CHAPTER 9

Classical Predicate Logic: Completeness and
Deduction Theorems

There are several quite distinct approaches to the Completeness Theorem, cor-
responding to the ways of thinking about proofs. Within each of the approaches
there are endless variations in exact formulation, corresponding to the choice of
methods we want to use to proof the Completeness Theorem. Different basic
approaches are important, though, for they lead to different applications. We
have presented two of the approaches for the propositional logic: Hilbert style
formalizations (proof systems) in chapter 7?7, and Gentzen style formalizations
(automated proof systems) in chapter ??. We have also presented for each of
the approaches methods of proving the completeness theorem. Two proofs of
completeness theorem for Hilbert style proof system in chapter ?? and a con-
structive proofs for several Gentzen style proof systems in chapter ?7.

There are many proofs of the Completeness Theorem for predicate (first order)
logic. We present here in a great detail, a version of Henkin’s proof as included
in a classic Handbook of Mathematical Logic (1977). It contains a method for re-
ducing certain problems of first-order logic back to problems about propositional
logic. We give independent proof of Compactness Theorem 1 for propositional
logic. Reduction to Propositional Logic Theorem 2, Compactness Theorem 3
for first-order logic, Lowenheim-Skolem Theorem 4 and Godel Completeness
Theorem 7 fall out of the Henkin method.

We choose this particular proof of completeness of first order logic not only for
it being one of the oldest and most classical, but also for its connection with
the propositional logic. Moreover, the proof of the Compactness Theorem 1 is
based on semantical version of syntactical notions and techniques crucial to the
second proof of completeness theorem for propositional logic covered in chapter
7?7 and hence is familiar to the reader.

1 Reduction Predicate Logic to Propositional
Logic
Let £L = L(P,F,C) be a first order language with equality (definition 12). We

assume that the sets P, F', C are infinitely enumerable. We also assume that it
has a full set of propositional connectives, i.e.

‘C = ‘C{—',ﬁ,u,i}(Pv Fa C)



Our goal now is to define a propositional logic within £ = £L(P,F,C). We
do it in a sequence of steps.

First we define a special subset PF of formulas of £, called a set of all propo-
sitional formulas of L.

Intuitively these are formulas of £ which are not direct propositional combina-
tion of simpler formulas, that are atomic formulas or formulas beginning with
quantifiers. Formally, we have the following.

Definition 1 (Prime Formulas)

Any formula from that set P defined by (1) is called a prime formula of L.
P=AFuU{VzB, Be F}u{vVeB: BeF}, (1)

where the set AF is the set of all atomic formulas of L.

The set P C F, called a set of all prime formulas of £ plays in the propositional
logic we define the role

Example 1

The following are primitive formulas.

R(t1,t2), Va(A(z) = —A(), (c=c), Fu(Qz,y) NVyA(y)).
The following are not primitive formulas.

(R(t1,t2) = (c=1¢)), (R(t1,t2) UVz(A(z) = -A(x)).

Given a set P of primitive formulas we define in a standard way the set PF of
propositional formulas of L. as follows.
Definition 2 (Propositional Formulas of £)

Let F,P be sets of all formulas and prime formulas (1) of L, respectively.
The smallest set PF C F such that

(i) P C PF,
(i))If A, B € PF, then (A= B),(AUB),(ANB), and A € PF
1s called a set of all propositional formulas of the predicate language L.

The set P is called atomic propositional formulas of L.

Propositional Semantics for £

We define propositional semantics for propositional formulas in PF as follows.



Definition 3 (Truth assignment)

Let P be a set of atomic propositional formulas of L and {T, F'} be the set
of logical values "true” and false”. Any function

v:P — {T,F}

is called a truth assignment in L.

We extend v to the set PF of all propositional formulas of £ by defining the

mapping
v*: PF —{T,F}

as follows.
v*(A) = v(A) for A € P,

and for any A,B € PF,

v*(A = B) =v*(4) = v*(B),
v*(AU B) = v*(A) Uv*(
v*(AN B) =v*(A) Nov*(
v*(—A) = —v*(A4).

B),
B)

)

Definition 4 (Propositional Model)

A truth assignment v : P — {T,F} is called a propositional model for a
formula A € PF if and only if v*(A)=T.

Definition 5 (Propositional Tautology)

For any formula A € PF,
A € PF is a propositional tautology of £ if and only if
v*(A) =T forallv: P — {T,F}.

For the sake of simplicity we will often say model, tautology instead propositional
model, propositional tautology for L.

Definition 6 (Model for the Set)

Given a set S of propositional formulas. We say that v is a model for the set
S if and only if v is a model for all formulas A € S.

Definition 7 (Consistent Set)

A set S C PF of propositional formulas of L is consistent (in a sense of
propositional logic) if it has a (propositional) model.



Definition 8 (Inconsistent Set)

A set S C PF of propositional formulas of L is inconsistent if it has no model.

Theorem 1 (Compactness Theorem for Propositional Logic of £)

A set S C PF of propositional formulas of L is consistent if and only if every
finite subset of S is consistent.

Proof

Assume that S is a consistent set. By definition 7, it has a model. Tts model is
also a model for all its subsets, including all finite subsets, and so all its finite
subsets are consistent.

To prove the converse implication, i.e. the nontrivial half of the Compactness
Theorem we write it in a slightly modified form. To do so, we introduce the
following definition.

Definition 9 (Finitely Consistent Set (FC))

Any set S such that all its finite subsets are consistent is called finitely consistent.

We use this definition 9 to re-write the Compactness Theorem as follows.

A set S of propositional formulas of L is consistent if and only if it is finitely
consistent.

The nontrivial half of it still to be proved is now stated now as
Every finitely consistent set of propositional formulas of L is consistent.

The proof of the nontrivial half of the Compactness Theorem 1, as stated above,
consists of the following four steps.

S1 We introduce the notion of a maximal finitely consistent set.

S2 We show that every mazimal finitely consistent set is consistent by con-
structing its model.

S3 We show that every finitely consistent set S can be extended to a mazimal
finitely consistent set S*. l.e we show that for every finitely consistent set S
there is a set S*, such that S C S* and S* is maximal finitely consistent.

S4  We use S2 and S3 to justify the following reasoning.

Given a finitely consistent set S. We extend it, via construction to be defined in
the step S3 to a mazimal finitely consistent set S*. By the S2, 5™ is consistent
and hence so is the set S.

This ends the proof of the Compactness Theorem 1.

Here are the details and proofs needed for completion of steps S1 - S4.



Step S1

We introduce the following definition.

Definition 10 (Maximal Finitely Consistent Set (MFC))

Any set S C PF 4s maximal finitely consistent if it is finitely consistent and for
every formula A, either A€ S or -A €S .

We use notation MFC for maximal finitely consistent set, and FC for the
finitely consistent set.

Step S2

We prove the following MFC lemma ?7?7 and the Property 1.

Lemma 1

Any MFC set is consistent.

Proof

Given a MFC set denoted by S*. We prove its consistency by constructing

model for it, i.e. by constructing a truth assignment v : P — {T, F}, such
that for all A € S*, v*(A) =T.

Observe that directly from the definition 10 we have the following property of
the the MFC sets.

Property 1 (MFC)
For any MFC set S* and for every A € PF, exactly one of the formulas A, —A
belongs to S*.

In particular, for any P € PF, we have that exactly one of formulas P, —P
belongs to S*. This justifies the correctness of the following definition.

Definition 11
For any MFC set S*, mappingv: P — {T,F}, such that
T ifPesS*

“(P):{ F ifPgs

is called a truth assignment defined by S*.
We extend v to v* : PF — {T,F} in a usual way.

We prove now that the truth assignment v defined by S* (definition 11) is a
model for S*, we show for any A € PF,

c T ifAeS
”(A)_{F if AgS*



We prove it by induction on the degree of the formula A as follows.

The base case of A € P follows immediately from the definition of v.

Case A=-C  Assume that A € S*. This means -C € S* and by MCF
Property we have that C ¢ S*. So by the inductive assumption v*(C) =
F and v*(A) = v*(=C) = v*(C) = -F =T.

Assume now that A ¢ S*. By MCF Property 7?7 we have that C' € S*.
By the inductive assumption v*(C) = T and v*(A) = v*(=C) = *(T) =
-T =F.

