
- \mathcal{R} is a *non-empty, finite set* of rules of inference of S
Proof System Components: Language

Language of S is any formal language

\[L = (A, F) \]

We assume as before that both sets \(A \) and \(F \) are enumerable, i.e. we deal here with enumerable languages. The language \(L \) can be propositional or first order (predicate) but we discuss propositional languages first.
Proof System Components: Expressions

Expressions \mathcal{E} of S

Given a set \mathcal{F} of formulas of the language \mathcal{L} of S
We often extend the set \mathcal{F} to some set \mathcal{E} of expressions build out of the symbols of \mathcal{L} and some extra symbols, if needed.

In this case all other components of S are also defined on basis of elements of the set of expressions \mathcal{E}
In particular, and most common case we have that $\mathcal{E} = \mathcal{F}$
Automated theorem proving systems usually use as their basic components special sets of expressions build out of formulas of \mathcal{L}.

In Chapters 6, 10 we consider finite sequences of formulas as basic expressions of proof systems RS and RQ. We also present there proof systems that use yet other kind of expressions, called Gentzen sequents or their modifications.

Some systems also use other expressions such as clauses, sets of clauses, or sets of formulas.
Proof System Components: Logical Axioms

Logical axioms LA of S

We distinguish a non-empty subset LA of the set \mathcal{E} of expressions of S as a set of **logical axioms**, i.e.

$$\text{LA} \subseteq \mathcal{E}$$

In particular, LA is a non-empty subset of **formulas**, i.e.

$$\text{LA} \subseteq \mathcal{F}$$

We **assume** that one can **effectively decide**, for any $E \in \mathcal{E}$ whether $E \in \text{LA}$ or $E \notin \text{LA}$

We also **assume** that the set LA is always **finite**, i.e. that we consider here **finitely** axiomatizable proof systems
Proof System Components: Rules of Inference

Rules of inference \mathcal{R} of S

We assume that S contains only a finite number of inference rules.

We assume that each rule has a finite number of premisses and one conclusion.

We also assume that one can effectively decide, for any inference rule, whether given strings of expressions form its premisses and conclusion or they do not.
Proof System Components: Rules of Inference

Definition
Each rule of inference \(r \in R \) is a relation defined in the set \(E^m \), where \(m \geq 1 \) with values in \(E \), i.e.

\[
r \subseteq E^m \times E
\]

Elements \(P_1, P_2, \ldots P_m \) of a tuple \((P_1, P_2, \ldots P_m, C) \in r \) are called premisses of the rule \(r \) and \(C \) is called its conclusion.
Proof System Components: Rules of Inference

We write the **inference rules** in a following convenient way.

One premiss rule

\[
(r) \quad \frac{P_1}{C}
\]

Two premisses rule

\[
(r) \quad \frac{P_1 \ ; \ P_2}{C}
\]

m premisses rule

\[
(r) \quad \frac{P_1 \ ; \ P_2 \ ; \ \ ; \ P_m}{C}
\]
Syntax: Formal Proofs

A **final** product of a **single** or **multiple** use of the **inference rules** of S, with **axioms** taken as a **starting** point are called **provable** expressions of the proof system S.

A **single** use of an **inference rule** is called a **direct consequence**.

A **multiple** application of rules of inference with **axioms** taken as a **starting point** is called a **proof**.
Syntax: Direct Consequence

Formal definitions are as follows

Direct consequence
For any rule of inference \(r \in \mathcal{R} \) of the form

\[
\begin{array}{c}
(r) \\
\hline
P_1 \quad P_2 \quad \ldots \quad P_m \\
\hline
C
\end{array}
\]

\(C \) is called a **direct consequence** of \(P_1, \ldots, P_m \) by virtue of the rule \(r \in \mathcal{R} \)
Syntax: Formal Proof Definition

Formal Proof of an expression \(E \in \mathcal{E} \) in a proof system

\[
S = (\mathcal{L}, \mathcal{E}, \mathcal{LA}, \mathcal{R})
\]

is a sequence

\[
A_1, A_2, \ldots, A_n \quad \text{for} \quad n \geq 1
\]

of expressions from \(\mathcal{E} \), such that

\[
A_1 \in \mathcal{LA}, \quad A_n = E
\]

and for each \(1 < i \leq n \), either \(A_i \in \mathcal{LA} \) or \(A_i \) is a **direct consequence** of some of the preceding expressions by virtue of **one of the rules of inference**

\(n \geq 1 \) is the **length** of the proof \(A_1, A_2, \ldots, A_n \)
Syntax: Formal Proof Notation

We write

$$\vdash_S E$$

to denote that $E \in \mathcal{E}$ has a proof in S and we call E a provable expression of S.

The set of all provable expressions of S is denoted by P_S, i.e. we put

$$P_S = \{ E \in \mathcal{E} : \vdash_S E \}$$

When the proof system S is fixed we write $\vdash E$.
Simple System S_1

Example
Consider a very simple proof system system S_1 with $E = F$

$$S_1 = (L_{\{P, \Rightarrow\}}, F, LA = \{(A \Rightarrow A)\}, R = \{(r) \frac{B}{PB}\})$$

where $A, B \in F$ are any formulas and where P is some one argument connective

We might read PA for example as ”it is possible that $A”

Observe that even the system S_1 has only one axiom, it represents an infinite number of formulas

We call such axiom an **axiom schema**
Simple System S_2

Example
Consider now a system S_2

$$S_2 = (\mathcal{L}_{\{P, \Rightarrow\},} \ F, \ \{(a \Rightarrow a)\}, \ (r) \ \frac{B}{PB})$$

where $a \in \text{VAR}$ is any variable (atomic formula) and $B \in \mathcal{F}$ is any formula

Observe that the system S_2 also has only one axiom similar to the axiom of S_1 and they have the same rule of inference but they are **different proof systems** as for example a formula

$$(((Pa \Rightarrow (b \Rightarrow c)) \Rightarrow (Pa \Rightarrow (b \Rightarrow c)))$$

is an **axiom** of system S_1 but **is not** an axiom of S_2
Formal Proofs

Example
We have that

$$\vdash_{S_1} ((Pa \Rightarrow (b \Rightarrow c)) \Rightarrow (Pa \Rightarrow (b \Rightarrow c)))$$

because

$$((Pa \Rightarrow (b \Rightarrow c)) \Rightarrow (Pa \Rightarrow (b \Rightarrow c))) \in LA$$

