
LOGICS FOR COMPUTER SCIENCE:
Classical and Non-Classical

Springer 2019

Anita Wasilewska

Chapter 4
General Proof Systems: Syntax and Semantics

CHAPTER 4 SLIDES

Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 1

PART 1 Introduction

PART 2 Syntax: Definition of Proof System, Formal Proofs

PART 3 Syntactic Decidability

PART 4 Consequence Operation, Non Monotonic
Reasoning and Syntactic Consistency

Slides Set 2

PART 5 Semantics: Soundness and Completeness

PART 6 Exercises and Examples

Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 1

PART 1 Introduction

Chapter 4
General Proof Systems: Introduction

Proof systems are built to prove, it means to construct formal
proofs of statements formulated in a given language

First component of any proof system is hence its formal
language L

Proof systems are inference machines with statements
called provable statements being their final products

Chapter 4
General Proof Systems: Axioms

The starting points of the inference machine of a proof
system S are called its axioms

We distinguish two kinds of axioms: logical axioms LA and
specific axioms SA

Semantical link: we usually build a proof systems for

a given language and its semantics i.e. for a logic defined

semantically

General Proof Systems: Logical Axioms

We choose as a set of logical axioms LA some subset of

tautologies, under a given semantics

We will consider here only proof systems with finite sets of

logical or specific axioms, i.e we will examine only

finitely axiomatizable proof systems

General Proof Systems: Logical Axioms

We can, and we often do, consider proof systems with

languages without yet established semantics

In this case the logical axioms LA serve as description of

tautologies under a future semantics yet to be built

Logical axioms LA of a proof system S are hence

not only tautologies under an established semantics, but

they can also guide us how to define a semantics when

it is yet unknown

General Proof Systems: Specific Axioms

The specific axioms SA consist of statements that

describe a specific knowledge of an universe we want

to use the proof system S to prove facts about

Specific axioms SA are not universally true

Specific axioms SA are true only in the universe we are

interested to describe and investigate by the use of the

proof system S

General Proof Systems: Formal Theory

Given a proof system S with logical axioms LA

We choose as specific axioms SA of the proof system S

any finite set of formulas that are not tautologies, and hence

the specific axioms SA are always disjoint with the set LA

of logical axioms LA of S

The proof system S with added set of specific axioms SA

is called a formal theory based on S

General Proof Systems: Inference Machine

The inference machine of a proof system S is defined by

a finite set of inference rules

The inference rules describe the way we are allowed to

transform the information within the proof system S

with the logical axioms LA as a starting point

We depict it informally on the next slide

General Proof Systems: Inference Machine

AXIOMS

↓ ↓ ↓

RULES applied to AXIOMS

↓ ↓ ↓

RULES applied to any expressions above

↓ ↓ ↓

Provable formulas

General Proof Systems: Semantical Link

Rules of inference of a system S have to preserve

the truthfulness of what they are being used to prove

The notion of truthfulness is always defined by a given

semantics M

Rules of inference that preserve the truthfulness are called
sound rules under a given a semantics M

Rules of inference can be sound under one semantics

and not sound under another

General Proof Systems: Soundness Theorem

Goal 1

When developing a proof system S the first goal is to prove

the following theorem about it and its semantics M

Soundness Theorem

For any formula A of the language of the system S

If a formula A is provable from logical axioms LA of S only,

then A is a tautology under the semantics M

General Proof Systems: Soundness Theorem

By definition, the notion of soundness is connected with

a given semantics

A proof system S can be sound under one semantics and

not sound under the other

For example a set of axioms and rules sound under the

classical semantics might not be sound under L semantics,

or K
¯

semantics, or others

General Proof Systems: Completeness Property

Denote by TM the set of all tautologies defined by the

semantics M, i.e.

TM = {A ∈ F : |=M A }

A natural question arises:

are all tautologies i.e formulas A ∈ TM provable in the

proof system S ??

The positive answer to this question is called completeness

property of the system S

General Proof Systems: Completeness Theorem

Goal 2

Given for a sound proof system S under the semantics M,

our second goal is to prove the following theorem about S

Completeness Theorem

For any formula A of the language of S

A is provable in S if and only if A is a tautology under
the semantics M

We write the Completeness Theorem symbolically as

`S A if and only if |=M A

Proving Soundness and Completeness

The Completeness Theorem is composed of two parts

The soundness part, i.e. the Soundness Theorem and

the completeness part that proves the completeness

property of already sound proof system

Proving the Soundness Theorem for S under a semantics M

is usually a straightforward and not a very difficult task

We first prove that all logical axioms LA are tautologies

under the given semantics and then we prove that

all inference rules of the system S preserve the notion of the
truth under it

Proving Soundness and Completeness

Proving the completeness part of the Completeness

Theorem is always the crucial, difficult and sometimes

impossible task

We study two proofs of the Completeness Theorem for

classical propositional proof system in Chapter 5

We present a constructive proofs of the Completeness

Theorem for different Gentzen style automated theorem

proving systems for classical semantics in Chapter 6

We discuss the Inuitionistic and Modal Logics in Chapter 7

The Predicate Logics are discussed Chapters 8, 9, 10, 11

Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 1

PART 2 Syntax : Definition of Proof System, Formal Proofs

Syntax : Definition of Proof System

When defining a proof system S we specify, as the first
step,

its formal language L

This is a first component of the proof system S

Given a set F of well formed formulas of the language L,

we often extend this set, and hence the language L to

a set E of expressions build out of the language L and

some additional symbols, if needed

It is a second component of the proof system S

Syntax : Definition of Proof System

Proof systems act as an inference machine, with provable

expressions being its final products

This inference machine is defined by setting, as a starting
point a certain non-empty, proper subset LA of E, called a
set of logical axioms of the system S