This proves that for any formula A,

. (T if-Aes
U(ﬁA)_{F if ~A ¢ S*

Case A= (BUC) Let (BUC) € S*. It is enough to prove that in this
case B € §* and C € S*, because then from the inductive assumption
v*(C)=v*(D)=T and v*(BUC) =v*(B)Uv*(C)=TUT =T.

Assume that (BUC) € S*, B ¢ S* and C ¢ S*. Then byMCF Prop-

erty 7?7 we have that =B € S*, -C' € S* and consequently the set
{(BUC),~B,~C}

is a finite inconsistent subset of S*, what contradicts the fact that S* is

finitely consistent.

Assume now that (BUC) ¢ S*. By MCF Property ??, -(BUC) € S*
and by the A = =C we have that v*(~(BUC)) =T. But v*(=(BUC)) =
-v*((BUC)) = T means that v*((BUC)) = F, what end the proof of
this case.

The remaining cases of A = (BNC'), A = (B = (') are similar to the above and
are left to the reader as an exercise.

This end the proof of lemma 1 and completes the step S2.
S3: Maximal finitely consistent extension

Given a finitely consistent set .S, we construct its maximal finitely consistent
extension S* as follows.

The set of all formulas of £ is countable, so is PF. We assume that all propo-
sitional formulas form a one-to-one sequence

Ay, Agy oy Ay, (2)



We define a chain
Sy CS5CS,y...CS,C... (3)

of extentions of the set S by

S _f S U{A,} it S, U{A,} is finitely consistent
T S, U{-4,} otherwise.

We take

5" = UneN Sn' (4)

Clearly, S C S* and for every A, either A € S* or —A € §*. To finish the proof
that S* is MCF we have to show that it is finitely consistent.

First, let observe that if all sets S, are finitely consistent, so is S* = |J,,cn Sn-
Namely, let Sp = {Bj, ..., Bx} be a finite subset of S*. This means that there
are sets S;,,...5;, in the chain ( 3) such that B,, € S;, , m = 1,.k. Let
M = max(iy,...ix). Obviously Sgp C Sy and Sy is finitely consistent as an
element of the chain (3). This proves the if all sets S, are finitely consistent, so

is S*.

Now we have to prove only that all S,, in the chain (3) are finitely consistent.
We carry the proof by induction over the length of the chain. Sp =S, so it is
FC by assumption of the Compactness Theorem 1. Assume now that S, is FC,
we prove that so is S,,11. We have two cases to consider.

Case 1 S,11 =S5,U{A,}, then S, ; is FC by the definition of the chain (3).

Case 2 S,41 =5, U{-A4,}. Observe that this can happen only if S,, U {4, }
is not FC, i.e. there is a finite subset S, C S, such that S, U{A4,} is not
consistent.

Suppose now that S,,41 is not FC. This means that there is a finite subset
S, C Sp, such that S,, U{—A,} is not consistent.

Take S, U S,. It is a finite subset of S,, so is consistent by the inductive
assumption. Let v be a model of S, US, . Then one of v*(A4),v*(-A)
must be T. This contradicts the inconsistency of both S, U {4, } and
S U{—AL).

Thus, in ether case, S,11, is after all consistent.

This completes the proof of the step S3 and the proof of the compactness
theorem for propositional logic of £ (theorem 1) via the argument presented
in the step S4.



1.1 Henkin Method for Reduction of Predicate Logic to
Propositional Logic

Propositional tautologies within £, as defined here (definition 5) barely scratch
the surface of the collection of predicate (first -order) tautologies, i.e. of the
predicate wvalid formulas, as they are often called. For example the following
first-order formulas are propositional tautologies,

(FzA(z) U -JzA(x)),
(VxA(z) U —VzA(x)),
(—(FzA(z) UVzA(z)) = (—FzA(z) N~V A(x))),

but the following are predicate (first order) tautologies (valid formulas) that are
not propositional tautologies:

Va(A(z) U—-A(2)),
(=VzA(z) = Jx-A(z)).

The first formula above is just a prime formula, the second is of the form (=B =
(), for B and C prime.

To stress the difference between the propositional and predicate (first order)
tautologies some books reserve the word tautology for the propositional tau-
tologies alone, using the notion of wvalid formula for the predicate (first order)
tautologies. We use here both notions, with the preference to predicate tautology
or tautology for short when there is no room for misunderstanding.

To make sure that there is no misunderstandings we remind the following defi-
nitions from chapter ?77.

Given a first order language £ with the set of variables VAR and the set of
formulas F. Let M = [M,I] be a structure for the language £, with the
universe M and the interpretation I and let s : VAR — M be an assignment
of £ in M. We bring back some basic definitions from Chapter 7?7

A is satisfied in M

Given a structure M = [M, I], we say that a formula A is satisfied in M
if there is an assignment s : VAR — M such that

(M, s) = A.

A is true in M

Given a structure M = [M, I], we say that a formula A is true in M if
(M, s) = A for all assignments s: VAR — M.



Model M
If A is true in a structure M = [M, I], then M is called a model for A.
We denote it as
M A
A is predicate tautology (valid)

A formula A is a predicate tautology (valid) if it is true in all structures
M = [M,I], i.e. if all structures are models of A.

We use use the term predicate tautology and and denote it, when there
is no confusion with propositional case as

= A

Case: A is a sentence

If A is a sentence, then the truth or falsity of (M,s) | A is completely
independent of s. Thus we write

ME A

and read M is a model of A, if for some (hence every) valuation s,

(M, s) = A.

Model of a set of sentences

M is a model of a set S of sentences if and only if M |= A for all A € S.
We write it
MES.

Predicate and Propositional Models

The relationship between the predicate models that are defined in terms of
structures M = [M, I] and assignments s : VAR — M and propositional
models that are defined in terms of truth assignments v : P — {T,F} is
established by the following lemma.

Lemma 2

Let M = [M,I] be a structure for the language L and let s : VAR — M an
assignment in M. There is a truth assignments v : P — {T,F} such that for
all formulas A of L,

(M,s) E A if and only if v*(A)=T.

In particular, for any set S of sentences of L,
if M =S then S is consistent in sense of propositional logic.



Proof For any prime formula A € P we define

U(A):{ T if (M,s) = A

F otherwise.

Since every formula in £ is either prime or is built up from prime formulas by
means of propositional connectives, the conclusion is obvious.

Observe, that the converse of the lemma is far from true. Consider a set

S = {Vz(A(z) = B(x)),VzA(z), Ix—-B(z)}.

All formulas of S are different prime formulas, .S is hence consistent in the sense
of propositional logic and obviously has no predicate (first-order) model.

Definition 12 (Language with Equality)

A predicate language
L=L(P,F,C)

is called a first order (predicate) language with equality if we one it its predicate
symbols is a two argument symbol E € P representing an identity relation.

We write t = s as the abbreviation of E(t,s) for any terms t,s € T and t # s
as the abbreviation of —E(t,s) .

Let L= L~ nu,=}(P,F,C) be a predicate (first order) language with equality.
We adopt a following set of axioms.

Equality Axioms (5)

For any free variable or constant of £, i.e for any u,w, u;, w; € (VARU C),

El wu=u,

E2 (u=w=w=u),

E3  ((u; =usNug =uz) = uy = ug),

E4 ((up=wiN..Nup=wy) = (R(ug,...,un) = R(wy,...,wp))),
E5 ((ur=wiN..Nup=1wy)= (t(ur,.... un) = t(wi,...,wy))),

where R € P and t € T, i.e. R is an arbitrary n-ary relation symbol of £ and
t € T is an arbitrary n-ary term of L.

10



Observe that given any structure M = [M, I]. We have by simple verification
that for all s: VAR — M, and for all A € {E1, E2, E3, E4, E5},

(M, s) = A.

This proves the following

Fact 1

All equality azioms are predicate tautologies (valid) of L.

This is why we still call logic with equality axioms added to it, a logic.

Henkin’s Witnessing Expansion of £

Now we are going to define notions that are fundamental to the Henkin’s tech-
nique for reducing predicate logic to propositional logic. The first one is that of
witnessing expansion of the language L.

We construct an expansion of the language £ by adding a set C' of new constants
to it, i.e. by adding a specially constructed the set C' to the set C such that
CNC = (. The construction of the expansion is described below. The language
such constructed is called witnessing expansion of the language L.

Definition 13
For any predicate language £ = L(P,F,C), the language
L(C)=LP,F,CU())

for the set C defined by (8) and L(C) defined by (9) and the construction de-
scribed below is called a witnessing expansion of L. We write also

L(C)=LUC.

