
CHAPTER 7

Introduction to Intuitionistic and Modal Logicsch7

1 Introduction to Intuitionictic Logic

Intuitionistic logic has developed as a result of certain philosophical views on
the foundation of mathematics, known as intuitionism. Intuitionism was orig-
inated by L. E. J. Brouwer in 1908. The first Hilbert style formalization of the
intuitionistic logic, formulated as a proof system, is due to A. Heyting (1930).
In this chapter we present a Hilbert style proof system I that is equivalent to
the Heyting’s original formalization and discuss the relationship between intu-
itionistic and classical logic.

There have been, of course, several successful attempts at creating semantics for
the intuitionistic logic,i.e. to define formally a notion of the intuitionistic tau-
tology. The most recent are Kripke models were defined by Kripke in 1964. The
first intuitionistic semantics was defined in a form of pseudo- Boolean algebras
by McKinsey, Tarski in 1944 - 1946. McKinsey, Tarski algebraic approach to
the intuitionostic semantics (and classical) was followed by many authors and
developed into a new field of Algebraic Logic. The pseudo- Boolean algebras are
called also Heyting algebras.

An uniform presentation of algebraic models for classical, intuitionistic and
modal logics was first given in a now classic algebraic logic book: ”Mathematics
of Metamathematics”, Rasiowa, Sikorski (1964).

The goal of this chapter is to give a presentation of the intuitionistic logic formu-
lated as a proof system, discuss its algebraic semantics and the basic theorems
that establish the relationship between classical and intuitionistic logics.

1.1 Philosophical Motivation

Intuitionists’ view-point on the meaning of the basic logical and set theoretical
concepts used in mathematics is different from that of most mathematicians in
their research.

The basic difference lies in the interpretation of the word exists. For exam-
ple, let A(x) be a statement in the arithmetic of natural numbers. For the
mathematicians the sentence

∃xA(x) (1) s
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is true if it is a theorem of arithmetic, i.e. if it can be deduced from the axioms
of arithmetic by means of classical logic. If a mathematician proves sentence
( 1), this does not mean that he is able to indicate a method of construction of
a natural number n such that A(n) holds.

For the intuitionist the sentence (1) is true only he is able to provide a construc-
tive method of finding a number n such that A(n) is true.

Moreover, the mathematician often obtains the proof of the existential sentence
(1), i.e. of the sentence ∃xA(x) by proving first a sentence

¬∀x ¬A(x). (2) s1

Next he makes use of a classical tautology

(¬∀x ¬A(x))⇒ ∃xA(x)). (3) s2

By applying Modus Ponens to (2) and (3) he obtains (1).

For the intuitionist such method is not acceptable, for it does not give any
method of constructing a number n such that A(n) holds. For this reason the in-
tuitionist do not accept the classical tautology (3) i.e. (¬∀x ¬A(x))⇒ ∃xA(x))
as intuitionistic tautology, or as as an intuitionistically provable sentence.

Let us denote by `I A and |=I A the fact that A is intuitionistically provable
and that A is intuitionistic tautology, respectively. The proof system I for the
intuitionistic logic has hence to be such that

6 `I (¬∀x ¬A(x))⇒ ∃xA(x)).

The intuitionistic semantics I has to be such that one can prove in that also

6 |=I (¬∀x ¬A(x))⇒ ∃xA(x)).

The above means also that intuitionists interpret differently the meaning of
propositional connectives.

Intuitionistic implication

The intuitionistic implication (A⇒ B) is considered by to be true if there exists
a method by which a proof of B can be deduced from the proof of A. In the
case of the implication

(¬∀x ¬A(x))⇒ ∃xA(x))

there is no general method which, from a proof of the sentence (¬∀x ¬A(x)),
permits is to obtain an intuitionistic proof of the sentence ∃xA(x), i.e. to
construct a number n such that A(n) holds, hence we can’t accept it as an
intuitionistic theorem or tautology.
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Intuitionistic negation

The negation and the disjunction are also understood differently. The sentence
¬A is considered intuitionistically true if the acceptance of the sentence A leads
to absurdity.

As a result of above understanding of negation and implication we have that in
the intuitionistic logic I

`I (A⇒ ¬¬A)

but
6 `I (¬¬A⇒ A).

Consequently, the intuitionistic semantics I has to be such that

|=I (A⇒ ¬¬A)

and
6 |=I (¬¬A⇒ A).