The production of provable statements is to be done by the

means of inference rules

The inference rules transform an expression, or finite string of

expressions, called premisses, into another expression,

called a conclusion

Syntax : Definition of Proof System

At this stage the inference rules don’t carry any meaning

They only define how to transform strings of symbols of

a language into another string of symbols

This is a reason why investigation of proof systems is

called syntax or syntactic investigation as opposed to

semantical methods

The syntax- semantics connection within proof systems is

established by Soundness and Completeness theorems

and is discussed in detail in the Slides Set 2

Syntax : Definition of Proof System

Definition

By a proof system we understand a quadruple

S = (L,E, LA ,R)

where

L = {A,F } is a language of S with a set F of formulas

E is a set of expressions of S

In particular case E = F

LA ⊆ E is a non- empty, finite set of logical axioms of S

R is a non- empty, finite set of rules of inference of S

Proof System Components: Language

Language of S is any formal language

L = (A,F)

We assume as before that both sets A and F are
enumerable, i.e. we deal here with enumerable languages

The language L can be propositional or first order

(predicate) but we discuss propositional languages first

Proof System Components: Expressions

Expressions E of S

Given a set F of formulas of the language L of S

We often extend the set F to some set E of expressions
build out of the symbols of L and some extra symbols, if
needed

In this case all other components of S are also defined on
basis of elements of the set of expressions E

In particular, and most common case we have that E = F

Expressions Examples

Automated theorem proving systems usually use as their

basic components special sets of expressions build out of
formulas of

L

In Chapters 6 , 10 we consider finite sequences of formulas

as basic expressions of proof systems RS and RQ

We also present there proof systems that use yet other kind of

expressions, called Gentzen sequents or their modifications

Some systems also use other expressions such as clauses,

sets of clauses, or sets of formulas

Proof System Components: Logical Axioms

Logical axioms LA of S

We distinguish a non-empty subset LA of the set E of
expressions of S as a set of logical axioms, i.e.

LA ⊆ E

In particular, LA is a non-empty subset of formulas, i.e.

LA ⊆ F

We assume that one can effectively decide, for any E ∈ E
whether E ∈ LA or E < LA

We also assume that the set LA is always finite, i.e. that
we consider here finitely axiomatizable proof systems

Proof System Components: Rules of Inference

Rules of inference R of S

We assume that S contains only a finite number of
inference rules

We assume that each rule has a finite number of premisses
and one conclusion

We also assume that one can effectively decide, for any
inference rule, whether given strings of expressions form its
premisses and conclusion or they do not

Proof System Components: Rules of Inference

Definition

Each rule of inference r ∈ R is a relation defined in

the set Em, where m ≥ 1 with values in E, i.e.

r ⊆ Em × E

Elements P1,P2, . . . Pm of a tuple (P1,P2, . . . Pm,C) ∈ r
are called premisses of the rule r and C is called its
conclusion

Proof System Components: Rules of Inference

We write the inference rules in a following convenient way

One premiss rule

(r)
P1

C
Two premisses rule

(r)
P1 ; P2

C

m premisses rule

(r)
P1 ; P2 ; ; Pm

C

Syntax: Formal Proofs

A final product of a single or multiple use of the inference
rules of S, with axioms taken as a starting point are called
provable expressions of the proof system S

A single use of an inference rule is called a direct
consequence

A multiple application of rules of inference with axioms taken
as a starting point is called a proof

Syntax: Direct Consequence

Formal definitions are as follows

Direct consequence

For any rule of inference r ∈ R of the form

(r)
P1 ; P2 ; ; Pm

C

C is called a direct consequence of P1, ...Pm by virtue of
the rule r ∈ R

Syntax: Formal Proof Definition

Formal Proof of an expression E ∈ E in a proof system

S = (L,E, LA ,R)

is a sequence
A1, A2, , An for n ≥ 1

of expressions from E, such that

A1 ∈ LA , An = E

and for each 1 < i ≤ n, either Ai ∈ LA or Ai is a direct
consequence of some of the preceding expressions

by virtue of one of the rules of inference

n ≥ 1 is the length of the proof A1, A2, , An

Syntax: Formal Proof Notation

We write
`S E

to denote that E ∈ E has a proof in S and we call E

a provable expression of S

The set of all provable expressions of S is denoted by PS ,

i.e. we put
PS = {E ∈ E : `S E}

When the proof system S is fixed we write ` E

Simple System S1

Example

Consider a very simple proof system system S1 with E = F

S1 = (L{P, ⇒}, F , LA = {(A ⇒ A)}, R = {(r)
B

PB
})

where A , B ∈ F are any formulas and where P is some one
argument connective

We might read PA for example as ” it is possible that A”

Observe that even the system S1 has only one axiom, it
represents an infinite number of formulas

We call such axiom an axiom schema

Simple System S2

Example
Consider now a system S2

S2 = (L{P,⇒}, F , {(a ⇒ a)}, (r)
B

PB
),

where a ∈ VAR is any variable (atomic formula) and B ∈ F
is any formula
Observe that the system S2 also has only one axiom similar
to the axiom of S1 and they have the same rule of inference
but they are different proof systems as
for example a formula

((Pa ⇒ (b ⇒ c))⇒ (Pa ⇒ (b ⇒ c)))

is an axiom of system S1 but is not an axiom of S2

Formal Proofs

Example

We have that

`S1 ((Pa ⇒ (b ⇒ c))⇒ (Pa ⇒ (b ⇒ c)))

because ((Pa ⇒ (b ⇒ c))⇒ (Pa ⇒ (b ⇒ c))) ∈ LA

Some other provable formulas are

`S1P(a ⇒ a), `S1PP(a ⇒ a), `S2PP(a ⇒ a)

Formal Proofs

Formal proof of P(a ⇒ a) in S1 and S2 is:

A1 = (a ⇒ a), A2 = P(a ⇒ a)
axiom rule application

for B = (a ⇒ a)

Formal proof of PP(a ⇒ a) in S1 and S2 is:

A1 = (a ⇒ a), A2 = P(a ⇒ a), A3 = PP(a ⇒ a)
axiom rule application rule application

for B = (a ⇒ a) for B = P(a ⇒ a)

Formal Proofs

Exercise
Given a proof system:

S = (L{¬,⇒}, F , {(A ⇒ A), (A ⇒ (¬A ⇒ B))}, R = {(r)}

where (r)
(A ⇒ B)

(B ⇒ (A ⇒ B))

Write a formal proof in S with 2 applications of the rule (r)

Solution: There are many solutions. Here is one of them.
Required formal proof is a sequence A1,A2,A3, where
A1 = (A ⇒ A)
(Axiom)
A2 = (A ⇒ (A ⇒ A))
Rule (r) application 1 for A = A , B = A
A3 = ((A ⇒ A)⇒ (A ⇒ (A ⇒ A)))
Rule (r) application 2 for A = A ,B = (A ⇒ A)

Simple System S3

Consider a very simple proof system system S3 defined as
follows

S3 = (L{P,⇒}, F , {(A ⇒ A)}, (r1)
B

PB
, (r2)

A ; B
P(A ⇒ B)

)

Exercise

Write two formal proofs in S3 both of the lengths 4,

one of which must contain at least one application of the

inference rule r2

Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 1

PART 3 Syntactic Decidability,

Automated Proof Systems

General Proof Systems: Syntactic Decidability

For any a proof system S = (L,E, LA ,R), we assumed
that its sets LA of its logical axioms and R of rules of
inference have the following properties

(LP) For any E ∈ E one can effectively decide whether
E ∈ LA or E < LA

(RP) For any infrence rule r ∈ R one can effectively decide
whether a given strings of expressions form its premisses and
conclusion or they do not

Observe that even if the set of axioms and the inference
rules of a proof system S have the properties (LP) and

(RP) it does not mean that a statement ” E is provable ” in S

can be similarly effectively decided for every proof system

Decidable Proof Systems

Definition

A proof system S = (L,E, LA ,R) for which there is an

effective decision procedure for determining for any

expression E ∈ E , whether there is or there is no proof of

E in S is called a decidable proof system,

otherwise S is called undecidable

Observe that the above notion of decidability of S does not
require to find a proof of an expression E ∈ E (if exists)

We hence introduce a following notion

Syntactically Decidable Proof Systems

Definition

A proof system S = (L,E, LA ,R) for which there is an
effective mechanical procedure that finds (generates) a
formal proof of any expression E ∈ E, if it exists, is called
syntactically semi- decidable

If additionally there is an effective method of deciding that if a
proof of E is not found that it does not exist, the system S is
called syntactically decidable

Otherwise S is syntactically undecidable

Hilbert Program

The need for existence of proof systems for classical logic
and parts of mathematics that are syntactically decidable or
syntactically semi-decidable was stated (in a different form)
by German mathematician David Hilbert in early 1900 as a
part of what is called Hilbert program

The main goal of Hilbert’s program was to provide secure
foundations for all mathematics

In particular the Hilbert program addressed the problem of
decidability

It stated that there should be an algorithm for deciding the
truth or to falsify of any mathematical statement

Moreover, it should use only ”finitistic” reasoning methods

Syntactically Decidable Proof Systems

Kurt Gdel proved in 1931 that most of the goals of Hilbert’s

program were impossible to achieve, at least if interpreted in
the most obvious way

Nevertheless, Gerhard Gentzen in his work published in
1934/1935 gave a positive answer to the possibility of
existence of syntactical decidability

He invented proof systems for classical and intiutionistic
logics, now called Gentzen style formalizations

We study the Gentzen style formalizations in chapter 6

and chapters 7, 10

Automated Proof Systems

Gentzen work formed a basis for development of Automated
Theorem Proving field of mathematics and computer

science

Definition

A proof system S = (L,E, LA ,R) that is proven to be

syntactically decidable or syntactically semi-decidable is

called an automated proof system

Automated proof systems are also called automated

theorem proving systems, Gentzen style formalizations

and and we use all of these terms interchangeably

Example

Example

Any complete Hilbert style proof system for classical
propositional logic is an example of a decidable , but

not syntactically decidable proof system

We conclude its decidability from the Completeness
Theorem proved in chapter 5 and the decidability of the
notion of classical tautology proved in chapter 3

Gentzen style proof systems for classical and intuiionistic
propositional logics presented in chapters 6,7

are examples of proof systems that are of both decidable
and syntactically decidable

Example: Simple System S

Consider now a simple proof system S

S = (L{P,⇒}, F LA = {(a ⇒ a)}, (r)
B

PB
)

where a ∈ VAR is any variable (atomic formula) and B ∈ F
is any formula
Let’s search for a proof (if exists) of the following formula A

A = PP((Pa ⇒ (b ⇒ c))⇒ (Pa ⇒ (b ⇒ c)))

Observe, that if A had the proof, the only last step in this
proof would be the application of the rule

(r)
B

PB
)

to the formula

P((Pa ⇒ (b ⇒ c))⇒ (Pa ⇒ (b ⇒ c)))

Example: Simple System S

Lets now consider the formula

P((Pa ⇒ (b ⇒ c))⇒ (Pa ⇒ (b ⇒ c)))

This formula, in turn, if it had the proof, the only last step in
its proof would be the application of the

(r)
B

PB
)

to the formula

((Pa ⇒ (b ⇒ c))⇒ (Pa ⇒ (b ⇒ c)))

The search process stops here

Proof Search in System S

Observe that the final formula obtained is not an axiom of S,
i.e.