Construction of the witnessing expansion of £

We define the set C of new constants by constructing an infinite sequence
Co,C1,y...,Cp,\ . (6)
of sets of constants together with an infinite sequence

Loy L1, Ly . (7
We define sequences (6), (7) as follows. Let
Co=0, Lo=LUCyH=L.

11



We denote by
Alz]

the fact that the formula A has exactly one free variable and for each such a
formula we introduce a distinct new constant denoted by

CAM.

We define
C, = {CA[w] : A[.’E} S [:0}, L1 =LUC.

Assume that we have defined C,, and L£,,. We assign distinct new constant
symbol c4[,] to each formula Alx] of L,, which is not already a formula of £,,_1
(i.e., if some constant from C,, appears in Afz]). We write it informally as
Alz] € (L — Lyp—1). We define Cp, 11 = C,, U{cap @ Alr] € (L, —Ly—1)} and
£n+1 =LU Cn+1- ‘We put

c=Jcn (8)
and
L(C)=LUC. 9)
Definition 14 (Henkin Axioms)
The following sentences
H1 (3zA(x) = Alcap)),
H2  (A(c-a@) = Ve A(z))

are called Henkin axioms and for any formula A, a constant cyp,) € C as
defined by (8) called o witnessing constant.

The informal idea behind the Henkin axioms is the following.

The axiom H1 says:
If 3xA(x) is true in a structure, choose an element a satisfying A(z) and give
it a new name Calg)-

The axiom H2 says:

IfVa A(x) is false, choose a counterexample b and call it by a new name c- af).
Definition 15 (QuantifiersAxioms)

The following sentences

Q1  (VzA(z) = A(t)), t is a closed term of L(C);

Q2 (A(t) = JxA(x)), t is a closed term of L(C)

are called quantifiers axioms.

12



Observe that the quantifiers axioms Q1, Q2 obviously are predicate tautologies.

Definition 16 (Henkin Set)

Any set of sentences of L(C) which are either Henkin axioms (definition 14)
or quantifiers axzioms (definition 15) is called the Henkin set and denoted by

SHenkin .

The Henkin is obviously not true in every £(C)-structure, but we are going to
show that every L -structure can be turned into an £(C)-structure which is a
model of Syenkin. Before we do so we need to introduce two new notions.

Reduct and Expansion

Given two languages £ and £ such that £ C £'. Let M" = [M,I'] be a
structure for £ . The structure

M=[MI | L]

is called the reduct of M’ to the language £ and M is called the ezpansion
of M to the language L .

Thus the reduct and the expansion M  and M are the same except that M’
assigns meanings to the symbols in £ — L .

Lemma 3

Let M = [M,I] be any structure for the language L and let L(C) be the wit-
nessing expansion of L. There is an expansion M = [M,I] of M = [M,I]
such that M is a model of the set SHenkin

Proof In order to define the expansion of M to M’ we have to define the
interpretation I' for the symbols of the language £(C) = £ U C, such that
I' | £ = 1. This means that we have to define ¢, for all ¢ € C. By the
definition, ¢;» € M, so this also means that we have to assign the elements of
M to all constants ¢ € C' in such a way that the resulting expansion is a model
for all sentences from Sgenkin-

The quantifier axioms (definition 15) are predicate tautologies so they are going
to be true regardless, so we have to worry only about the Henkin axioms (def-
inition 14). Observe now that if the lemma 3 holds for the Henkin axiom H1,
then it must hold for the axiom H2. Namely, let’s consider the axiom H2:

(A(coa)) = Yo A(T)).

Assume that A(c-4[;]) is true in the expansion M’ ie. that M | A(c-AL])
and that M’ }£ V2 A(z). This means that M’ = =VaA(z) and by the de Morgan

13



Laws, M = 3z-A(z). But we have assumed that M’ is a model for H1. In
particular M’ = (Jz—A(z) = —A(c-alz])), and hence M = —A(c- ) and
this contradicts the assumption that M’ = A(c- ). Thus if M’ is a model
for all axioms of the type H1, it is also a model for all axioms of the type H2.

We define ¢,/ for all ¢ € C' = |J €, by induction on n. Let n = 1 and ca(,) € C1.
By definition, C1 = {ca[s) : A[z] € L}. In this case we have that 3z A(z) € £ and
hence the notion M |= JzA(x) is well defined, as M = [M, I] is the structure
for the language L.

As we consider arbitrary structure M, there are two possibilities: M = JzA(x)

or M B JxA(x).
We define ¢/, for all ¢ € Cy as follows.

If M = 3zA(x), then (M,v') = A(z) for certain v'(z) = a € M. We set
(cap)))p = a. If M £ JzA(x), we set (cafy))), arbitrarily.

This makes all the positive Henkin axioms about the cq[,) € C1 true, i.e. M =
(M,I) = (3zA(r) = A(cafz)). But once cyp, € Cy are all interpreted in M,
then the notion M’ E A is defined for all formulas A € LU Cy. We carry the
same argument and define ¢/, for all ¢ € Cy and so on. The inductive step in
the exactly the same way as the one above.

Definition 17 (Canonical structure )

Given a structure M = [M, I] for the language L. The expansion M = [M, I/]
of M = [M, 1] is called a canonical structure for £(C) if all a € M are
denoted by some ¢ € C. That is,

M=A{cy: ceC}.

Now we are ready to state and proof a lemma 2 that provides the essential step
in the proof of the completeness theorem for predicate logic.
Theorem 2 (The reduction to propositional logic)

Let £L = L(P,F,C) be a predicate language and let L(C) = L(P,F,CUC) be a
witnessing expansion of L.

For any set S of sentences of L the following conditions are equivalent.

(i) S has a model, i.e. there is a structure M = [M,I] for the language L
such that M |= A for all A€ S.

(ii) There is a canonical L(C) structure M = [M,I| which is a model for
S, i.e. such that M |= A for all A€ S.

(iii)  The set S U Sgenkin U EQ is consistent in sense of propositional logic,
where EQ denotes the equality azioms E1 — Eb.

14



Proof The implication (i¢) — (i) is immediate. The implication (i) — (7i)
follows from lemma 3. We have to prove only the implication (i) — (7).

Assume that the set S U Sgenkin U EQ is consistent in sense of propositional
logic and let v be a truth assignment to the prime sentences of £(C), such that
v*(A) =T for all A € SU SHenkin U EQ. To prove the lemma, we construct a
canonical £(C) structure M = [M, I] such that, for all sentences A of L(C),

M A if and only if v*(A)=T. (10)

The truth assignment v is a propositional model for the set Sgenkin, SO v*
satisfies the following conditions:

v*(3rA(z)) =T if and only if v*(A(capy)) =T, (11)
v*(VzA(z)) =T if and only if v*(A(¢)) =T, (12)
for all closed terms t of L£(C).

The conditions (11) and (12) allow us to construct the canonical £(C) model
M = [M,I] out of the constants in C' in the following way.

To define M = [M, I] we must (1.) specify the universe M of M, (2.) define,
for each n-ary predicate symbol R € P, the interpretation R; as an n-argument
relation in M, (3.) define, for each n-ary function symbol f € F, the interpre-
tation fr: M™ — M, and (4.) define, for each constant symbol ¢ of L(C), i.e.
ce CUC, an element ¢y € M.

The construction of M = [M, I] must be such that the condition (10) holds for
for all sentences A of £(C'). This condition (10) tells us how to construct the
definitions (1.) - (4.) above. Here are the definitions.

(1.) Definition of the universe M of M.
In order to define the universe M we first define a relation =~ on C by
c~d if and only if v(c=4d))=T. (13)

The equality axioms axioms guarantee that the relation (13) is equivalence rela-
tion on C| i.e. is reflexive, symmetric, and transitive. All axioms are predicate
tautologies, so v(c = d)) = T by axiom E1 and ¢ = ¢ holds for any ¢ € C.

Symmetry condition ” if ¢ /& d, then d = ¢ ” holds by axiom E2. Assume ¢ = d,
by definition v(c = d)) = T. By axiom E2

v'((c=d=d=c¢)=v(c=d)=v(d=c)=T,

i.e. T = v(d =c¢) =T. This is possible only if v(d = ¢) = T. This proves that
d=c.