Some other provable formulas are

$$\vdash_{S_1} P(a \Rightarrow a), \quad \vdash_{S_1} PP(a \Rightarrow a), \quad \vdash_{S_2} PP(a \Rightarrow a)$$
Formal Proofs

Formal proof of $P(a \Rightarrow a)$ in S_1 and S_2 is:

$A_1 = (a \Rightarrow a)$, $A_2 = P(a \Rightarrow a)$
- axiom rule application
for $B = (a \Rightarrow a)$

Formal proof of $PP(a \Rightarrow a)$ in S_1 and S_2 is:

$A_1 = (a \Rightarrow a)$, $A_2 = P(a \Rightarrow a)$, $A_3 = PP(a \Rightarrow a)$
- axiom rule application rule application
for $B = (a \Rightarrow a)$ for $B = P(a \Rightarrow a)$
Formal Proofs

Exercise
Given a proof system:

\[S = (\mathcal{L}_{\neg, \Rightarrow}, \mathcal{F}, \{(A \Rightarrow A), (A \Rightarrow (\neg A \Rightarrow B))\}), \mathcal{R} = \{(r)\} \]

where \[(r) \quad \frac{(A \Rightarrow B)}{(B \Rightarrow (A \Rightarrow B))}\]

Write a formal proof in \(S \) with 2 applications of the rule \((r)\)

Solution: There are many solutions. Here is one of them.

Required formal proof is a sequence \(A_1, A_2, A_3 \), where

\(A_1 = (A \Rightarrow A) \) (Axiom)

\(A_2 = (A \Rightarrow (A \Rightarrow A)) \)

Rule \((r)\) application 1 for \(A = A, B = A \)

\(A_3 = ((A \Rightarrow A) \Rightarrow (A \Rightarrow (A \Rightarrow A))) \)

Rule \((r)\) application 2 for \(A = A, B = (A \Rightarrow A) \)
Consider a very simple proof system system S_3 defined as follows

$$S_3 = (\mathcal{L}_{P, \Rightarrow}, \mathcal{F}, \{(A \Rightarrow A)\}, (r_1) \frac{B}{PB}, (r_2) \frac{A; B}{P(A \Rightarrow B)})$$

Exercise

Write two formal proofs in S_3 both of the lengths 4, one of which must contain at least one application of the inference rule r_2
Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 1

PART 3 Syntactic Decidability,
Automated Proof Systems
General Proof Systems: Syntactic Decidability

For any a proof system $S = (\mathcal{L}, \mathcal{E}, \mathcal{LA}, \mathcal{R})$, we assumed that its sets \mathcal{LA} of its logical axioms and \mathcal{R} of rules of inference have the following properties

(LP) For any $E \in \mathcal{E}$ one can effectively decide whether $E \in \mathcal{LA}$ or $E \notin \mathcal{LA}$

(RP) For any inference rule $r \in \mathcal{R}$ one can effectively decide whether a given strings of expressions form its premisses and conclusion or they do not

Observe that even if the set of axioms and the inference rules of a proof system S have the properties (LP) and (RP) it does not mean that a statement ”E is provable” in S can be similarly effectively decided for every proof system
Decidable Proof Systems

Definition
A proof system $S = (\mathcal{L}, \mathcal{E}, LA, R)$ for which there is an effective decision procedure for determining for any expression $E \in \mathcal{E}$, whether there is or there is no proof of E in S is called a \textit{decidable} proof system, otherwise S is called \textit{undecidable}

\textbf{Observe} that the above notion of \textit{decidability} of S does not require to find a proof of an expression $E \in \mathcal{E}$ (if exists)
We hence introduce a following notion
Syntactically Decidable Proof Systems

Definition

A proof system $S = (L, E, LA, R)$ for which there is an effective mechanical procedure that finds (generates) a formal proof of any expression $E \in E$, if it exists, is called syntactically semi-decidable.

If additionally there is an effective method of deciding that if a proof of E is not found that it does not exist, the system S is called syntactically decidable.

Otherwise S is syntactically undecidable.
Hilbert Program

The need for **existence** of proof systems for **classical logic** and parts of **mathematics** that are **syntactically decidable** or **syntactically semi-decidable** was stated (in a different form) by German mathematician **David Hilbert** in early 1900 as a part of what is called **Hilbert program**.

The **main goal** of **Hilbert’s program** was to provide secure **foundations** for all mathematics.

In particular the **Hilbert program** addressed the problem of **decidability**.

It stated that there should be an **algorithm** for **deciding** the **truth** or to **falsify** of any **mathematical** statement. Moreover, it should use only **“finitistic” reasoning methods**
Syntactically Decidable Proof Systems

Kurt Gödel proved in 1931 that most of the goals of Hilbert’s program were impossible to achieve, at least if interpreted in the most obvious way.

Nevertheless, Gerhard Gentzen in his work published in 1934/1935 gave a positive answer to the possibility of existence of syntactical decidability.

He invented proof systems for classical and intuitionistic logics, now called Gentzen style formalizations.

We study the Gentzen style formalizations in chapter 6 and chapters 7, 10.
Automated Proof Systems

Gentzen work formed a basis for development of Automated Theorem Proving field of mathematics and computer science.

Definition

A proof system $S = (\mathcal{L}, \mathcal{E}, \mathcal{LA}, \mathcal{R})$ that is proven to be syntactically decidable or syntactically semi-decidable is called an automated proof system.

Automated proof systems are also called automated theorem proving systems, Gentzen style formalizations and we use all of these terms interchangeably.
Example

Any complete Hilbert style proof system for classical propositional logic is an example of a **decidable**, but not **syntactically decidable** proof system.

We conclude its **decidability** from the **Completeness Theorem** proved in chapter 5 and the **decidability** of the notion of classical tautology proved in chapter 3.