((Pa ⇒ (b ⇒ c))⇒ (Pa ⇒ (b ⇒ c))) < LA

This means that our search for a proof of A in S has found
sequence of formulas that does not constitute a proof

This alone does not yet prove that the proof does not exist

Fortunately, the search was at each step unique, so in fact,
we did prove that the proof of A in S does not exist, i.e.
we proved

0S PP((Pa ⇒ (b ⇒ c))⇒ (Pa ⇒ (b ⇒ c)))

Proof Search Procedure

We easily generalize above example to a proof search
procedure to any formula A of S as follows

Procedure SP

Step: Check the main connective of A

If main connective is P (it means that A was obtained by the
rule (r))

Erase the main connective P

Repeat until no P as a main connective is left.

If the main connective is ⇒ check if a formula is an axiom

If it is an axiom, stop and yes we have a proof

If it is not an axiom, stop and no, proof does not exist

Syntactical Decidability of S

The Procedure SP is a finite, effective, automatic procedure
of searching for proofs of formulas in S

Moreover we proved that it determines for any formula
A ∈ F , whether there is or there is no proof of A in S

It means that we proved the following.

Fact

The proof system

S = (L{P,⇒}, F LA = {(a ⇒ a)}, (r)
B

PB
)

where a ∈ VAR and B ∈ F

is syntactically decidable

Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 1

PART 4 Consequence Operation, Non Monotonic
Reasoning and Syntactic Consistency

Proof from Hypothesis

Given a proof system S = (L, E, LA ,R)

While proving expressions in S we often use some extra
information available, besides the axioms of the proof system

This extra information is called hypotheses in the proof

A proof from the set of hypotheses Γ of an expression E in
S is a formal proof in S, where the expressions from Γ are
treated as additional information added to the set LA of the
logical axioms of S

We define it formally as follows

Proof from Hypothesis

Definition

Given a proof system S = (L, E, LA ,R)

Let Γ ⊆ E

A proof of an expression E from Γ is a sequence

E1, E2, . . . En

of expressions, such that

E1 ∈ LA ∪ Γ, En = E

and for each 1 < i ≤ n, either Ei ∈ LA ∪ Γ or

Ei is a direct consequence of some of the preceding
expressions in the sequence E1,E2, . . . En by virtue of one
of the rules of inference from R.

Proof from Hypothesis

We write
Γ `S E

to denote that E has a proof from Γ in S and

Γ ` E

when the system S is fixed

When the set of hypothesis Γ is a finite set and
Γ = {B1,B2, ...,Bn}, then we write

B1,B2, ...,Bn `S E

instead of
{B1,B2, ...,Bn} `S E

Conequences

The case of Γ = ∅ means that in the proof of E only logical
axioms LA were used we write

`S E

to denote that E has a proof from the empty set Γ

Definition
For any Γ ⊆ E , and A ∈ E ,
If Γ `S A , then A is called a consequence of Γ in S

Definition
We denote by CnS(Γ) the set of all consequences of Γ in
S, i.e. we put

CnS(Γ) = {A ∈ E : Γ `S A }

.

Consequence Operation

When talking about consequences of Γ in S, we define in
fact a function which to every set Γ ⊆ E assigns a set of all
its consequences

We denote this function by CnS and adopt the following
definition

Definition

Given a proof system S = (L, E, LA ,R)

Any function
CnS : 2E −→ 2E

such that for every Γ ∈ 2E,

CnS(Γ) = {E ∈ E : Γ `S E}

is called a consequence determined by S

Consequence Operation: Monotonicity

Take any consequence operation

CnS : 2E −→ 2E

Monotonicity Property

For any sets Γ,∆ of expressions of S,

if Γ ⊆ ∆ then CnS(Γ) ⊆ CnS(∆)

Exercise: write the proof;

it follows directly from the definition of CnS and definition of
the formal proof

Consequence Operation: Transitivity

Take any consequence operation

CnS : 2E −→ 2E

Transitivity Property

For any sets Γ1, Γ2, Γ3 of expressions of S,

if Γ1 ⊆ CnS(Γ2) and Γ2 ⊆ CnS(Γ3), then Γ1 ⊆ CnS(Γ3)

Exercise: write the proof;

it follows directly from the definition of CnS and definition of
the formal proof

Consequence Operation: Finiteness

Take any consequence operation

CnS : 2E −→ 2E

Finiteness Property

For any expression A ∈ E and any set Γ ⊆ E,

A ∈ CnS(Γ) if and only if there is a finite subset Γ0 of Γ
such that A ∈ CnS(Γ0)

Exercise: write the proof;

it follows directly from the definition of CnS and definition of
the formal proof

Tarski Consequence Operation

The notions of provability from a set Γ in S and
consequence determined by S coincide

We use both terms interchangeably, but the definition does
do more then just re-naming provability by consequence

We prove that the consequence CnS determined by S is a
special case of a notion a classic consequence operation as
defined by Alfred Tarski in 1930 as a general model of
deductive reasoning

Tarski definition is a formalization of the intuitive concept of
deduction as a consequence, and therefore it has all the
properties which our intuition attribute to this notion

Tarski Consequence Operation

Definition Tarski, 1930

By a consequence operation in a formal language
L = (A,F) we understand any mapping

C : 2F −→ 2F

satisfying the following conditions (t1) - (t3) expressing
properties of reflexivity, monotonicity, and transitivity of the
consequence

For any sets F , F0, F1, F2, F3 ∈ 2F ,

(t1) F ⊆ C(F) reflexivity

(t2) if F1 ⊆ F2 , then C(F1) ⊆ C(F2), monotonicity

(t3) if F1 ⊆ C(F2) and F2 ⊆ C(F3), then

F1 ⊆ C(F3), transitivity

Tarski Consequence Operation

We say that the consequence operation C has a finite
character if additionally it satisfies the following condition t4

(t4) if a formula B ∈ C(F), then there exists a finite set
F0 ⊆ F , such that B ∈ C(F0) finiteness.