15



We prove transitivity in a similar way. Assume now that ¢ ~ d and d ~ e. We
check to see that ¢ =~ e. By the axiom E3 we have that

v"((c=dnd=e)=c=¢))=T.
Since v(c=d)) =T and v(d=¢€)) =T by c~ d and d = ¢,
v'(lc=dnd=e)=c=¢e)=TNT=c=e)=(T=c=¢)=T,

we get that v(c = e) =T and hence d = e.
We denote by [c] the equivalence class of ¢ and we define the universe M of M
as

M={[]: ceC}. (14)

(2.) Definition of Ry C M™.

Let M be given by (14). We define
([e1)s [e2]s ---y[en]) € Ry if and only if w(R(c1,c2, ... cn)) =T. (15)

We have to prove now that Ry is well defined by the condition (15). To do so
we must check

if [e1] = [da], [ea] = [da], ..., [en] = [dn] and ([er], [ea], ..., [en]) € Ri,
then  ([di],[d2], ...,[dn]) € Ry.
We have by the axiom E4 that
v (((cr =diN..Nep =dy) = (Rler,y ooy ) = R(dy,...,dyn)))) =T, (16)
By the assumption [c¢;] = [di], ...,[cn] = [dn] we have that v(e; = dy) =
T,...,v(c, =d,) =T. By the assumption ([c1],[ec2], -..,[cn]) € Ry, we have
that v(R(cq, ..., ¢,)) = T. Hence the condition (16) becomes
(T = (T = v(R(dq,...,dp)))) =T.
It holds only when v(R(dy,...,dy)) =T and by (15) we proved that

([d1]7 [dQ]v EEER [dn]) € Ry.

(3.) Definition of f;: M™ — M.

Let ¢1, ¢co, ..., ¢, € C and f € F. We claim that there is ¢ € C such that

fler, ey oovy cp) =cand v(f(cy, co, ..., cn) =¢)=T.

For consider the formula A(z) given by f(c1, ca, ..., ¢,) =z. If v*(FzA(x)) =

v*(f(c1, c2, ..., cn) =) =T, we want to prove v*(A(ca)) =T, i.e.
v(f(cl, Coy « ..y Cn) = CA) =T.
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So suppose that v(f(c1, ¢2, ..., ¢,) = ca) = F. But one member of he Henkin

set SHenkin (definition 16) is the sentence (A(f(c1, c2y ..., ¢n)) = JxA(x)) so
we must have that v*(A(f(c1, ¢2, ..., ¢n))) = F. But this says that v assigns
F to the atomic sentence f(c1, ca, ..., ¢n) = f(c1, c2, ..., ), i.e. By the

axiom E1 v(¢; =¢;) =T for i = 1,2...n and by E5

Wea=an... cho=cp)=0"(fler, ..., cn) = flcr,...,cn))) =T.
This means that T'=- F = T and this contradiction proves there is ¢ € C' such
that f(e1, e, ..., ¢n) = cand v(f(e1, cay ..., ¢n) =c¢) =T. We can hence
define

fr(([e1]s - -+, [en)) = [¢] for ¢ such that v(f(cq,..., ¢n) =c)=T. (17)

The argument similar to the one used in (2.) proves that fr is well defined.

(4.) Definition of ¢; € M.

For any ¢ € C we take ¢; = [¢]. If d € C, then an argument similar to that used
on (3.) shows that there is ¢ € C' such that v(d =¢) =T, i.e. d = ¢, so we put
d[ = [C]

This completes the construction of the canonical structure M = [M, I] and guar-
antees that (10) holds for for all atomic propositional sentences (definition
2), i.e. we proved that

M E B if and only if v*(B) =T, for sentences B € P.

To complete the proof of the Lemma 2 we prove that the property (10) holds for
the canonical structure M = [M, I] defined above and all other sentences. We
carry the proof by induction on length of formulas. The case of propositional
connectives is trivial. For example, M E (AN B) if and only if M E A
and M = B) ( follows directly from the satisfaction definition) if and only
if v*(A) = T and v*(B) = T (by the induction hypothesis) if and only if
v*(AN B) =T. We proved

M E (AN B) if and only if v*(ANB) =T,

for all sentences A, B of L(C'). The proof for all other connectives is similar.

We prove now the case of a sentence B of the form 3z A(z), i.e. we want to show
that

M E FzA(x) if and only if v*(FzA(z)) =T. (18)
v*(JxA(x)) = T. Then there is a ¢ such that v*(A(c) = T, so by induction
hypothesis, M = A(c) so M = JxA(x).
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On the other hand, if v*(JxA(x)) = F, then by Sgenking quantifier axiom Q2
(definition 15) we have that v*(A(t)) = F for all closed terms t of £(C). In
particular, for every ¢ € C v*(A(c)) = F. By induction hypothesis, M
—A(c), for all ¢ € C. Since every element of M is denoted by some ¢ € C,
M = =3z A(z). Thus we proved (18).

The proof of the case of a sentence B of the form VzA(z) is similar and is left
to the reader.

The Reduction to Propositional Logic Theorem 2 provides not only a method
of constructing models of theories out of symbols, but also gives us immediate
proofs of the Compactness Theorem 3 for the predicate logic and Lowenheim-
Skolem Theorem 4.

Theorem 3 (Compactness theorem for the predicate logic)

Let S be an y set of predicate formulas of L.
The set S has a model if and only if any finite subset Sy of S has a model.

Proof

Let S be a set of predicate formulas such that every finite subset Sy of S has
a model. We need to show that S has a model. By the implication (iii) —
(7) of the Theorem 2 this is equivalent to proving that S U Sgenkin U EQ is
consistent in the sense of propositional logic. By the Compactness Theorem 1 for
propositional logic of L, it suffices to prove that for every finite subset Sy C .5,
So U Spgenkin U EQ is consistent, which follows from the hypothesis and the
implication (i) — (4é4) of the Reduction to Propositional Logic Theorem 2.

Theorem 4 (Léwenheim-Skolem Theorem)

Let k be an infinite cardinal and let T' be a set of at most k formulas of the first
order language.

If the set S has a model, then there is a model M = [M,I] of S such that
cardM < k.

Proof Let L be a predicate language with the alphabet A such that card(A) <
k. Obviously, card(F) < k. By the definition of the witnessing expansion £(C')
of £, C =J,,Cy and for each n, card(C,) < k. So also cardC < k. Thus any
canonical structure for £(C) has < k elements. By the implication (i) — (i) of
the Reduction to Propositional Logic Lemma 2 there is a model of S (canonical
structure) with < x elements.
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2 Proof of the Completeness Theorem for Clas-
sical Predicate Logic

The proof of Goédel’s completeness theorem given by Kurt Gdel in his doctoral
dissertation of 1929 (and a rewritten version of the dissertation, published as an
article in 1930) is not easy to read today; it uses concepts and formalism that are
no longer used and terminology that is often obscure. The version given below
attempts to represent all the steps in the proof and all the important ideas
faithfully, while restating the proof in the modern language of mathematical
logic. This outline should not be considered a rigorous proof of the theorem.

It was first proved by Kurt Godel in 1929. It was then simplified in 1947, when
Leon Henkin observed in his Ph.D. thesis that the hard part of the proof can be
presented as the Model Existence Theorem (published in 1949). Henkin’s proof
was simplified by Gisbert Hasenjaeger in 1953. Other now classical proofs has
been published by Rasiowa and Sikorski (1951 1952) using Boolean algebraic
methods and by by Beth (1953), using topological methods. Still other proofs
may be found in Hintikka(1955) and in Beth(1959).

Hilbert-style Proof System H

Language £

The language £ of the proof system H is a predicate (first order) language
with equality (definition 12). We assume that the sets P, F, C are infinitely
enumerable. We also assume that it has a full set of propositional connectives,
ie.

;C - E{ﬂ)ﬁ’u’ﬁ}(P,F,C). (19)

Logical Axioms LA

The set LA of logical axioms consists of three groups of axioms: propositional
axioms PA, equality axioms FA, and quantifiers axioms QA. we write it sym-
bolically as

LA={PA, EA, QA}.

For the set PA of propositional axioms we choose any complete set of axioms
for propositional logic with a full set {—,N,N, =} of propositional connectives.

In some formalizations, including the one in the Handbook of Mathematical
Logic, Barwise, ed. (1977) we base our system H on, the authors just say for this
group of axioms: ”all tautologies”. They of course mean all predicate formulas
of £ that are substitutions of propositional tautologies. This is done for the
need of being able to use freely these predicate substitutions of propositional
tautologies in the proof of completeness theorem for the proof system they
formalize this way.
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In this case these tautologies are listed as axioms of the system and hence are
provable in it. This is a convenient approach, but also the one that makes such
a proof system not to be finately axiomatizable.