Gentzen style proof systems for classical and intuitionistic propositional logics presented in chapters 6,7 are **examples** of proof systems that are of both **decidable** and **syntactically decidable**.
Example: Simple System S

Consider now a simple proof system S

$$S = (\mathcal{L}_{\{P, \Rightarrow\}}, \mathcal{F}, \text{LA} = \{(a \Rightarrow a)\}, (r) \frac{B}{PB})$$

where $a \in \text{VAR}$ is any variable (atomic formula) and $B \in \mathcal{F}$ is any formula

Let’s search for a proof (if exists) of the following formula A

$$A = PP(((Pa \Rightarrow (b \Rightarrow c)) \Rightarrow (Pa \Rightarrow (b \Rightarrow c))))$$

Observe, that if A had the proof, the only last step in this proof would be the application of the rule

$$(r) \frac{B}{PB}$$

to the formula

$$P(((Pa \Rightarrow (b \Rightarrow c)) \Rightarrow (Pa \Rightarrow (b \Rightarrow c))))$$
Example: Simple System S

Let's now consider the formula

\[P((Pa \Rightarrow (b \Rightarrow c)) \Rightarrow (Pa \Rightarrow (b \Rightarrow c))) \]

This formula, in turn, if it had the proof, the **only** last step in its proof would be the application of the

\[(r) \frac{B}{PB} \]

to the formula

\[((Pa \Rightarrow (b \Rightarrow c)) \Rightarrow (Pa \Rightarrow (b \Rightarrow c))) \]

The **search process stops** here
Proof Search in System S

Observe that the final formula obtained is not an axiom of S, i.e.

$$(((Pa \Rightarrow (b \Rightarrow c)) \Rightarrow (Pa \Rightarrow (b \Rightarrow c))) \notin LA$$

This means that our search for a proof of A in S has found sequence of formulas that does not constitute a proof. This alone does not yet prove that the proof does not exist. Fortunately, the search was at each step unique, so in fact, we did prove that the proof of A in S does not exist, i.e. we proved

$$\kappa_S \ PP(((Pa \Rightarrow (b \Rightarrow c)) \Rightarrow (Pa \Rightarrow (b \Rightarrow c))))$$
Proof Search Procedure

We easily generalize above example to a proof search procedure to any formula A of S as follows:

Procedure SP

Step: Check the main connective of A

- If main connective is P (it means that A was obtained by the rule (r))
 - Erase the main connective P
 - Repeat until no P as a main connective is left.
- If the main connective is \Rightarrow, check if a formula is an axiom
 - If it is an axiom, stop and yes, we have a proof
 - If it is not an axiom, stop and no, proof does not exist
Syntactical Decidability of S

The **Procedure SP** is a finite, effective, automatic procedure of **searching** for proofs of formulas in S. Moreover, we proved that it **determines** for any formula $A \in \mathcal{F}$, whether there is or there is no proof of A in S. It means that we proved the following.

Fact

The proof system

$$S = (\mathcal{L}_{\{P, \Rightarrow\}}, \mathcal{F}, LA = \{(a \Rightarrow a)\}, (r) \frac{B}{PB})$$

where $a \in \text{VAR}$ and $B \in \mathcal{F}$

is **syntactically decidable**
Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 1

PART 4 Consequence Operation, Non Monotonic Reasoning and Syntactic Consistency
Proof from Hypothesis

Given a proof system $S = (\mathcal{L}, \mathcal{E}, LA, \mathcal{R})$
While proving expressions in S we often use some extra information available, besides the axioms of the proof system
This extra information is called hypotheses in the proof
A proof from the set of hypotheses Γ of an expression E in S is a formal proof in S, where the expressions from Γ are treated as additional information added to the set LA of the logical axioms of S
We define it formally as follows
Proof from Hypothesis

Definition

Given a proof system \(S = (\mathcal{L}, \mathcal{E}, \mathcal{LA}, \mathcal{R}) \)

Let \(\Gamma \subseteq \mathcal{E} \)

A proof of an expression \(E \) from \(\Gamma \) is a sequence

\[
E_1, E_2, \ldots, E_n
\]

of expressions, such that

\[
E_1 \in \mathcal{LA} \cup \Gamma, \quad E_n = E
\]

and for each \(1 < i \leq n \), either \(E_i \in \mathcal{LA} \cup \Gamma \) or \(E_i \) is a direct consequence of some of the preceding expressions in the sequence \(E_1, E_2, \ldots, E_n \) by virtue of one of the rules of inference from \(\mathcal{R} \).
Proof from Hypothesis

We write

$$\Gamma \vdash_{S} E$$

to denote that E has a proof from Γ in S and

$$\Gamma \vdash E$$

when the system S is fixed.

When the set of hypothesis Γ is a finite set and $\Gamma = \{B_1, B_2, ..., B_n\}$, then we write

$$B_1, B_2, ..., B_n \vdash_{S} E$$

instead of

$$\{B_1, B_2, ..., B_n\} \vdash_{S} E$$
Conequences

The case of $\Gamma = \emptyset$ means that in the proof of E only logical axioms LA were used we write

$$\vdash_S E$$

to denote that E has a proof from the empty set Γ

Definition
For any $\Gamma \subseteq \mathcal{E}$, and $A \in \mathcal{E}$,
If $\Gamma \vdash_S A$, then A is called a consequence of Γ in S

Definition
We denote by $\text{Cn}_S(\Gamma)$ the set of all consequences of Γ in S, i.e. we put

$$\text{Cn}_S(\Gamma) = \{ A \in \mathcal{E} : \Gamma \vdash_S A \}$$
Consequence Operation

When talking about consequences of Γ in S, we define in fact a function which to every set $\Gamma \subseteq \mathcal{E}$ assigns a set of all its consequences.

We denote this function by Cn_S and adopt the following definition.

Definition

Given a proof system $S = (\mathcal{L}, \mathcal{E}, \text{LA}, \mathcal{R})$.

Any function

$$Cn_S : 2^\mathcal{E} \rightarrow 2^\mathcal{E}$$

such that for every $\Gamma \in 2^\mathcal{E}$,

$$Cn_S(\Gamma) = \{ E \in \mathcal{E} : \Gamma \vdash_S E \}$$

is called a consequence determined by S.
Consequence Operation: Monotonicity

Take any consequence operation

\[\text{Cn}_S : 2^E \rightarrow 2^E \]

Monotonicity Property
For any sets \(\Gamma, \Delta \) of expressions of S,
if \(\Gamma \subseteq \Delta \) then \(\text{Cn}_S(\Gamma) \subseteq \text{Cn}_S(\Delta) \)

Exercise: write the proof;
it follows directly from the definition of \(\text{Cn}_S \) and definition of the formal proof
Consequence Operation: Transitivity

Take any consequence operation

\[\text{Cn}_S : 2^E \rightarrow 2^E \]