The monotonicity condition (t2) and transitivity condition (t3)
are often replaced by the following conditions (t2’), (t3’),
respectively

(t2’) if B ∈ C(F), then B ∈ C(F ∪ F ′)

(t3’) C(F) = C(C(F))

Consequence Operations Equivalency

Definition

Given a formal language L = (A,F) and a Tarski
consequence C

A system D = (L,C) is called a Tarski deductive system
for the language L

Observe that Tarski’s deductive system as a model of
reasoning does not provide a method of actually defining a
consequence operation; it assumes that it is given

We prove that the consequence operation CnS determined
by S is a Tarski consequence operation C

Consequence Operations Equivalency

Each proof system S provides a different example of a
consequence operation

Each proof system S can be treated and a syntactic Tarski
deductive system and the following holds

Theorem

Given a proof system S = (L, E, LA ,R)

The consequence operation CnS is a Tarski consequence
C in the language L of the system S and the system

DS = (L, CnS)

is Tarski deductive system

We call it a syntactic deductive system determined by S

Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 1

PART 3 Non Monotonic Reasoning and

Syntactic Consistency

Non Monotonic Reasoning

The Tarski consequence C models reasoning which is called
after its condition (t2) or (t2’) a monotonic reasoning

The monotonicity of reasoning was, since antiquity the the
basic assumption while developing models for classical and
well established non-classical logics

Recently many of new non- classical logics were developed
and are being developed by computer scientists

Nevertheless they usually are built following the Tarski
definition of consequence and are called as the others the
monotonic logics

Non Monotonic Reasoning

A new type of important Non-monotonic logics have been
proposed at the beginning of the 80s

Historically the most important proposals are:
Non-monotonic logic by McDermott and Doyle, Default
logic, by Reiter, Circumscription, by McCarthy, and
Autoepistemic logic, by Moore

The term non-monotonic logic covers a family of formal
frameworks devised to capture and represent defeasible
inference

Defeasible inference is an inference in which it is possible
to draw conclusions tentatively, reserving the right to retract
them in the light of further information

We included most standard examples in Chapter 1, Slides
Set 2

Syntactic Consistency: Formal Theories

Formal theories play crucial role in mathematics and were
historically defined for classical predicate (first order) logic
and consequently for other non-classical logics

They are routinely called first order theories

We discuss them in detail in Chapter 10 dealing formally with
classical predicate logic

First order theories are hence based on a proof systems S
with a predicate (first order) language L

We sometimes consider formal theories based on proof
systems with a propositional language L and we call them
propositional theories

Syntactic Consistency: Formal Theories

Given a proof system S = (L, E, LA , R)

We build (define) a formal theory based on S as follows.

1. We select a certain finite subset SA of expressions of
S, disjoint with the logical axioms LA of S

The set SA is called a set of specific axioms of the formal
theory based on S

2. We use set SA of specific axioms to define a language
LSA , called a language of the formal theory

Here we have two cases

Syntactic Consistency: Formal Theories

c1 S is a first order proof system, i.e. L of S is a
predicate language

We define the language LSA by restricting the sets of
constant, functional, and predicate symbols of L to constant,
functional, predicate symbols appearing in the set SA of
specific axioms

Both languages LSA and L share the same set of
propositional connectives

c2 S is a propositional proof system, i.e. L of S is a
propositional language LSA is defined by restricting L to
connectives appearing in the set SA

Syntactic Consistency: Formal Theories

Definition

Given a proof system S = (L, E, LA , R) and finite subset
SA of expressions of S, disjoint with the logical axioms LA

The system
T = (L, E, LA , SA , R)

is called a formal theory based on S

The set SA is the set of specific axioms of T

The language LSA defined by c1 or c2 is called the language
of the theory T

Syntactic Consistency

Definition

A theory
T = (L, E, LA , SA , R)

is consistent if and only if there exists an expression
E ∈ ESA such that E < T(SA), i.e. such that

SA 0S E

otherwise the theory T is inconsistent.

Observe that the definition has purely syntactic meaning

Syntactic Consistency: Formal Theories

The consistency definition reflexes our intuition what proper
notion of provability should mean

Namely, it says that a formal theory T based on a proof
system S is consistent only when it does not prove all
expressions (formulas in particular cases) of LSA

The theory T such that it proves everything stated in LSA

obviously should be, and is defined as inconsistent

Syntactic Consistency: Formal Theories

In particular, we have the following syntactic definition of
consistency and inconsistency for any proof system S

Definition

A proof system
S = (L, E, LA , R)

is consistent if and only if there exists E ∈ E such that
E < PS , i.e. such that

0S E

otherwise S is inconsistent

Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 2

PART 5 Semantics: Soundness and Completeness

PART 6 Exercises and Examples

Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 2

PART 4 Semantics: Soundness and Completeness

General Proof Systems: Semantics

We define formally a semantics for a given proof system

S = (L,E, LA ,R)

by specifying the semantic links of all its components as
follows

Semantic Link1: Language L

The language L of S can be propositional or predicate

Let denote by M a semantic for the language L

We call M, for short, a semantics for the proof system S

Proof Systems: Semantics

The semantics M can be classical or non-classical

M can be propositional or predicate depending of the
language L of S

M can be extensional or not extensional

We use M as a general symbol for a semantics

Proof Systems: Semantics

Semantic Link 2: Set E of Expressions

We always have to extend a given semantics M for the
language L of the system S to the set E of all expression
of S

Sometimes, like in case of Resolution based proof systems
we have also to prove a semantic equivalency of new
created expressions E (sets of clauses) with appropriate
formulas of L