We avoid the infinite axiomatization by choosing a proper finite set of pred-
icate language version of propositional axioms that is known (proved already
for propositional case) to be complete, i.e. the one in which all propositional
tautologies are provable.

We choose, for name H (Hilbert) and historical sake, the set of Hilbert (1928)
axioms from chapter ?7.

.For the set EA of equational axioms we choose the same set (5) as in section 1.1
because they were used in the proof of Reduction to Propositional Logic Theo-
rem 2 and we want to be able to carry this proof within the system H.

For the set QA of quantifiers axioms we choose the axioms such that the Henkin
set SHenkin axioms Q1, Q2 are their particular cases, so again a proof of the
Reduction to Propositional Logic Theorem 2 can be carried within H.

Rules of inference R

There are three inference rules: Modus Ponens (M P) and two quantifiers rules
(G),(G1),(G2), called Generalization Rules.

We define the proof system H as follows.
H= (L nu=1(P,F,C), F, LA, R={(MP), (G),(G1), (G2)}), (20)
where

L =L nu=}P,F,C)is predicate (first order) language with equality (defi-
nition 12). We assume that the sets P, F, C are infinitely enumerable.

F is the set of all well formed formulas of L.
LA is the set of logical axioms and
LA={PA,FAQA} (21)
for PA, FA, QA defined as follows.
PA is the set of propositional axioms (Hilbert, 1928)
Al (A= A),
A2 (A= (B=A)),
A3 (A=B)=(B=0C)=(A=10)),
A4 (A= (A= B))= (A= B)),
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A5 (A= (B=0C))=(B=(A=0))),
A6 (A=B)=(B=0)=(A=0)),
A7 ((ANnB)= A),
(
(

A8 ((AnB)= B),

A9 (A=B)=(A=0C)= (A= (BnQ))),
A10 (A= (AUB)),

All (B= (AUB)),

Al2 (A=0)=(B=0C)=((AUuB)=20))),
A13 ((A= B) = ((A= -B) = -A)),

Al4 (mA= (A= B)),

Al5 (AU-A),

for any A, B,C € F.

E'A is the set of equality axioms.

El u=u,

E2 (u=w=w=u),

E3  ((u1 =u2Nug =ugz) = u1 = ug),

E4 ((wp=wiN..Nuy =wy) = (R(ug, ..., ) = R(wy, ..., wy))),
E5  ((ur=wiN.Nuy =wy) = (E(u, ..., ty) = t(wr, ..., wn))),

for any free variable or constant of £, R € P, and t € T, where R is an arbitrary
n-ary relation symbol of £ and ¢t € T is an arbitrary n-ary term of L.

QA is the set of quantifiers axioms.
Ql  (VzA(x) = A(})),
Q2 (A(t) = JzA(x)),

where where t is a term, A(t) is a result of substitution of t for all free occur-
rences of x in A(x), and t is free for x in A(x), i.e. no occurrence of a variable
in t becomes a bound occurrence in A(t).

R is the set of rules of inference,
R ={(MP), (G), (G1), (G2)},

where
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(MP) is Modus Ponens rule

for any formulas A, B € F.

(@), (G1), (G2) are the following quantifiers generalization rules.

A
@) o1
where A € F. In particular we write
@) A(x)
VrA(z)
for A(z) € F and x € VAR.
(B = A(z))

(1) (B = VzA(z))’

where A(z),B € F, z € VAR, and B is such that x is not free in B.

(A(z) = B)
(3zA(z) = B)’

where A(z),B € F , x € VAR, and B is such that x is not free in B.

(G2)

We define, as we do for any proof system, a notion of a proof of a formula A
from a set S of formulas in H as a finite sequence of formulas By, Bs, ... By,
with B,, = A, each of which is either a logical axiom of H, a member of S, or
else follows from earlier formulas in the sequence by one of the inference rules
from R. We write it formally as follows.

Definition 18 (Proof from T")

Let T' C F be any set of formulas of L. A proof in H of a formula A € F from
s set I' of formulas is a sequence

By,Bs, ... B,

of formulas, such that
By € LAUT, B,=A

and for each i, 1 < i <mn, either B; € LAUT or B; is a conclusion of some of
the preceding expressions in the sequence By, Bo, ... B, by virtue of one of the
rules of inference from R.
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We write
'ty A

to denote that the formula A has a proof from T in H and
r + A

when the proof system H is fized.

The case when I' = () is a special one. By the definition 18, ) iy A means that
in the proof of A only logical axioms LA are used. We hence write

Fa A
to denote that a formula A has a proof in H.

As we work with a fixed (and only one) proof system, we use the notation
' A and F A

to denote the proof of a formula A from a set I and proof of a formula A in H,
respectively.

Any proof of the completeness theorem for a given proof system consists always
of two parts. First we have show that all formulas that have a proof in the system
are tautologies. This implication is called a soundness theorem, or soundness
part of the completeness theorem.

The second implication says: if a formula is a tautology then it has a proof in
the proof system. This alone is sometimes called a completeness theorem (on
assumption that the system is sound). Traditionally it is called a completeness
part of the completeness theorem.

We know that all axioms of H are predicate tautologies (proved in chapter 7?7
and all rules of inference from R are sound as the corresponding formulas were
also proved in chapter 7?7 to be predicate tautologies and so the system H is
sound, i.e. the following holds for H.

Theorem 5 (Soundness Theorem)
For every formula A € F of the language L of the proof system H,
if A, then £ A
The soundness theorem proves that the proofs in the system ”produce” only

tautologies. We show here, as the next step that our proof system H ”produces”
not only tautologies, but that all tautologies are provable in it.

This is called a completeness theorem for classical predicate (first order logic,
as it all is proven with respect to classical semantics. This is why it is called a
completeness of predicate logic theorem.

The goal is now to prove the completeness part of the following.
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Theorem 6 (Gddel Completeness of Predicate Logic)

For any formula A of the language L of the system H,
A is provable in H if and only if A is a predicate tautology (valid).
We write it symbolically as

FA ifand only if E A. (22)

We are going to prove the Godel’ s Theorem 6 as a particular case of Theorem 7
that follows. It is its more general, and more modern version. This version, as
well as the method of proving it, was first introduced by Henkin in 1947. It
became with its consequent improvements, as classical as the Godel’s own. It
uses the notion of a logical implication, and some other notions. We introduce
them below.

Definition 19 (Sentence, Closure)

Any formula of L without free variables is called a sentence.
For any formula A(z1,...x,), a sentence

VaiVag .. Ve, A(z,...2,)

is called a closure of A(xy,...x,).
Directly from the definition 19 have that the following hold.
Fact 2 For any formula A(x1,...x,),
E A(xy,...x,) if and only if |EVaxiVes.. Vo, A(zy,...2,).

Definition 20 (Logical Implication)

For any set I' C F of formulas of L and any A € F, we say that the set T
logically implies the formula A and write it as T' = A if and only if all
models of I' are models of A.

Observe, that in order to prove that I' = B we have to show that the implication
if MET then M EB

holds for all structures M = [U, I] for L.

Lemma 4 LetT be a set of sentences of L, for any formula A(x,...x,) that
1s mot a sentence,

' A(zq,...2n) if and only if T =VaiVas.. Vo, A(z,...2,).
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Proof

Let By, Ba, ... By, be a proof of A(z1,...x,) from I" and let M be a model of T.
We use Fact 2 and prove by induction on n, that M |E Va1V ... Vo, By(z1, ... 2n),
and hence M =V 1Vasy .. . Va, A(z1,...2,). The converse implication is obvi-
ous.

Fact 2 and Lemma 4 show that we need to consider only sentences (closed
formulas) of £, since a formula of F is a tautology if and only if its closure is
a tautology and is provable from I if and only if its closure is provable from T'.
This justifies the following generalization of the original Godel’ s completeness
of predicate logic Theorem 6.

Theorem 7 (G6del Completeness Theorem)

Let T be any set of sentences and A any sentence of a language L of Hilbert
proof system H.

A sentence A is provable from T' in H if and only if the set I' logically
implies A.

We write it in symbols,

A ifand onlyif T E A. (23)

Remark

We want to remind the readers that the Reduction Predicate Logic to Propo-
sitional Logic Section 1 is an integral and the first part of the proof the Godel
Completeness Theorem 7. We presented it separately for two reasons.

R1. The reduction method and theorems and their proofs are purely semantical
in their nature and hence are independent of the proof system H.