Intuitionistic disjunction

The intuitionist regards a disjunction (A ∪ B) as true if one of the sentences
A,B is true and there is a method by which it is possible to find out which of
them is true. As a consequence a classical law of excluded middle

(A ∪ ¬A)

is not acceptable by the intuitionists since there is no general method of finding
out, for any given sentence A, whether A or ¬A is true. This means that the
intuitionistic logic must be such that

6 `I (A ∪ ¬A)

and the intuitionistic semantics I has to be such that

6|=I (A ∪ ¬A).

Intuitionists’ view of the concept of infinite set also differs from that which is
generally accepted in mathematics. Intuitionists reject the idea of infinite set as
a closed whole. They look upon an infinite set as something which is constantly
in a state of formation. Thus, for example, the set of all natural numbers is
infinite in the sense that to any given finite set of natural numbers it is always
possible to add one more natural number. The notion of the set of all subsets
of the set of all natural numbers is not regarded meaningful. Thus intuitionists
reject the general idea of a set as defined by a modern set theory.

An exact exposition of the basic ideas of intuitionism is outside the range of our
investigations. Our goal is to give a presentation of of the intuitionistic logic,
which is a sort of reflection of intuitionistic ideas formulated as a proof system.
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1.2 Algebraic Intuitionistic Semantics and Completeness
Theorem

There are many proof systems describing the intuitionistic logic. We define now
a system I with a set of axioms that is due to Rasiowa (1959). We adopted
this axiomatization for two reasons. Firs is that it is the most natural and
appropriate set of axioms to carry the the algebraic proof of the completeness
theorem and the second is that they visibly describe the main difference between
intuitionistic and classical logic. Namely, by adding the only one more axiom
(A ∪ ¬A) we get a (complete) formalization for classical logic. Here are the
components if the proof system I.

Language We adopt a propositional language L = L{∪,∩,⇒,¬} with the set of
formulas denoted by F .

Axioms

A1 ((A⇒ B)⇒ ((B ⇒ C)⇒ (A⇒ C))),

A2 (A⇒ (A ∪B)),

A3 (B ⇒ (A ∪B)),

A4 ((A⇒ C)⇒ ((B ⇒ C)⇒ ((A ∪B)⇒ C))),

A5 ((A ∩B)⇒ A),

A6 ((A ∩B)⇒ B),

A7 ((C ⇒ A)⇒ ((C ⇒ B)⇒ (C ⇒ (A ∩B))),

A8 ((A⇒ (B ⇒ C))⇒ ((A ∩B)⇒ C)),

A9 (((A ∩B)⇒ C)⇒ (A⇒ (B ⇒ C)),

A10 (A ∩ ¬A)⇒ B),

A11 ((A⇒ (A ∩ ¬A))⇒ ¬A),

where A,B,C are any formulas in L.

Rules of inference

We adopt the Modus Ponens rule

(MP )
A ; (A⇒ B)

B

as the only inference rule.
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A proof system
I = ( L,F A1−A11, (MP ) ), (4) Isys

A1−A11 defined above, is called a Hilbert style formalization for Intuitionistic
propositional logic.

We introduce, as usual, the notion of a formal proof in I and denote by

`I A

the fact that A has a formal proof in I, or that that A is intuitionistically
provable in I.

1.3 Algebraic Semantics and Completeness Theorem

We shortly present here Tarski, Rasiowa, and Sikorski psedo-Boolean algebra
semantics and discuss the algebraic completeness theorem for the intuitionistic
propositional logic.

We leave the Kripke semantics for the reader to explore from other, multiple
sources.

Here are some basic definitions.

Here are some basic definitions.

Relatively Pseudo-Complemented Lattice
A lattice (B,∩,∪) is said to be relatively pseudo-complemented (Birkhoff, 1935)
if for any elements a, b ∈ B, there exists the greatest element c, such that
a ∩ c ≤ b. Such element is denoted by a⇒ b and called the pseudo-complement
of a relative to b. By definition

x ≤ a⇒ b if and only if a ∩ x ≤ b for all x, a, b ∈ B. (5) p-c

The equation (5) can serve as the definition of the relative pseudo-complement
a⇒ b.

unit1 Fact 1 Every relatively pseudo-complemented lattice (B,∩,∪) has the greatest
element, called a unit element and denoted by 1.

Proof Observe that a∩ x ≤ a for all x, a ∈ B. By (5) we have that x ≤ a⇒ a
for all x ∈ B, i.e. a⇒ a = 1.