Transitivity Property
For any sets \(\Gamma_1, \Gamma_2, \Gamma_3 \) of expressions of \(S \),
\[\text{if } \Gamma_1 \subseteq \text{Cn}_S(\Gamma_2) \text{ and } \Gamma_2 \subseteq \text{Cn}_S(\Gamma_3), \text{ then } \Gamma_1 \subseteq \text{Cn}_S(\Gamma_3) \]

Exercise: write the proof;
it follows directly from the definition of \(\text{Cn}_S \) and definition of the formal proof
Consequence Operation: Finiteness

Take any consequence operation

\[\text{Cn}_S : 2^E \rightarrow 2^E \]

Finiteness Property

For any expression \(A \in E \) and any set \(\Gamma \subseteq E \),

\(A \in \text{Cn}_S(\Gamma) \) if and only if there is a finite subset \(\Gamma_0 \) of \(\Gamma \) such that \(A \in \text{Cn}_S(\Gamma_0) \)

Exercise: write the proof;

it follows directly from the definition of \(\text{Cn}_S \) and definition of the formal proof
The notions of provability from a set Γ in S and consequence determined by S coincide. We use both terms interchangeably, but the definition does do more than just re-naming provability by consequence. We prove that the consequence Cn_S determined by S is a special case of a notion a classic consequence operation as defined by Alfred Tarski in 1930 as a general model of deductive reasoning. Tarski definition is a formalization of the intuitive concept of deduction as a consequence, and therefore it has all the properties which our intuition attribute to this notion.
Tarski Consequence Operation

Definition Tarski, 1930

By a consequence operation in a formal language $L = (\mathcal{A}, \mathcal{F})$ we understand any mapping

$$\mathbf{C} : 2^\mathcal{F} \rightarrow 2^\mathcal{F}$$

satisfying the following conditions (t1) - (t3) expressing properties of reflexivity, monotonicity, and transitivity of the consequence

For any sets $F, F_0, F_1, F_2, F_3 \in 2^\mathcal{F}$,

(t1) $F \subseteq \mathbf{C}(F)$ reflexivity

(t2) if $F_1 \subseteq F_2$, then $\mathbf{C}(F_1) \subseteq \mathbf{C}(F_2)$, monotonicity

(t3) if $F_1 \subseteq \mathbf{C}(F_2)$ and $F_2 \subseteq \mathbf{C}(F_3)$, then $F_1 \subseteq \mathbf{C}(F_3)$, transitivity
We say that the consequence operation \(C \) has a finite character if additionally it satisfies the following condition \(t4 \):

\[
\text{if a formula } B \in C(F), \text{ then there exists a finite set } F_0 \subseteq F, \text{ such that } B \in C(F_0) \text{ finiteness.}
\]

The monotonicity condition \((t2) \) and transitivity condition \((t3) \) are often replaced by the following conditions \((t2') \), \((t3') \), respectively:

\[
(t2') \quad \text{if } B \in C(F), \text{ then } B \in C(F \cup F')
\]

\[
(t3') \quad C(F) = C(C(F))
\]
Consequence Operations Equivalency

Definition
Given a formal language \(\mathcal{L} = (\mathcal{A}, \mathcal{F}) \) and a Tarski consequence \(\mathcal{C} \)
A system \(D = (\mathcal{L}, \mathcal{C}) \) is called a Tarski deductive system for the language \(\mathcal{L} \)

Observe that Tarski’s deductive system as a model of reasoning does not provide a method of actually defining a consequence operation; it assumes that it is given
We prove that the consequence operation \(\mathcal{C}_{nS} \) determined by \(S \) is a Tarski consequence operation \(\mathcal{C} \)
Consequence Operations Equivalency

Each proof system \(S \) provides a different example of a consequence operation.

Each proof system \(S \) can be treated and a syntactic Tarski deductive system and the following holds:

Theorem

Given a proof system \(S = (\mathcal{L}, \mathcal{E}, LA, R) \)

The consequence operation \(\text{Cn}_S \) is a Tarski consequence \(\mathcal{C} \) in the language \(\mathcal{L} \) of the system \(S \) and the system

\[
D_S = (\mathcal{L}, \text{Cn}_S)
\]

is Tarski deductive system

We call it a syntactic deductive system determined by \(S \)
Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 1

PART 3 Non Monotonic Reasoning and Syntactic Consistency
Non Monotonic Reasoning

The Tarski consequence \(C \) models reasoning which is called after its condition \((t2)\) or \((t2')\) a monotonic reasoning.

The monotonicity of reasoning was, since antiquity, the basic assumption while developing models for classical and well-established non-classical logics.

Recently, many of new non-classical logics were developed and are being developed by computer scientists.

Nevertheless, they usually are built following the Tarski definition of consequence and are called as the others the monotonic logics.
A new type of important **Non-monotonic** logics have been proposed at the beginning of the 80s

Historically the most important proposals are:

Non-monotonic logic by McDermott and Doyle, **Default logic**, by Reiter, **Circumscription**, by McCarthy, and **Autoepistemic** logic, by Moore

The term **non-monotonic** logic covers a family of **formal frameworks** devised to capture and represent **defeasible inference**

Defeasible inference is an inference in which it is **possible** to draw **conclusions** tentatively, reserving the right to retract them in the light of further information

We included most **standard examples** in Chapter 1, Slides Set 2
Syntactic Consistency: Formal Theories

Formal theories play a crucial role in mathematics and were historically defined for classical **predicate (first order)** logic and consequently for other non-classical logics. They are routinely called **first order theories**. We discuss them in detail in **Chapter 10** dealing formally with classical predicate logic.

First order theories are hence based on a proof system S with a predicate (first order) language L.

We sometimes consider **formal theories** based on proof systems with a **propositional** language L and we call them **propositional theories**.
Syntactic Consistency: Formal Theories

Given a proof system \(S = (\mathcal{L}, \mathcal{E}, LA, \mathcal{R}) \)
We build (define) a formal theory based on \(S \) as follows.

1. We select a certain finite subset \(SA \) of expressions of \(S \), disjoint with the logical axioms \(LA \) of \(S \).

The set \(SA \) is called a set of specific axioms of the formal theory based on \(S \).

2. We use set \(SA \) of specific axioms to define a language \(\mathcal{L}_{SA} \), called a language of the formal theory.