R2. Because of R1. the reduction method can be used/adapted to a proof of
completeness theorem of any other proof system one needs to prove the classical
completeness theorem for. See section 77.

In order to prove it we must formulate it properly so we need to introduce
few new important and classical notion and prove some lemmas needed for the
proof. The first is the notion of consistency.

There are two definitions of consistency; semantical and syntactical. The
semantical one uses definition the notion of a model and says, in plain English:
a set of formulas is consistent if it has a model.

The syntactical one uses the notion of provability and says: a set of formulas
is consistent if one can’t prove a contradiction from it.

We have used, in the Proof Two of the Completeness Theorem for propositional
logic (chapter ??) the syntactical definition of consistency. We use here the
following semantical definition.
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Definition 21 (Consistent/Inconsistent)

A set T' C F of formulas of L is consistent if and only if it has a model,
otherwise, it is inconsistent.

Directly from the above definitions we have the following.

Lemma 5
For any set ' C F of formulas of L and any A € F,
if T = A, then the set ' U{—-A} isinconsistent.

Proof

AssumeI' = A and I'U{—A} is consistent. By definition 21 there is a structure
M = [U,I], such that M =T and M = -4, i.e. M & A. This is a contradic-
tion with I = A.

Now we are going to prove the following Lemma 6 that is crucial, together with
the Reduction to Propositional Logic Theorem 2 and the above Lemma 5 to the
proof of the Completeness Theorem 7.

Lemma 6

Let T be any set of sentences of a language L of Hilbert proof system H.
The following conditions hold For any formulas A, B € F of L.

()If T - (A= B) and T + (~A= B), then T + B.

(i) If T + (A= C)= B), then T + (mA= B) andT + (C = B).

(iii) If = does not appear in B and if T + ((3yA(y) = A(z)) = B), thenT + B.
(iv) If x does not appear in B and if T'F ((A(x) = VyA(y)) = B), thenT + B.

Proof

(i) Notice that the formula ((A = B) = ((-A = B) = B)) is a substitution
of a propositional tautology, hence by definition of H, is provable in it. By
monotonicity,

' (A= B)= ((mA= B)= B)).
By assuption I' - (A = B) and Modus Ponens we get
' (A= B)= B).
By assuption ST+ (-A = B) and Modus Ponens we get I' - B.

(ii) The formulas (1) (((A = B) = (mA = B))) and (2) (((A = B) =
B) = (C = B)) are substitution of a propositional tautologies, hence are
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provable in H. Assume I' F ((A = C) = B). By monotonicity and (1) we get
'k (-A = B) and by (2) we get - (C = B).

(iii) Assume T' F ((FyA(y) = A(z)) = B). Observe that it is a particular case
of assumption I' - ((A = C) = B) in (ii), for A = JyA(y), C = A(x),B = B.
Hence by (ii) we have that I' - (-3yA(y) = B) and I' F (A(z) = B).

Apply Generalization Rule G2 to I' F (A(z) = B) and we have I' - (FyA(y) =
B.) Then by (i) applied to I' F (3yA(y) = B) and I' - (=3yA(y) = B) we get
'+ B.

The proof of (iv) is similar to (iii), but uses the Generalization Rule G1.This
ends the proof of the lemma.

Now we are ready to conduct the proof of the Completeness Theorem for H.
There are two versions. Theorem 7 that is Godel original formulation and the
one we used in previous chapters of the book. It follows from theorem ??7). We
put them both together as follows.

Theorem 8 (H Completeness)

Let T be any set of sentences and A any sentence of a language L of Hilbert
proof system H.

A ifand onlyif T E A. (24)

In particular, for any formula A of L,

FA ifand only if E A. (25)

Proof
We first prove the completeness part (24), i.e. we prove the implication

if T = A, then T'F A. (26)

Suppose that T' = A, i.e. we assume that all £ models of I are models of A.
By Lemma 5 the set I' U {—A} is inconsistent.

Let M = T. We construct, as a next step, a witnessing expansion language
L(C) of L (definition 13). By the Reduction to Propositional Logic Theorem 2,
the set I' U Sgenkin U EQ is consistent in a sense of propositional logic in L.
The set SHenkin is @ Henkin Set (definition 16) and EQ are equality axioms (5)
that are also the equality axioms EQ of H.

By the Compactness Theorem 1 for propositional logic of £ there is a finite
set Sp C T'U Sgenkin U EQ such that Sy U {—A} is inconsistent in the sense of
propositional logic.

We list all elements of Sy in a sequence

A17 A27"'7ATL7 Bla BQ)"'aBm (27)
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as follows. The sequence A;, As,...,A, consists of those elements of Sy
which are either in I'U EQ or else are quantifiers axioms (definition 15) that are
particular cases of the quantifiers axioms QA of H. We list them in any order.

The sequence Bj, Bs,...,B,, consists of elements of Sy which are Henkin
Axioms (definition 14) but listed carefully as to be described as follows. Observe
that by definition 13,

E(C):UnGN Ln, for Eiﬁogﬁlg

We define the rank of A € L(C) to be the least n, such that A € £,,.

Now we choose for By a Henkin Axiom in Sy of the mazimum rank.
We choose for B; a Henkin Axiom in Sy — {B} of the mazimum rank.
We choose for By a Henkin Axiom in Sy — {Bj, B2} of the mazimum rank, etc.
The point of choosing the formulas B;’s in this way is to make sure that the wit-
nessing constant about which B, speaks, does not appear in B; 1, Bito, ..., Bpn.
For example, if By is

(F2C(x) = Clecp)),

then C[z] does not appear in any of the other Bs, ..., B,,, by the maximality
condition on Bj.

We know that that Sy U{—A} is inconsistent in the sense of propositional logic,
i.e. it does not have a (propositional) model. This means that v*(—A) # T for
all v and so v*(A) =T for all v. Hence a sentence

(A1 = (A= ... (A4, = (B1=...(Byn = A4)).)

is a propositional tautology.
We now replace each witnessing constant in this sentence by a distinct new
variable and write the result as

(A= (A = ...(A) = (Bi' = ...(By = A))..)

. We have A" = A since A has no witnessing constant in it. The result is still a
tautology and hence is provable in H from propositional axioms PA and Modus
Ponens. By monotonicity

Sob (A = (A" = ... (A = (B = ... (B, = A))..). (28)

Each of A1’ Ay',..., A, is either a quantifiers axiom from QA of H or else in
So, S0
S()'_Ai/ for all ISZSTL

We apply Modus Ponens to the above and (28) n times and get
So (Bl = (B = ... (B = A))..). (29)
For example, if By’ is (3zC(z) = C(z)), we have by (29)
So F ((FzC(z) = C(z)) = B). (30)
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for B = (By = ...(B,' = A))..). By the Reduction to Propositional Logic
Theorem 2 part (iii), we get Sy F B, i.e.

So b (Bs' = ... (Bn' = A))..). (31)
If, for example, By is (D(x) = Vo D(x)), we have by (30)
So F ((F2C(z) = C(z)) = D). (32)

for D = (By' = ...(Bn' = A))..). By the Reduction to Propositional Logic
Theorem 2 part (iv), we get So - D, i.e.

. We hence apply parts (iii) ad (iv) of Theorem 2 to successively remove all
By, ..., B, and obtain the proof of A from Sy.

This ends the proof that I' - A and hence the proof of the completeness part
of (24).

The soundness part of of (24), i.e. the implication

if TH A, then T | A,
holds for any sentence A of £ directly by Fact 2, Lemma 4, and Theorem 5.
The Theorem 6, as expressed by (25) follows from Fact 2, Lemma 4 as a case of

(24) for T' = 0.

This ends the proof of Theorem 8 as well as Theorem 7, and the proof of the
original Godel Completeness of Predicate Logic Theorem 6.

2.1 Deduction Theorem

In mathematical arguments, one often assumes a statement A on the assumption
(hypothesis) of some other statement B and then concludes that we have proved
the implication ”if A, then B”. This reasoning is justified by the following
theorem, called a Deduction Theorem. It was first formulated and proved for a
certain Hilbert proof system S for the classical propositional logic by Herbrand
in 1930 in a form stated below.

Theorem 9 (Deduction Theorem) (Herbrand,1930)

For any formulas A, B of the language of a propositional proof system S,

if Abg B, then Fg (A= B).
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In chapter ?? we formulated and proved the following, more general version
of the Herbrand Theorem 10 for a very simple (two logical axioms and Modus
Ponens) propositional proof system H1.