An abstract algebra
B = (B, 1, ⇒, ∩, ∪,⇒) (6) rpc

is said to be a relatively pseudo-complemented lattice if (B,∩,∪) is rel-
atively pseudo-complemented lattice with the relative pseudo-complement ⇒
defined by (5) and with the unit element 1 (Fact 1 ).
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Relatively Pseudo-complemented Set Lattices

Consider a topological space X with an interior operation I. Let G(X) be the
class of all open subsets of X and G∗(X) be the class of all both dense and open
subsets of X. Then the algebras

(G(X), X, ∪, ∩,⇒), (G∗(X), X, ∪, ∩,⇒),

where ∪, ∩ are set-theoretical operations of union, intersection, and⇒ is defined
by

Y ⇒ Z = I(X − Y ) ∪ Z

are relatively pseudo-complemented lattices.
Clearly, all sub algebras of these algebras are also relatively pseudo-complemented
lattices, called relatively pseudo-complemented set lattices. They are typical ex-
amples of relatively pseudo-complemented lattices

Pseudo - Boolean Algebra (Heyting Algebra)
An algebra

B = (B, 1, 0, ⇒, ∩, ∪,¬), (7) Pb-alg

is said to be a pseudo - Boolean algebra if and only if (B, 1, ⇒, ∩, ∪) it
is a relatively pseudo-complemented lattice (6) in which a zero element 0 exists
and ¬ is a one argument operation defined as follows

¬a = a⇒ 0 (8) i-neg

The operation ¬ is called a pseudo-complementation.

The pseudo - Boolean algebras are also called Heyting algebras to stress their
connection to the intuitionistic logic.

Let X be topological space with an interior operation I. Let G(X) be the class
of all open subsets of X. Then

(G(X), X, ∅, ∪, ∩,⇒, ¬), (9) p-f

where ∪, ∩ are set-theoretical operations of union, intersection,⇒ is defined by

Y ⇒ Z = I(X − Y ) ∪ Z

and ¬ is defined as

¬Y = Y ⇒ ∅ = I(X − Y ), for all Y ⊆ X

is a pseudo - Boolean algebra.
Every sub algebra of G(X) is also a pseudo-Boolean algebra. They are called
pseudo-fields of sets.
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The following Theorem 1 states that pseudo-fields are typical examples of pseudo
- Boolean algebras. The theorems of this type are often called Stone Represen-
tation Theorems to remember an American mathematician H.M Stone. He
was one of the first to initiate the investigations between logic and general topol-
ogy in the article ”The Theory of Representations for Boolean Algebras”,Trans.
of the Amer.Math, Soc 40, 1036.

Theorem 1 (Representation Theorem) (McKinsey, Tarski, 1946)thm:repr

For every pseudo - Boolean (Heyting) algebra (7)

B = (B, 1, 0, ⇒, ∩, ∪,¬),

there exists a monomorphism h of B into a pseudo-field (9) G(X) of all open
subsets of a compact topological T0 space X.

Another typical (and interesting) example of a class of pseudo - Boolean algebras
is the following.

Linear Pseudo - Boolean Algebra

Let (B,≤) be a chain (linearly ordered set) with the greatest element 1 and the
least element (smallest) 0.
An algebra

H = (B, 1, 0, ⇒, ∩, ∪,¬) (10) Lpb

is called a linear pseudo - Boolean algebra if and only if its operations are defined
as follows.

For any a, b ∈ B,

a ∪ b = max{a, b}, a ∩ b = min{a, b},

a⇒ b =

{
1 if a ≤ b
b otherwise,

(11) L-impl

and define the pseudo-complementation ¬ as

¬a = a⇒ 0.

We leave the proof that (10) is a pseudo-Boolean algebra as a homework exercise.
Observe that the linear pseudo - Boolean algebra (10) is a generalization of the
3-valued Heyting semantics defined in chapter ??.

Algebraic Models

We say that a formula A is an intuitionistoc tautology if and only if any
pseudo-Boolean algebra (7) is a model for A. This kind of models because their
connection to abstract algebras are called algebraic models.

We put it formally as follows.
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I-model Definition 1 (Intuitionistic Algebraic Model)

Let A be a formula of the language L{∪,∩,⇒,¬} and let B = (B, 1, 0, ⇒
, ∩, ∪,¬) be a pseudo - Boolean topological Boolean algebra (7).

We say that the algebra B is a model for the formula A and denote it by

B |= A

if and only if v∗(A) = 1 holds for all variables assignments v : V AR −→ B.

I-taut Definition 2 (Intuitionistic Tautology)

The formula A is an intuitionistic tautology and is denoted by

|=I A if and only if B |= A

for all pseudo-Boolean algebras B.

In Algebraic Logic the notion of tautology is often defined using a notion ”a
formula A is valid in an algebra B ”. It is formally defined as follows.