Here we have two cases.
Syntactic Consistency: Formal Theories

c1 S is a first order proof system, i.e. \mathcal{L} of S is a predicate language. We define the language \mathcal{L}_{SA} by restricting the sets of constant, functional, and predicate symbols of \mathcal{L} to constant, functional, predicate symbols appearing in the set SA of specific axioms. Both languages \mathcal{L}_{SA} and \mathcal{L} share the same set of propositional connectives.

c2 S is a propositional proof system, i.e. \mathcal{L} of S is a propositional language \mathcal{L}_{SA} is defined by restricting \mathcal{L} to connectives appearing in the set SA.
Syntactic Consistency: Formal Theories

Definition
Given a proof system \(S = (\mathcal{L}, \mathcal{E}, \text{LA}, \mathcal{R}) \) and finite subset \(\text{SA} \) of expressions of \(S \), disjoint with the logical axioms \(\text{LA} \).

The system

\[T = (\mathcal{L}, \mathcal{E}, \text{LA}, \text{SA}, \mathcal{R}) \]

is called a **formal theory** based on \(S \).

The set \(\text{SA} \) is the set of **specific axioms** of \(T \).

The language \(\mathcal{L}_{\text{SA}} \) defined by \(c1 \) or \(c2 \) is called the language of the **theory** \(T \).
Syntactic Consistency

Definition

A theory

\[T = (\mathcal{L}, \mathcal{E}, LA, SA, R) \]

is consistent if and only if there exists an expression

\[E \in \mathcal{E}_{SA} \]

such that

\[E \notin T(SA), \text{ i.e. such that} \]

\[SA \not\models E \]

otherwise the theory \(T \) is inconsistent.

Observe that the definition has purely syntactic meaning.
Syntactic Consistency: Formal Theories

The **consistency** definition reflexes our intuition what proper notion of **provability** should mean

Namely, it says that a formal **theory** \(T \) based on a proof system \(S \) is **consistent** only when it **does not prove** all expressions (formulas in particular cases) of \(\mathcal{L}_{SA} \)

The **theory** \(T \) such that it **proves everything** stated in \(\mathcal{L}_{SA} \) obviously should be, and **is defined** as **inconsistent**
Syntactic Consistency: Formal Theories

In particular, we have the following **syntactic definition** of consistency and inconsistency for any proof system S

Definition
A proof system

$$S = (L, E, LA, R)$$

is **consistent** if and only if there exists $E \in E$ such that $E \notin P_S$, i.e. such that

$$\kappa_S E$$

otherwise S is **inconsistent**
Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 2

PART 5 Semantics: Soundness and Completeness
PART 6 Exercises and Examples
Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 2

PART 4 Semantics: Soundness and Completeness
General Proof Systems: Semantics

We define formally a **semantics** for a given proof system

\[S = (L, \mathcal{E}, LA, R) \]

by specifying the **semantic links** of all its **components** as follows

Semantic Link1: Language \(L \)

The language \(L \) of \(S \) can be **propositional** or **predicate**

Let denote by \(M \) a semantic for the language \(L \)

We call \(M \), for short, a **semantics** for the proof system \(S \)
Proof Systems: Semantics

The **semantics** M can be **classical** or **non-classical**

M can be **propositional** or **predicate** depending of the language \mathcal{L} of S

M can be **extensional** or **not extensional**

We use M as a general **symbol** for a **semantics**
Semantic Link 2: Set \mathcal{E} of Expressions

We always have to extend a given semantics M for the language L of the system S to the set \mathcal{E} of all expression of S.

Sometimes, like in case of Resolution based proof systems we have also to prove a semantic equivalency of new created expressions \mathcal{E} (sets of clauses) with appropriate formulas of L.
Proof Systems: Semantics

Example
In the automated theorem proving system RS presented in Chapter 6 the basic expressions E are finite sequences of formulas of the language $L\{\neg, \cap, \cup, \Rightarrow\}$

We extend the classical semantics for L to the set F^* of all finite sequences of formulas as follows:
For any $v : VAR \rightarrow \{F, T\}$ and any $\Delta \in F^*$, $\Delta = A_1, A_2, .. A_n$, we put

$$v^*(\Delta) = v^*(A_1, A_2, .. A_n)$$

$$= v^*(A_1) \cup v^*(A_2) \cup \cup v^*(A_n)$$

i.e. in a shorthand notation

$$\Delta \equiv (A_1 \cup A_2 \cup ... \cup A_n)$$
Semantic Link 3: Logical Axioms LA

Given a semantics M for L and its extension to the set E of all expressions

We extend the notion of tautology to the expressions and write

$$\models_M E$$

to denote that the expression $E \in E$ is a tautology under semantics M and we put

$$T_M = \{ E \in E : \models_M E \}$$

Logical axioms LA are always a subset of expressions that are tautologies of under the semantics M, i.e.

$$LA \subseteq T_M$$
Semantic Link 4: Rules of Inference \mathcal{R}

We want the rules of inference $r \in \mathcal{R}$ to preserve truthfulness i.e. to be sound under the semantics \mathbf{M}.

Definition

Given an inference rule $r \in \mathcal{R}$

$$
(r) \quad \frac{P_1 ; P_2 ; \ldots ; P_m}{C}
$$

We say that the inference rule $r \in \mathcal{R}$ is sound under a semantics \mathbf{M} if and only if all \mathbf{M} models of the set $\{P_1, P_2, \ldots, P_m\}$ of its premisses are also \mathbf{M} models of its conclusion C.
Proof Systems: Semantics

In the case of propositional language and the extensional semantics M the M models are defined in terms of the truth assignment $v : VAR \rightarrow LV$, where LV is the set of logical values for the semantics M, the Sound Rule definition becomes as follows

Definition

An inference rule $r \in R$, such that

$$
(r) \quad \frac{P_1 ; P_2 ; \ldots ; P_m}{C}
$$

is sound under a semantics M if and only if the condition below holds or any $v : VAR \rightarrow LV$

If $v \models_M \{P_1, P_2, \ldots, P_m\}$, then $v \models_M C$
Observe that we can rewrite the condition

If $v \models_{M} \{P_1, P_2, \ldots, P_m\}$, then $v \models_{M} C$

as follows

If $v^{*}(P_1) = v^{*}(P_2) = \ldots = v^{*}(P_m) = T$, then $v^{*}(C) = T$

Remark

A rule of inference can be **sound** under different semantics
But also rule of inference can be **sound** under one semantics and **not sound** under the other
Proof Systems: Semantics

Example

Given a propositional language \(\mathcal{L}_{\neg, \cup, \Rightarrow} \)

Consider two rules of inference:

\[
(r_1) \quad \frac{(A \Rightarrow B)}{(B \Rightarrow (A \Rightarrow B))}
\]

\[
(r_2) \quad \frac{\neg \neg A}{A}
\]

The rule \((r_1)\) is **sound** under classical, \(H\) and \(L\) semantics.