Theorem 10 (Deduction Theorem)
For any subset I' of the set of formulas F of Hy and for any formulas A, B € F,

I', Abg, B if and only if T Fg, (A= B).

In particular,
AFmB if and only if Fg, (A= B).

A natural question arises: does deduction theorem holds for the predicate logic
in general and for its proof system H we defined here?.

The Theorem 10 cannot be carried directly to the predicate logic, but it never-
theless holds with some modifications. Here is where the problem lays.

Fact 3 Given the proof system (20), i.e.

H=(L(P,F,C), F, LA, R={(MP), (G),(G1), (G2)}).

For any formula A(x) € F,

A(x) FVxA(x), but it is not always the case that - (A(z) = VYxA(x)).

Proof

Obviously, A(z) F VzA(z) by Generalization rule (G). Let now A(z) be an
atomic formula P(z). By the Completeness Theorem 6, - (P(z) = VzP(x))
if and only if = (P(z) = VzP(x)). Consider a structure M = [M, I], where
M contains at least two elements ¢ and d. We define Pr C M as a property
that holds only for ¢, i.e. Pr = {c}. Take any assignment of £ in M, i.e.
s: VAR — M. Then (M, s) = P(z) only when s(x) = c for all z € VAR.
M = [M,I] is a counter model for (P(x) = VaP(x)), as we found s such
(M, s) E P(z) and obviously (M, s) & VaP(x). This proves that Deduction
Theorem fails for A(z) being an atomic formula P(x).

The Fact 3 shows that the problem is with application of the generalization rule
(G) to the formula A € T. To handle this we introduce, after Mendelson(1987)
the following notion.

Definition 22
Let A be one of formulas in I' and let

Bi, B, ..., B, (34)

a deduction (proof of By, from T, together with justification at each step.
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We say that the formula B; depends upon A in the proof (34)

if and only if

(1) B; is A and the justification for B; is B; € T

or

(2) B; is justified as direct consequence by MP or (G) of some preceding formu-
las in the sequence (34), where at least one of these preceding formulas depends
upon A.

Here is a deduction

By,Bs,...,Bs (35)
showing that
A, VzA=C).
By A, Hyp
By VzA, By, (G)
B; (VzA=C), Hyp
By C, MP on Bs, B3
B; V(. (@)

Observe that the formulas A, C' may, or may not have x as a free variable.

Example 2

In the derivation (35)

B depends upon A,

By depends upon A,

B3 depends upon (VxA = C),

By depends upon A and (VxA = C),
Bs depends upon A and (VzA = C).

Lemma 7

If B does not depend upon A in a deduction showing that T', A+ B, then
'+ B.

Proof

Let By, Bs,...,B, = B be a deduction of B from I', A in which B does not
depend upon A. we prove by Induction that I'  B. Assume that Lemma 7
holds for all deductions of the length less than n. If B € I' or B € LA, then
I' = B. If B is a direct consequence of two preceding formulas, then, since B
does not depend upon A | neither do theses preceding formulas. By inductive
hypothesis, theses preceding formulas have a proof from I' alone. Hence so does
B.

Now we are ready to formulate and prove the Deduction Theorem 11 for predi-
cate logic.
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Theorem 11 (Deduction Theorem)
For any formulas A, B of the language of proof system H the following holds.

(1) Assume that in some deduction showing that
I''A + B,

no application of the generalization rule (G) to a formula that depends upon A
has as its quantified variable a free variable of A. Then

I' v (A= B).

(2) If T+ (A= B), then T,AFB.

Proof

The proof extends the proof of the Deduction Theorem for propositional logic
from chapter ??. We adopt the propositional proof (for a different proof system)
to the system H and adding the predicate case. For the sake of clarity and
independence we write now the whole proof in all details.

(1) Assume that I', A FB, i.e. that we have a formal proof

BlvBQ;"'7Bn (36)

of B from the set of formulas I' U {A}. In order to prove that I' - (A = B) we
will prove the following a little bit stronger statement S.

S: TH(A=B;) forall B; (1<i<n) in the proof (36) of B.
Hence, in particular case, when ¢ = n, we will obtain that also

' (A= B).

The proof of S is conducted by induction on ¢ ( 1 <1 < n).

Base Step i = 1.
When i = 1, it means that the formal proof (??) contains only one element B;.
By the definition of the formal proof from I' U {A}, we have that By € LA, or
By eT,or By =A4,ie.

By e LAUT U{A}.

Here we have two cases.

Case 1. By € LAUT.

Observe that the formula is a particular case of A2 of H. By assumption By €
LAUT, hence we get the required proof of (A = Bj) from I' by the following
application of the Modus Ponens rule

By ; (B1= (A= By))
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Case 2. B; = A.

When By = A, then to prove I' - (A = B) means to prove I' - (A = A). But
(A= A) € LA (axiom A2lof H), i.e. - (A = A). By the monotonicity of the
consequence we have that I'(A = A). The above cases conclude the proof of
the Base case ¢ = 1.

Inductive step
Assume that T' H(A = By) for all k < ¢, we will show that using this fact we
can conclude that also I' H(A = B;).

Counsider a formula B; in the sequence 36. By the definition, B; € LAUT'U{A}
or B; follows by MP from certain Bj, By, such that j < m < i. We have to
consider again two cases.

Case 1. B, €« LAUT U {A}.

The proof of (A = B;) from I' in this case is obtained from the proof of the
Base Step for ¢ = 1 by replacement By by B; and will be omitted here as a
straightforward repetition.

Case 2. B; is a conclusion of MP.
If B; is a conclusion of MP, then we must have two formulas B;, By, in the
sequence 36 such that j < i,m < i, j # m and

Bj;Bm

(MP) =

By the inductive assumption, the formulas Bj, B,, are such that

I+ (A= B)) (37)

and
'k (A= B,). (38)

Moreover, by the definition of the Modus Ponens rule, the formula B,, has to
have a form (B; = B;), i.e. By, = (Bj = B;), and the the inductive assumption
(38) can be re-written as follows.

'+ (A= (B; = B)), forj<i. (39)

Observe now that the formula
(A= (Bj=B) = (A= Bj) = (A= B;)))

is a substitution of the axiom A3 of H and hence has a proof in H. By the
monotonicity,

' (A= (B;=B;))= (A= Bj) = (A= B))). (40)
Applying the rule MP to formulas (40) and (39,) i.e. performing the following
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A= (B;=>B)): (A= (B;= B) = (A= B) = (A= B))
(A= Bj)= (4= B))

(p) L

we get that also
I'H(A= B)) = (A= B)). (41)

Applying again the rule MP to formulas 37 and 41, i.e. performing the following

(A= Bj); (A= Bj) = (A= Bi))
e (A= B,
we get that
I'-(A= B;).

Finally, suppose that there is some j < ¢ such that B; is VaB;. By hypothesis
I' - B; and either (i) B; does not depend upon A or (ii) « is not free variable
in A.

We have two cases (i) and (ii) to consider.

(i) If B; does not depend upon A , then by Lemma 7 I' - B; and, consequently,
by the generalization rule (G), I' - VaB;. Thus I' - B;.

Now, by hypothesis I - B; and by axiom A2, - (B; = (A = B;)). Applying
MP we get I' - A = B;).

(ii) If x is not free variable in A, then, by Completeness Theorem 6 and
(Vz(A = Bj) = (A = VaBj)) we have that - (Vz(A = B;) = (A = VaB;)) .

Since I' H A = B;), we get by the generalization rule (G), I - Vz(A = B;),
and so, by MP, ' F A = VzB;); that is ' - A = B;).
This completes the induction and the case (1) holds for ¢ = n.

(2) The proof of the implication

if TH(A= B) then I''AFB

is straightforward. Assume that I' - (A = B) , hence by monotonicitywe have
also that 'y A + (A = B). Obviously, I'; A + A. Applying Modus Ponens to
the above, we get the proof of B from {I', A} i.e. we have proved thatT", A + B.
This ends the proof of the Deduction Theorem for H.

3 Some other Axiomatizations

We present here some of most known, and historically important axiomatiza-
tions of classical predicate logic, i.e. the following Hilbert style proof systems.
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1. Hilbert and Ackermann (1928)

D. Hilbert and W. Ackermann, Grundzigen der Theoretischen Logik (Princi-
ples of Theoretical Logic), Springer - Verlag, 1928. The book grew from the
courses on logic and foundations of mathematics Hilbert gave in years 1917-
1922. He received help in writeup from Barnays and the material was put into
the book by Ackermann and Hilbert. It was conceived as an introduction to
mathematical logic and was followed by D. Hilbert and P. Bernays, Grundzigen
der Mathematik I II. Springer -Verlag, 1934, 1939.