Proof Systems: Semantics

Example
In the automated theorem proving system RS presented in
Chapter 6 the basic expressions E are finite sequences of
formulas of the language L{¬,∩,∪,⇒}

We extend the classical semantics for L to the set F ∗ of all
finite sequences of formulas as follows:
For any v : VAR −→ {F ,T } and any ∆ ∈ F ∗,
∆ = A1,A2, ..An, we put

v∗(∆) = v∗(A1,A2, ..An)

= v∗(A1) ∪ v∗(A2) ∪ ∪ v∗(An)

i.e. in a shorthand notation

∆ ≡ (A1 ∪ A2 ∪ ... ∪ An)

Proof Systems: Semantics

Semantic Link 3: Logical Axioms LA

Given a semantics M for L and its extension to the set E
of all expressions

We extend the notion of tautology to the expressions and
write

|=M E

to denote that the expression E ∈ E is a tautology under
semantics M and we put

TM = {E ∈ E : |=M E}

Logical axioms LA are always a subset of expressions that
are tautologies of under the semantics M, i.e.

LA ⊆ TM

Proof Systems: Semantics

Semantic Link 4: Rules of Inference R

We want the rules of inference r ∈ R to preserve
truthfulness i.e. to be sound under the semantics M

Definition

Given an inference rule r ∈ R

(r)
P1 ; P2 ; ; Pm

C

We say that the inference rule r ∈ R is sound under a
semantics M if and only if all M models of the set
{P1,P2, .Pm} of its premisses are also M models of its
conclusion C

Proof Systems: Semantics

In the case of propositional language and the extensional
semantics M the M models are defined in terms of the truth
assignment v : VAR −→ LV , where LV is the set of logical
values for the semantics M, the Sound Rule definition
becomes as follows

Definition

An inference rule r ∈ R, such that

(r)
P1 ; P2 ; ; Pm

C

is sound under a semantics M if and only if the
condition below holds or any v : VAR −→ LV

If v |=M {P1,P2, .Pm} , then v |=M C

Proof Systems: Semantics

Observe that we can rewrite the condition

If v |=M {P1,P2, .Pm} , then v |=M C

as follows

If v∗(P1) = v∗(P2) = = v∗(Pm) = T , then v∗(C) = T

Remark

A rule of inference can be sound under different semantics

But also rule of inference can be sound under one
semantics and not sound under the other

Proof Systems: Semantics

Example

Given a propositional language L{¬,∪,⇒}

Consider two rules of inference:

(r1)
(A ⇒ B)

(B ⇒ (A ⇒ B))
and (r2)

¬¬A
A

The rule (r1) is sound under classical, H and L semantics

The (r2) is sound under classical and L semantics

The (r2) is not sound under H semantics

We introduce now new important notions of strongly sound
rule under a semantics M

Proof Systems: Semantics

Definition
Given a language L, an inference rule r ∈ R of the form

(r)
P1 ; P2 ; ; Pm

C

is strongly sound under a semantics M if and only if the
following condition holds for all M model structures M,

M |=M {P1,P2, .Pm} if and only if M |=M C

In case of a propositional language L and extensional
semantics M the M model structureM is the truth assignment
v and the strong soundness condition is as follows

For for any v : VAR −→ LV ,

v |=M {P1,P2, .Pm} if and only if v |=M C

Proof Systems: Semantics

Example

Given a propositional language L{¬,∪,⇒}

Consider two rules of inference:

(r1)
A ; B

(A ∪ ¬B)
and (r2)

A
¬¬A

Both rules (r1) and (r2) are sound under classical and H
semantics

The rule (r2) is strongly under classical semantics

The rule (r2) is not strongly sound under H semantics

The rule (r1) is not strongly sound under either semantics

Proof Systems: Semantics

Now we define a notion of a sound and strongly sound
proof system. Strongly sound proof systems play a role in
constructive proofs of completeness theorem. This is why
we introduce them here

Definition

Given a proof system S = (L, E, LA , R)

We say that the proof system S is sound under a semantics
M if and only if the following conditions hold

C1 LA ⊆ TM

C2. Each rule of inference r ∈ R is sound under M

The proof system S is strongly sound under a semantics M
if the condition C2 is replaced by the following condition

C2’ Each rule of inference r ∈ R is strongly sound under M

Proof Systems: Semantics

Example

Consider aproof system

S = (L{¬,⇒}, F , {(¬¬A ⇒ A), (A ⇒ (¬A ⇒ B))}, R = {(r)})

where

(r)
(A ⇒ B)

(B ⇒ (A ⇒ B))

The proof system S is sound, but not strongly sound
under classical and L semantics

S is not sound under H semantics

Proof

We proof here only the condition C1. The complete proof, as
proofs of many other examples, is included in the book
chapter

Proof Systems: Semantics

C1 LA ⊆ TM

Both axioms are basic classical tautologies

Hence to prove that first axiom is L tautology we we have to
verify only the case (shorthand notation) A =⊥

We evaluate

¬¬ ⊥⇒⊥= ¬ ⊥⇒⊥=⊥⇒⊥= T

This proves |=L (¬¬A ⇒ A)

Proof Systems: Semantics

Consider the second axiom

(A ⇒ (¬A ⇒ B))

Observe that (A ⇒ (¬A ⇒ B)) =⊥ if and only if A = T
and

(¬A ⇒ B) =⊥ if and only if (¬T ⇒ B) =⊥ if and only if
(F ⇒ B) =⊥, what is impossible under L semantics

This proves
|=L (A ⇒ (¬A ⇒ B))

and the condition C1 holds for the classical and L semantics

Proof Systems: Semantics

We prove now that

6|=H (¬¬A ⇒ A)

as follows

Consider any truth assignment such that A =⊥

We evaluate

¬¬ ⊥⇒⊥= ¬ ⊥⇒⊥= F ⇒⊥=⊥

This proves that S is not sound under H semantics.