The \((r_2)\) is **sound** under classical and \(L\) semantics.

The \((r_2)\) is **not sound** under \(H\) semantics.

We introduce now new **important** notions of **strongly sound** rule under a semantics \(M\).
Proof Systems: Semantics

Definition
Given a language \mathcal{L}, an inference rule $r \in \mathcal{R}$ of the form

$$
(r) \quad \frac{P_1 ; P_2 ; \ldots ; P_m}{C}
$$

is strongly sound under a semantics \mathcal{M} if and only if the following condition holds for all \mathcal{M} model structures \mathcal{M},

$$
\mathcal{M} \models_{\mathcal{M}} \{P_1, P_2, \ldots, P_m\} \text{ if and only if } \mathcal{M} \models_{\mathcal{M}} C
$$

In case of a propositional language \mathcal{L} and extensional semantics \mathcal{M} the \mathcal{M} model structure \mathcal{M} is the truth assignment v and the strong soundness condition is as follows

For any $v : \text{VAR} \rightarrow \text{LV}$,

$$
v \models_{\mathcal{M}} \{P_1, P_2, \ldots, P_m\} \text{ if and only if } v \models_{\mathcal{M}} C
$$
Proof Systems: Semantics

Example

Given a propositional language \(\mathcal{L}_{\{\neg, \lor, \Rightarrow\}} \)

Consider two rules of inference:

\[
(r1) \quad \frac{A ; B}{(A \lor \neg B)} \quad \text{and} \quad (r2) \quad \frac{A}{\neg\neg A}
\]

Both rules \((r1)\) and \((r2)\) are sound under classical and \(H\) semantics.

The rule \((r2)\) is strongly under classical semantics.

The rule \((r2)\) is not strongly sound under \(H\) semantics.

The rule \((r1)\) is not strongly sound under either semantics.
Proof Systems: Semantics

Now we define a notion of a sound and strongly sound proof system. Strongly sound proof systems play a role in constructive proofs of completeness theorem. This is why we introduce them here.

Definition
Given a proof system \(S = (\mathcal{L}, \mathcal{E}, \text{LA}, \mathcal{R}) \)

We say that the proof system \(S \) is sound under a semantics \(M \) if and only if the following conditions hold.

\[C1 \quad \text{LA} \subseteq T_M \]

\[C2. \quad \text{Each rule of inference } r \in \mathcal{R} \text{ is sound under } M \]

The proof system \(S \) is strongly sound under a semantics \(M \) if the condition \(C2 \) is replaced by the following condition.

\[C2' \quad \text{Each rule of inference } r \in \mathcal{R} \text{ is strongly sound under } M \]
Proof Systems: Semantics

Example

Consider a proof system

\[S = (\mathcal{L}_{\neg, \Rightarrow}, \mathcal{F}, \{(\neg\neg A \Rightarrow A), (A \Rightarrow (\neg A \Rightarrow B))\}, \mathcal{R} = \{(r)\}) \]

where

\[(r) \quad \frac{(A \Rightarrow B)}{(B \Rightarrow (A \Rightarrow B))} \]

The proof system \(S \) is sound, but not strongly sound under classical and \(L \) semantics.

\(S \) is not sound under \(H \) semantics.

Proof

We proof here only the condition \(C1 \). The complete proof, as proofs of many other examples, is included in the book chapter.
Proof Systems: Semantics

C1 \(LA \subseteq T_M \)

Both axioms are basic classical tautologies

Hence to prove that first axiom is L tautology we we have to verify only the case (shorthand notation) \(A = \bot \)

We evaluate

\[
\neg \neg \bot \Rightarrow \bot = \neg \bot \Rightarrow \bot = \bot \Rightarrow \bot = T
\]

This proves \(\models_L (\neg \neg A \Rightarrow A) \)
Proof Systems: Semantics

Consider the second axiom

\[(A \Rightarrow (\neg A \Rightarrow B))\]

Observe that \((A \Rightarrow (\neg A \Rightarrow B)) = \bot\) if and only if \(A = T\) and

\((\neg A \Rightarrow B) = \bot\) if and only if \((\neg T \Rightarrow B) = \bot\) if and only if \((F \Rightarrow B) = \bot\), what is impossible under L semantics.

This proves

\(\models_L (A \Rightarrow (\neg A \Rightarrow B))\)

and the condition \(C1\) holds for the classical and \(L\) semantics.
We prove now that

\[\not\models_H (\neg\neg A \Rightarrow A) \]

as follows
Consider any truth assignment such that \(A = \bot \).
We evaluate

\[\neg\neg \bot \Rightarrow \bot = \neg \bot \Rightarrow \bot = F \Rightarrow \bot = \bot \]

This proves that \(S \) is not sound under \(H \) semantics.
Proof Systems: Soundness Theorem

When we define (develop) a proof system S and its semantics M our first goal is to make sure that the proof system S is a "sound one", i.e. that it has a property stating that all we prove in S is always true with respect to the given semantics M.

This goal is established by formulating and proving a theorem, called Soundness Theorem that defines a relationship between provability in a proof system S and the tautologies defined by the system S semantics M.
Proof Systems: Soundness Theorem

Let $P_S = \{E \in \mathcal{E} : \vdash_S E\}$ be the set of all provable expressions of S, and let T_M be a set of all expressions of S that are M tautologies i.e. $T_M = \{E \in \mathcal{E} : \models_M E\}$

Soundness Theorem

Given a proof system S and its semantics M,

$$P_S \subseteq T_M$$

i.e. for any $E \in \mathcal{E}$, the following implication holds

if $\vdash_S E$ then $\models_M E$

Observe that the Soundness Theorem holds for S if and only if the proof system S is sound, hence the name of the theorem.
Proof Systems: Soundness Theorem

Obviously, if S is not sound there is an expression E such that $\vdash_S E$ and E is not M tautology. Hence $P_S \not\subseteq T_M$ and the Soundness Theorem fails.