Hilbert and Ackermann formulated and asked a question of the completeness
for their deductive (proof) system. It was answered affirmatively by Kurt Godel
in 1929 with proof of his Completeness Theorem 6.

We define the Hilbert and Ackermann system HA following a pattern estab-
lished for the H system (20). The original language use by Hilbert and Acker-
mann contained only negation — and disjunction U and so do we.

HA = (L., (P,F,C), F, LA, R={(MP), (SB), (G1), (G2)}), (42)

where the set LA of logical axioms is as follows.

Propositional Axioms
Al (~(AUA)UA), A2 (~AU(AUB)),

A3 (7(AUB)U(BUA)), A4 (~(~-BUC)U(~(AUB)U(AUCQ))),
for any A, B,C, € F.

Quantifiers Axioms

Ql  (=VzA(z)U A(z)), Q2 (—A(z)U3IzA(x)),
Q2 (~A(@) UTrA()),

for any A(x) € F.

Rules of Inference R

(MP) is the Modus Ponens rule. It has, in the language £y, 3, a form

A; (~AUB)

(rp) 2

. (SB) is a substitution rule
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Az, 22, ... Tp)
Aty ta, oo ty)
where A(z1, 22, ... ©,) € F and t1,to, ... t, € T.

(SB)

(G1), (G2) are quantifiers generalization rules.

(mBU A(z)) (mA(z) U B)
(=BUVzA(z))’ (-3zA(x) U B)’
where A(z), B € F and B is such that x is not free in B.

(G1) (G2)

The HA system is usually written now with the use of implication, i.e. as based
on a language £ = L (P, F,C), i.e. as a proof system

HAI = (‘C{ﬁ,:>}(P7F7 C)v 7, LAv R = {(Mp)v (SB)v (Gl)v (GQ)})7 (43)

where the set LA of logical axioms is as follows.

Propositional Axioms

Al ((AUA) = A), A2 (A= (AUB)),

A3 ((AUuB)= (BUA)), A4 ((-BUC)= ((AuB)= (AU(0))),
for any A, B,C, € F.

Quantifiers Axioms
QL (Ved(r) = A(2)), Q2 (A(x) = 3zA(z)),
for any A(x) € F.

Rules of Inference R

(MP) is Modus Ponens rule

for any formulas A, B € F.

(SB) is a substitution rule

Az, 22, ... Tp)
Aty ta, oo ty)
where A(x1,29, ... x,) € F and ty,ta, ... t, € T.

(5B)
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(G1), (G2) are quantifiers generalization rules.

(B = A(x)) (A(z) = B)
(B = VzA(z))’ (3zA(z) = B)’
where A(x), B € F and B is such that x is not free in B.

(G1) (G2)

The form of the quantifiers axioms Q1, Q2, and quantifiers generalization rule
(Q2) is due to Bernays.

2. Mendelson (1987)

Here is the first order logic proof system HM as introduced in the Elliott
Mendelson’s book Introduction to Mathematical Logic, hence the name. (1987).
It is an generalization to the predicate language of the proof system H, for
propositional logic defined and studied in Chapter ?7.

HM = (L(.,(P,F,C), F, LA, R={(MP), (&)}). (44)

Propositional Axioms

Al (A= (B=A)),

A2 (A= (B=0C))=((A=B)=(A=10))),
A3 ((wB=-A)= ((-B=A) = B))),

for any A, B,C, € F.

Quantifiers Axioms
QU (VzA(z) = A1),

where where t is a term, A(t) is a result of substitution of t for all free occurrences
of x in A(z), and t is free for x in A(x), i.e. no occurrence of a variable in t
becomes a bound occurrence in A(t).

Q2 (Vz(B = A(z)) = (B = VzA(x))), where A(x),B € F and B is such
that x is not free in B.

Rules of Inference R

(MP) is the Modus Ponens rule

A; (A= B)

(up) SEZE

for any formulas A, B € F.
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(G) is the generalization rule

where A(z) € F and € VAR.

Rasiowa-Sikorski (1950)

Rasiowa and Sikorski are the authors of the first algebraic proof of the Godel
completeness theorem ever given in 1950. Other algebraic proofs were later
given by Rieger, Beth, Los in 1951, and Scott in 1954.

Here is their original axiomatization.

RS: (‘c{—',ﬁ,u,?}(P7Fa C)a ‘Fv LA? R) (45)

Propositional Axioms

Al (A=B)=(B=0)=(A=0)),

A2 (A= (AUB)),

A3 (B= (AUB)),

A4 (A=C)=(B=C)=((AUuB)=10))),
A5 ((ANnB)= A),

A6 ((ANnB)= B),

A7 (C=A)= ((C=B)=(C=(ANB))),
A8 (A= (B=0C)=(AnB)=0)),

A9 ((ANnB)=0C)= (A= (B=0)),

A10 (ANn-A4)= B),

A1l (A= (AN-A)) = -4,

(A
Al2  (AU-A),
for any A, B,C € F.

Rules of Inference R = {(MP), (SB), (Q1), (Q2), (Q3), (Q4)}.
(M P) is Modus Ponens rule

A; (A= B)

(p)y 22

for any formulas A, B € F.
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(SB) is a substitution rule

A(xy, 29, ... Tp)
SB ,
(SB) Aty ta, .. tn)
where A(z1, 29, ... z,) € F and t1,ta, ... t, € T.

(G1), (G2) are the following quantifiers introduction rules.

(B = A(x))
(B = VzA(z))’

(A(z) = B)

(G1) (3zA(z) = B)’

(G2)
where A(x), B € F and B is such that x is not free in B.

(G3), (G3) are the following quantifiers elimination rules.

(3) (B = VzA(x)) Jz(A(x) = B)
(B= A(z)) ’ A(x)= B) ’
where A(z), B € F and B is such that x is not free in B.

(G4)

The algebraic logic starts from purely logical considerations, abstracts from
them, places them into a general algebraic contest, and makes use of other
branches of mathematics such as topology, set theory, and functional analysis.
For example, Rasiowa and Sikorski algebraic generalization of the completeness
theorem for classical predicate logic is the following.

Theorem 12 (Rasiowa, Sikorski 1950)

For every formula A of the classical predicate calculus S = {L,C} the following
conditions are equivalent

i A is derivable in RS;
ii A is valid in every realization of L;
iii A is valid in every realization of L in any complete Boolean algebra;

iv A is valid in every realization of L in the field B(X) of all subsets of any
set X #(;

v A is valid in every semantic realization of L in any enumerable set;

vi there exists a non-degenerate Boolean algebra A and an infinite set J such
that A is valid in every realization of L in J and A;
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vii

viii

3.1

Agr(i) =V for the canonical realization R of L in the Lindenbauwm-Tarski
algebra LT of S and the identity valuation i;

A is a predicate tautology.

Homework Problems

. Prove that for any equality axioms (5) A and for every structure M =

[M,I] and every s : VAR — M, (M,s) = A.

Let H be the proof system defined (20). Prove the following.

(i) QA axioms Q1 and Q2 of H are predicate tautologies.

(ii) The rules of inference (G), (G1), (G2) of H are sound.

A proof system S is strongly sound if for any rule of inference r of S, a
conjunction of all premisses of r is logically equivalent with its conclusion.

Show that the proof system H is not strongly sound.
Prove soundness theorem for Hilbert Ackerman system HA (42).

Given two proof systems S and K we say that S and K are equivalent
and write it as S = K if they have the same sets of of theorems.
Prove that HA = HAI for HA defined by (42) and HAT defined by (43)

We know that the Medndelson proof system HM defined by (44) is com-
plete. Prove that HM = H, where H be the proof system defined (20).

Let RSE be a proof system obtained from RS system defined by (45) by
changing the language L Ay —}(P,F,C) of RS to the language with
equality (definition 12) and adding Eguality Axioms (5) to the set LA of
logocal axioms of RS. Prove Completeness Theorem 7 for RSE.

Prove Deduction Theorem 11 for Mendelson (19730 formalization.

In the proof of Deduction Theorem 11 for the proof system H we used
gthe completeness of H. Write a proof of the Deduction Theorem 11 for
H without use of its completeness.
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