I-valid Definition 3

A formula A is valid in a pseudo-Boolean algebra B = (B, 1, 0, ⇒, ∩, ∪,¬),
if and only if v∗(A) = 1 holds for all variables assignments v : V AR −→ B.

Directly from definition 2 and definition 3 we get the following.

Ivalid Fact 2 For any formula A, |=I A if and only if A is valid in all pseudo-
Boolean algebras.

We write now `I A to denote any proof system for the Intuitionistic proposi-
tional logic, and in particular the Hilbert style formalization for Intuitionistic
propositional logic I defined by (4).

Theorem 2 (Intuitionistic Completeness Theorem) (Mostowski 1948)I-com

For any formula A of L{∪, ∩,⇒,¬},

`I A if and only if |=I A.

The intuitionistic completeness theorem 2 follows also directly from the following
general algebraic completeness theorem 3 that combines results of of Mostowski
(1958), Rasiowa (1951) and Rasiowa-Sikorski (1957).
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I-thm Theorem 3 (Algebraic Completeness Theorem)

For any formula A of L= L{∪,∩,⇒,¬} the following conditions are equivalent.

(i) `I A,

(ii) |=I A,

(iii) A is valid in every pseudo-Boolean algebra

(G(X), X, ∅, ∪, ∩,⇒, ¬)

of open subsets of any topological space X,

(iv) A is valid in every pseudo-Boolean algebra B with at most 22
r

elements,
where r is the number of all sub formulas of A.

Moreover, each of the conditions (i) - (iv) is equivalent to the following one.

(v) A is valid in the pseudo-Boolean algebra (G(X), X, ∅, ∪, ∩,⇒, ¬) of
open subsets of a dense-in -itself metric space X 6= ∅ (in particular of an n-
dimensional Euclidean space X).

The following theorem follows from the equivalence of conditions (i) and (iv).

Idec Theorem 4 (Decidability)

Every proof system for the intuitionistic propositional logic is decidable.

Examples of intuitionistic propositional tautologies

The following classical tautologies are provable in I and hence are also intu-
itionistic tautologies.

(A⇒ A), (12) i1

(A⇒ (B ⇒ A)), (13) i2

(A⇒ (B ⇒ (A ∩B))), (14) i3

((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))), (15) i4

(A⇒ ¬¬A), (16) i5

¬(A ∩ ¬A), (17) i6

((¬A ∪B)⇒ (A⇒ B)), (18) i7

(¬(A ∪B)⇒ (¬A ∩ ¬B)), (19) i8

((¬A ∩ ¬B)⇒ (¬(A ∪B)), (20) i9

((¬A ∪ ¬B)⇒ (¬A ∩ ¬B)), (21) i10

((A⇒ B)⇒ (¬B ⇒ ¬A)), (22) i11
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((A⇒ ¬B)⇒ (B ⇒ ¬A)), (23) i12

(¬¬¬A⇒ ¬A), (24) i13

(¬A⇒ ¬¬¬A), (25) i14

(¬¬(A⇒ B)⇒ (A⇒ ¬¬B)), (26) i15

((C ⇒ A)⇒ ((C ⇒ (A⇒ B))⇒ (C ⇒ B)), (27) i16

Examples of classical tautologies that are not intuitionistic tautologies

The following classical tautologies are not intuitionistic tautologies.

(A ∪ ¬A), (28) ni1

(¬¬A⇒ A), (29) ni2

((A⇒ B)⇒ (¬A ∪B)), (30) ni3

(¬(A ∩B)⇒ (¬A ∪ ¬B)), (31) ni4

((¬A⇒ B)⇒ (¬B ⇒ A)), (32) ni5

((¬A⇒ ¬B)⇒ (B ⇒ A)), (33) ni6

((A⇒ B)⇒ A)⇒ A), (34) ni7

1.4 Connection Between Classical and Intuitionistic Tau-
tologies

The intuitionistic logic has been created as a rival to the classical one. So a
question about the relationship between these two is a natural one. We present
here some examples of tautologies and some historic results about the connection
between the classical and intuitionistic logic.

The first connection is quite obvious. It was proved by Rasiowa and Sikorski in
1964 that by adding the axiom

A12 (A ∪ ¬A)

to the set of axioms of our system I defined by (4) we obtain a Hilbert proof
system H that is complete with respect to classical semantics.

This proves the following.
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it1 Theorem 5

Every formula that is derivable intuitionistically is classically derivable, i.e.

if `IA, then ` A,

where we use symbol ` for classical (complete classical proof system) provability.

We write
|= A and ] |=I A

to denote that A is a classical and intuitionistic tautology, respectively.