Assume now that S is sound and $\vdash_S E$.

We prove that $E \in T_M$, by Mathematical Induction over the length of a proof of E and we have proved the following

Soundness Fact

Given a proof system $S = (\mathcal{L}, \mathcal{E}, LA, R)$

In order to prove/disprove the Soundness Theorem for S under semantics M it is sufficient to verify the two conditions:

1. $LA \subseteq T_M$ and

2. Each rule of inference $r \in R$ of S is sound under M
Proof Systems: Completeness Theorem

The next step in developing a proof system (logic) is to formally state and answer another necessary question. Given a proof system S, about which we already know that all it proves is a tautology with respect to its given semantics.

Can S prove all statements we know to be tautologies with respect to its semantics?

The answer is formulated in form of a theorem, called Completeness Theorem that has to be proved/disproved about the proof system S.
Proof Systems: Completeness Theorem

Completeness Theorem
Given a proof system \(S \) and its semantics \(M \),

\[P_S = T_M \]

i.e. for any \(E \in \mathcal{E} \), the following holds

\[\vdash_S E \text{ if and only if } \models_M E \]

The **Completeness Theorem** consists of two parts

Part 1 **Soundness Theorem:** \(P_S \subseteq T_M \)

Part 2 **Completeness Part:** \(T_M \subseteq P_S \)
Proof Systems: Completeness Theorem

Proving/ disproving the **Soundness Theorem** for S under a semantics M is usually a straightforward and not a very difficult task.

Proving/ disproving the of the **Completeness Part** is always crucial and very difficult task.

There are many methods and techniques for doing so, even for classical proof systems (logic) alone. Non-classical logics usually require new sometimes very sophisticated methods.
Proof Systems: Completeness Theorem

We present two proofs of the **Completeness Theorem** for propositional *Hilbert* style proof system for *classical* logic in chapter 5.

We present constructive proofs for **automated theorem proving** systems for *classical* propositional logic in chapter 6.

We discuss the proofs of the **Completeness Theorem** for *Intuitionistic* and *Modal* Logics in chapter 7.

We provide the proofs of the **Completeness Theorem** for *classical* predicate logic in chapter 9 (**Hilbert** style) and chapter 10 (**Gentzen** style).
Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 2
PART 5 Exercises and Examples
Proof Systems: Exercises

Exercise
Given a proof system:

$$S = (\mathcal{L}_{\neg, \Rightarrow}, \mathcal{F}, LA = \{(A \Rightarrow A), (A \Rightarrow (\neg A \Rightarrow B))\}, \{(r)\})$$

for

$$ \begin{align*}
(r) & \quad \frac{(A \Rightarrow B)}{(B \Rightarrow (A \Rightarrow B))}
\end{align*} $$

1. Prove that S is **sound**, but **not strongly sound** under classical semantics
2. Prove that S is **not sound** under K semantics
3. Write a **formal proof** in S with 2 applications of rule (r)
Proof Systems: Exercises

Solution

In order to prove 1. and 2. we have to verify conditions

C1 \(LA \subseteq T_M \)

C2. Each \(r \in R \) is **sound**

for **soundness**, and **C1 , C2’** for **strong soundness**, for

C2’ Each \(r \in R \) is **strongly sound**

Observe that both axioms of \(S \) are basic classical
tautologies, so **C1** holds
Solution
Consider the rule of inference of
\[
\begin{align*}
(r) & \quad (A \Rightarrow B) \\ & \quad (B \Rightarrow (A \Rightarrow B))
\end{align*}
\]
Take any \(v \) such that \(v^*((A \Rightarrow B))) = T \)
We evaluate logical value of the conclusion under the truth assignment \(v \) (and classical semantics) as follows
\[
v^*(B \Rightarrow (A \Rightarrow B)) = v^*(B) \Rightarrow T = T, \text{ for any formula } B \text{ and any value of } v^*(B)
\]
This proves that \(S \) is sound under classical semantics
\(S \) is not strongly sound as
\[
(A \Rightarrow B) \not\equiv (B \Rightarrow (A \Rightarrow B))
\]
System \(S \) is not sound under K semantics because axiom \((A \Rightarrow A)\) is not a K semantics tautology
Solution
3. There are many solutions, i.e. one can construct many required formal proofs
Here is one of them, i.e. a sequence

\[A_1, A_2, A_3 \]

where
\[A_1 = (A \Rightarrow A) \]
Axiom
\[A_2 = (A \Rightarrow (A \Rightarrow A)) \]
Rule \((r)\) application one for \(A = A, B = A \)
\[A_3 = (((A \Rightarrow A) \Rightarrow (A \Rightarrow (A \Rightarrow A)))) \]
Rule \((r)\) application one for \(A = A, B = (A \Rightarrow A) \)
Proof Systems: Exercises

Exercise

Given a proof system:

\[S = (\mathcal{L}_{\cup, \Rightarrow}, \mathcal{F}, \mathcal{L}A = \{A1, A2\}, (r) \frac{(A \Rightarrow B)}{(A \Rightarrow (A \Rightarrow B))}) \]

where \(A1 = (A \Rightarrow (A \cup B)) \), \(A2 = (A \Rightarrow (B \Rightarrow A)) \)

1. Prove that \(S \) is sound under classical semantics and determine whether \(S \) is sound or not sound under K semantics.

2. Write a formal proof \(B1, B2, B3 \) in \(S \) with two applications of the rule \((r)\) that starts with axiom \(A1 \), i.e. such that \(B1 = (A \Rightarrow (A \cup B)) \)

3. Write a formal proof \(B1, B2 \) in \(S \) with one application of the rule \((r)\) that starts with axiom \(A2 \), i.e. such that \(A1 = (A \Rightarrow (B \Rightarrow A)) \)
Solution

1. All axioms of S are basic classical tautologies

The proof (in shorthand notation) of soundness of the rule

\[(r) \quad \frac{(A \Rightarrow B)}{(A \Rightarrow (A \Rightarrow B))}\]

is as follows. Assume $(A \Rightarrow B) = T$. Hence the logical value of conclusion is $(A \Rightarrow (A \Rightarrow B)) = (A \Rightarrow T) = T$ for all A, and S is sound under classical semantics.

S is not sound under K semantics.

Take a truth assignment such that $A = \bot, B = \bot$.