Proof Systems: Soundness Theorem

When we define (develop) a proof system S and its

semantics M our first goal is to make sure that it the proof

system S is a ”sound one”, i.e. that it has a property stating

that all we prove in S is always true with respect to the given
semantics M

This goal is established by formulating and proving

a theorem, called Soundness Theorem that defines

a relationship between provability in a proof system S and

the tautologies defined by the system S semantics M

Proof Systems: Soundness Theorem

Let PS = {E ∈ E : `S E} be the set of all provable
expressions of S, and let TM be a set of all expressions of S
that are M tautologies i.e. TM = {E ∈ E : |=M E}

Soundness Theorem

Given a proof system S and its semantics M,

PS ⊆ TM

i.e. for any E ∈ E, the following implication holds

if `S E then |=M E

Observe that the Soundness Theorem holds for S if and
only if the proof system S is sound, hence the name of

the theorem.

Proof Systems: Soundness Theorem

Obviously, if S is not sound there is an expression E such
that `S E and E is not M tautology. Hence PS * TM and the
Soundness Theorem fails

Assume now that S is sound and `S E

We prove that E ∈ TM , by Mathematical Induction over the
length of a proof of E and we have proved the following

Soundness Fact

Given a proof system S = (L, E, LA , R)

In order to prove/disprove the Soundness Theorem for S
under semantics M it is sufficient to to verify the two
conditions:

1. LA ⊆ TM and

2. Each rule of inference r ∈ R of S is sound under M

Proof Systems: Completeness Theorem

The next step in developing a proof system (logic) is to
formally state and answer another necessary question

Given a proof system S, about which we already know that
all it proves is a tautology with respect to its given semantics

Can S prove all statements we know to be tautologies with
respect to its semantics?

The answer is formulated in form of a theorem, called
Completeness Theorem that has to be proved/disproved

about the proof system S

Proof Systems: Completeness Theorem

Completeness Theorem

Given a proof system S and its semantics M,

PS = TM

i.e. for any E ∈ E, the following holds

`S E if and only if |=M E

The Completeness Theorem consists of two parts

Part 1 Soundness Theorem: PS ⊆ TM

Part 2 Completeness Part: TM ⊆ PS

Proof Systems: Completeness Theorem

Proving/ disproving the Soundness Theorem for S under a
semantics M is usually a straightforward and not a very
difficult task

Proving/ disproving the of the Completeness Part is always
crucial and very difficult task

There are many methods and techniques for doing so, even
for classical proof systems (logic) alone

Non-classical logics usually require new sometimes very
sophisticated methods

Proof Systems: Completeness Theorem

We present two proofs of the Completeness Theorem for
propositional Hilbert style proof system for classical logic in
chapter 5

We present constructive proofs for automated theorem
proving systems for classical propositional logic in chapter 6

We discuss the proofs of the Completeness Theorem for
Intuitionistic and Modal Logics in chapter 7

We provide the proofs of the Completeness Theorem for
classical predicate logic in chapter 9 (Hilbert style) and
chapter 10 (Gentzen style)

Chapter 4
General Proof Systems: Syntax and Semantics

Slides Set 2

PART 5 Exercises and Examples

Proof Systems: Exercises

Exercise

Given a proof system:

S = (L{¬,⇒}, F LA = {(A ⇒ A), (A ⇒ (¬A ⇒ B))}, {(r)})

for

(r)
(A ⇒ B)

(B ⇒ (A ⇒ B))
)

1. Prove that S is sound, but not strongly sound under
classical semantics

2. Prove that S is not sound under K semantics

3. Write a formal proof in S with 2 applications of rule (r)

Proof Systems: Exercises

Solution

In order to prove 1. and 2. we have to verify conditions

C1 LA ⊆ TM

C2. Each r ∈ R is sound

for soundness, and C1 , C2’ for strong soundness, for

C2’ Each r ∈ R is strongly sound

Observe that both axioms of S are basic classical
tautologies, so C1 holds

Proof Systems: Exercises

Solution
Consider the rule of inference of

(r)
(A ⇒ B)

(B ⇒ (A ⇒ B))

Take any v such that v∗((A ⇒ B))) = T
We evaluate logical value of the conclusion under the truth
assignment v (and classical semantics) as follows
v∗(B ⇒ (A ⇒ B)) = v∗(B)⇒ T = T , for any formula B and
any value of v∗(B)

This proves that S is sound under classical semantics
S is not strongly sound as

(A ⇒ B) . (B ⇒ (A ⇒ B))

System S is not sound under K semantics because axiom
(A ⇒ A) is not a K semantics tautology

Proof Systems: Exercises

Solution
3. There are many solutions, i.e. one can construct many
required formal proofs

Here is one of them, i.e. a sequence

A1, A2, A3

where

A1 = (A ⇒ A)

Axiom

A2 = (A ⇒ (A ⇒ A))

Rule (r) application one for A = A , B = A

A3 = ((A ⇒ A)⇒ (A ⇒ (A ⇒ A)))

Rule (r) application one for A = A , B = (A ⇒ A)

Proof Systems: Exercises

Exercise
Given a proof system:

S = (L{∪,⇒}, F , LA = {A1,A2}, (r)
(A ⇒ B)

(A ⇒ (A ⇒ B))
)

where A1 = (A ⇒ (A ∪ B)), A2 = (A ⇒ (B ⇒ A))

1. Prove that S is sound under classical semantics and
determine whether S is sound or not sound under K
semantics.

2. Write a formal proof B1,B2,B3 in S with two
applications of the rule (r) that starts with axiom A1, i.e such
that B1 = (A ⇒ (A ∪ B))

3. Write a formal proof B1,B2 in S with one application
of the rule (r) that starts with axiom A2, ı.e such that
A1 = (A ⇒ (B ⇒ A))

Proof Systems: Exercises

Solution

1. All axioms of S are basic classical tautologies

The proof (in shorthand notation) of soundness of the rule

(r)
(A ⇒ B)

(A ⇒ (A ⇒ B))

is as follows. Assume (A ⇒ B) = T . Hence the logical value
of conclusion is (A ⇒ (A ⇒ B)) = (A ⇒ T) = T for all A ,
and S is sound under classical semantics

S is not sound under K semantics

Take a truth assignment such that A =⊥, B =⊥

We evaluate logical value of axiom A1 (in shorthand notation)

(A ⇒ (A ∪B)) = (⊥⇒ (⊥ ∪ ⊥)) =⊥ and 6|=K (A ⇒ (A ∪B))

Proof Systems: Exercises

Solution

2. The required formal proof B1,B2,B3 is as follows

B1 = (A ⇒ (A ∪ B))

Axiom

B2 = (A ⇒ (A ⇒ (A ∪ B)))

Rule (r) application for A = A and B = (A ∪ B)

B3 = (A ⇒ (A ⇒ (A ⇒ (A ∪ B))))

Rule (r) application for A = A and B = (A ⇒ (A ∪ B))

Proof Systems: Exercises

Solution

3. The required formal proof B1,B2 is as follows

B1 = (A ⇒ (B ⇒ A))

Axiom

B2 = (A ⇒ (A ⇒ (B ⇒ A)))

Rule (r) application for A = A and B = (B ⇒ A)

Proof Systems: Exercises

Exercise
Let S be the following proof system

S = (L{⇒,∪,¬}, F , A1, (r1), (r2))

where the logical axiom A1 is A1 = (A ⇒ (A ∪ B))

Rules of inference (r1), (r2) are:

(r1)
A ; B

(A ∪ ¬B)
, (r2)

A ; (A ∪ B)

B

1. Verify whether S is sound/not sound under classical
semantics
2. Find a formal proof of ¬(A ⇒ (A ∪ B)) in S, ie.
show that `S ¬(A ⇒ (A ∪ B))

3. Does `S ¬(A ⇒ (A ∪ B)) prove that
|= ¬(A ⇒ (A ∪ B))?

Proof Systems: Exercises

Solution
1. The system S is not sound
Take any v, such that v∗(A) = T and v∗(B) = F
The premiss (A ∪ B of the rule (r2) is T under v
Its conclusion under v is v∗(B) = F
2. The formal proof of ¬(A ⇒ (A ∪ B)) is as follows
B1: (A ⇒ (A ∪ B))

axiom
B2: (A ⇒ (A ∪ B))

axiom
B3: ((A ⇒ (A ∪ B)) ∪ ¬(A ⇒ (A ∪ B)))

rule (r1) application to B1 and B2

B4: ¬(A ⇒ (A ∪ B))

rule (r2) application to B1 and B3

Proof Systems: Exercises

Solution

3. System S is not sound

In general, the existence of a formal proof in a not sound
proof systems does not guarantee that what was proved is a
tautology

Moreover, the non-sound rule (r2) was used in the proof of
the formula

¬(A ⇒ (A ∪ B))

so we have that
6|= ¬(A ⇒ (A ∪ B))

Proof Systems: Exercises

Exercise

Create your pwn 3 valued extensional semantics M for the
language

L{¬, L, ∪, ⇒}

by defining the connectives ¬, ∪, ⇒ on a set {F ,⊥,T }
of logical values

You must follow the following assumptions a1, a2, a3

a1 The third logical value value is intermediate between
truth and falsity, i.e. the set {F , ⊥, T } of logical values is
ordered as follows

F <⊥< T

a2 The value T is the designated value

Proof Systems: Exercises

a3 The connective L is one argument connective that
reads ”like”, ”likes”

The semantics has to model a situation in which one ”likes”
only the truth, i.e. the logical value T

It means the connective L must be such that

LT = T , L ⊥= F , and LF = F

The connectives ¬, ∪, ⇒ can be defined as you wish, but
you have to define them in such a way to make sure that

|=M (LA ∪ ¬LA)

Proof Systems: Example

Example

Here is an example of a required simple semantics

We define the logical connectives by writing functions defining
connectives in form of the truth tables.

M Semantics

L F ⊥ T
F F T

¬ F ⊥ T
T F F

Proof Systems: Example

M Semantics

∩ F ⊥ T
F F F F
⊥ F ⊥ ⊥

T F ⊥ T

∪ F ⊥ T
F F ⊥ T
⊥ ⊥ T T
T T T T

⇒ F ⊥ T
F T T T
⊥ T ⊥ T
T F F T

We verify by simple evaluation whether the condition s3 is
satisfied, i.e. whether |=M (LA ∪ ¬LA)

Let v : VAR −→ {F ,⊥,T } be any truth assignment

For any formula A, v∗(A) ∈ {F ,⊥,T } and

LF ∪ ¬LF = LF ∪ ¬LF = F ∪ ¬F ∪ T = T

L ⊥ ∪¬L ⊥ = F ∪ ¬F = F ∪ T = T

LT ∪ ¬LT = T ∪ ¬T = F ∪ T = T

Proof Systems: Exercise

Exercise
Let S be the following proof system

S = (L{¬,L,∪,⇒}, F , {A1,A2}, {(r1), (r2)})

where A1 : (LA ∪ ¬LA), A2 : (A ⇒ LA),

(r1)
A ; B

(A ∪ B)
, (r2)

A
L(A ⇒ B)

1. Show, by constructing a proper formal proof that

`S ((Lb ∪ ¬Lb) ∪ L((La ∪ ¬La)⇒ b)))

2. Verify whether the system S is M-sound under the
semantics M developed in the previous Example
3. If the system S is not M-sound then define a new
semantics N would make S sound