We evaluate logical value of axiom $A1$ (in shorthand notation)

$(A \Rightarrow (A \cup B)) = (\bot \Rightarrow (\bot \cup \bot)) = \bot$ and $\not K (A \Rightarrow (A \cup B))$.
Proof Systems: Exercises

Solution

2. The required formal proof B_1, B_2, B_3 is as follows

$B_1 = (A \Rightarrow (A \cup B))$

Axiom

$B_2 = (A \Rightarrow (A \Rightarrow (A \cup B)))$

Rule (r) application for $A = A$ and $B = (A \cup B)$

$B_3 = (A \Rightarrow (A \Rightarrow (A \Rightarrow (A \cup B))))$

Rule (r) application for $A = A$ and $B = (A \Rightarrow (A \cup B))$
Solution

3. The required formal proof \(B_1, B_2 \) is as follows

\[
B_1 = (A \Rightarrow (B \Rightarrow A))
\]

Axiom

\[
B_2 = (A \Rightarrow (A \Rightarrow (B \Rightarrow A)))
\]

Rule (r) application for \(A = A \) and \(B = (B \Rightarrow A) \)
Exercise
Let S be the following proof system

$$S = (\mathcal{L}_{\Rightarrow, \cup, \neg}, \mathcal{F}, A1, (r1), (r2))$$

where the logical axiom $A1$ is $A1 = (A \Rightarrow (A \cup B))$

Rules of inference $(r1), (r2)$ are:

1. **Verify** whether S is **sound/not sound** under classical semantics
2. **Find** a formal proof of $\neg(A \Rightarrow (A \cup B))$ in S, ie. show that $\vdash_S \neg(A \Rightarrow (A \cup B))$
3. **Does** $\vdash_S \neg(A \Rightarrow (A \cup B))$ **prove** that $\models \neg(A \Rightarrow (A \cup B))$?
Proof Systems: Exercises

Solution

1. The system S is not sound
 Take any v, such that $v^*(A) = T$ and $v^*(B) = F$
 The premiss $(A \cup B)$ of the rule (r2) is T under v
 Its conclusion under v is $v^*(B) = F$

2. The formal proof of $\neg(A \Rightarrow (A \cup B))$ is as follows
 $B_1: (A \Rightarrow (A \cup B))$
 axiom
 $B_2: (A \Rightarrow (A \cup B))$
 axiom
 $B_3: ((A \Rightarrow (A \cup B)) \cup \neg(A \Rightarrow (A \cup B)))$
 rule (r1) application to B_1 and B_2
 $B_4: \neg(A \Rightarrow (A \cup B))$
 rule (r2) application to B_1 and B_3
Proof Systems: Exercises

Solution

3. System S is not sound

In general, the existence of a **formal proof** in a not sound proof systems **does not guarantee** that what was proved is a **tautology**

Moreover, the **non-sound** rule (r2) was used in the proof of the formula

$$\neg(A \Rightarrow (A \cup B))$$

so we have that

$$\not\models \neg(A \Rightarrow (A \cup B))$$
Proof Systems: Exercises

Exercise

Create your pwn 3 valued extensional semantics M for the language

$\mathcal{L}\{\neg, \lor, \cup, \Rightarrow\}$

by defining the connectives \neg, \lor, \Rightarrow on a set $\{F, \bot, T\}$ of logical values.

You must follow the following assumptions $a1$, $a2$, $a3$

$a1$ The third logical value value is intermediate between truth and falsity, i.e. the set $\{F, \bot, T\}$ of logical values is ordered as follows

$F < \bot < T$

$a2$ The value T is the designated value
a3 The connective \(L \) is one argument connective that reads "like", "likes"

The *semantics* has to *model* a situation in which one "likes" only the truth, i.e. the logical value \(T \)

It means the connective \(L \) must be such that

\[
L T = T, \quad L \bot = F, \quad \text{and} \quad L F = F
\]

The connectives \(\neg, \cup, \Rightarrow \) can be *defined* as you wish, but you *have to* define them in such a way to make sure that

\[\models_M (LA \cup \neg LA) \]
Proof Systems: Example

Example
Here is an example of a required simple semantics
We define the logical connectives by writing functions defining connectives in form of the truth tables.

\[\begin{array}{c|ccc} \mathbf{L} & \mathbf{F} & \bot & \mathbf{T} \\ \hline \mathbf{F} & \mathbf{F} & \mathbf{T} \end{array} \quad \begin{array}{c|ccc} \neg & \mathbf{F} & \bot & \mathbf{T} \\ \hline \mathbf{T} & \mathbf{F} & \mathbf{F} \end{array} \]
Proof Systems: Example

M Semantics

<table>
<thead>
<tr>
<th>\cap</th>
<th>F</th>
<th>\bot</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>\bot</td>
<td>F</td>
<td>\bot</td>
<td>\bot</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>\bot</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\cup</th>
<th>F</th>
<th>\bot</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>\bot</td>
<td>T</td>
</tr>
<tr>
<td>\bot</td>
<td>\bot</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

\Rightarrow

| T | F | F | T |

We verify by simple evaluation whether the condition $s3$ is satisfied, i.e. whether $\models_M (LA \cup \neg LA)$

Let $v : \text{VAR} \rightarrow \{F, \bot, T\}$ be any truth assignment

For any formula A, $v^*(A) \in \{F, \bot, T\}$ and

$LF \cup \neg LF = LF \cup \neg LF = F \cup \neg F \cup T = T$

$L \bot \cup \neg L \bot = F \cup \neg F = F \cup T = T$

$L T \cup \neg LT = T \cup \neg T = F \cup T = T$
Proof Systems: Exercise

Exercise

Let S be the following proof system

$$S = (\mathcal{L}_{\{\neg, \lor, \land, \Rightarrow\}}, \mathcal{F}, \{A_1, A_2\}, \{(r1), (r2)\})$$

where $A_1 \colon (L A \cup \neg L A)$, $A_2 \colon (A \Rightarrow L A)$,

$$(r1) \quad \frac{A ; B}{(A \cup B)} \quad (r2) \quad \frac{A}{L(A \Rightarrow B)}$$

1. Show, by constructing a proper formal proof that

$$\vdash_S ((L b \cup \neg L b) \cup L((L a \cup \neg L a) \Rightarrow b)))$$

2. Verify whether the system S is M-sound under the semantics M developed in the previous Example

3. If the system S is not M-sound then define a new semantics N would make S sound