As both proof systems, I and H are complete under respective semantics, we
can state this as the following relationship between classical and intuitionistic
tautologies.

it2 Theorem 6

For any formula A ∈ F ,

if |=I A, then |= A.

The next relationship shows how to obtain intuitionistic tautologies from the
classical tautologies and vice versa. It has been proved by Glivenko in 1929 and
independently by Tarski in 1938.

it3 Theorem 7 (Glivenko, Tarski)

For any formula A ∈ F , A is a classically provable if and only if ¬¬A is an
intuitionistically provable, i.e.

`IA if and only if ` ¬¬A

where we use symbol ` for classical provability.

Theorem 8 (McKinsey, Tarski, 1946)it4

For any formula A ∈ F , A is a classical tautology if and only if ¬¬A is an
intuitionistic tautology, i.e.

|= A if and only if |=I ¬¬A.

The following relationships were proved by Gödel.
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Theorem 9 (Gödel, 1931)it5

For any A,B ∈ F , a formula (A ⇒ ¬B) is a classically provable if and only if
it is an intuitionistically provable, i.e.

` (A⇒ ¬B) if and only if `I (A⇒ ¬B).

Theorem 10 (Gödel, 1931)it6

If a formula A contains no connectives except ∩ and ¬, then A is a classically
provable if and only if it is an intuitionistically provable.

By the completeness of classical and intuitionisctic logics we get the following
equivalent semantic form of theorems 9 and 10.

Theorem 11it7

A formula (A⇒ ¬B) is a classical tautology if and only if it is an intuitionistic
tautology, i.e.

|= (A⇒ ¬B) if and only if |=I (A⇒ ¬B).

Theorem 12it8

If a formula A contains no connectives except ∩ and ¬, then A is a classical
tautology if and only if it is an intuitionistic tautology.

On intuitionistically derivable disjunction

In a classical logic it is possible for the disjunction (A ∪ B) to be a tautology
when neither A nor B is a tautology. The tautology (A ∪ ¬A) is the simplest
example. This does not hold for the intuitionistic logic.

This fact was stated without the proof by Gödel in 1931 and proved by Gentzen
in 1935 via his proof system LI which is presented in chapter ?? and discussed
in the next section 2.

Theorem 13 (Gentzen 1935)it9

A disjunction (A ∪B) is intuitionistically provable if and only if either A or B
is intuitionistically provable , i.e.

`I (A ∪B) if and only if `I A or `I B.
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We obtain, via the Completeness Theorem 2 the following equivalent semantic
version of the above.

Theorem 14it10

A disjunction (A ∪B) is intuitionistic tautology if and only if either A or B is
intuitionistic tautology, i.e.

|=I (A ∪B) if and only if |=I A or |=I B.

2 Gentzen Sequent System LI
G-LI

In 1935 G. Gentzen formulated a first syntactically decidable formalizations for
classical and intuitionistic logic and proved its equivalence with the Heyting’s
original Hilbert style formalization. He named his classical system LK (K for
Klassisch) and intuitionistic system LI (I for Intuitionistisch). In order to prove
the completeness of the system LK and proving the adequacy of LI he intro-
duced a special rule, called cut rule that corresponds to the Modus Ponens
rule in Hilbert proof systems. Then, as the next step he proved the now famous
Gentzen Hauptzatz, called in English the Cut Elimination Theorem.

The Gentzen original proof system LI is a particular case of his proof system
LK for the classical logic. Both of them were presented in chapter ?? together
with the proof of the Hauptzatz for both, LK and LI systems.

The elimination of the cut rule and the structure of other rules makes it possible
to define effective automatic procedures for proof search, what is impossible in
a case of the Hilbert style systems.

The Gentzen system LI is defined as follows.

Language of LI

Let SQ = { Γ −→ ∆ : Γ,∆ ∈ F∗ } be the set of all Gentzen sequents built out
of the formulas of the language

L = L{∪,∩,⇒,¬} (35) I-lan

and the additional symbol −→.

In order to describe the the intuitionistic logic we deal, after Gentzen, only with
sequents of the form Γ −→ ∆, where ∆ consists of at most one formula. I.e.
we assume that all LI sequents are elements of a following subset ISQ of the
set SQ of all sequents.

ISQ = {Γ −→ ∆ : ∆ consists of at most one formula }. (36) iseq

The set ISQ is called the set of all intuitionistic sequents; the LI sequents.
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Axioms of LI

As the axioms of LI we adopt any sequent from the set ISQ defined by ( 36),
which contains a formula that appears on both sides of the sequent arrow −→,
i.e any sequent of the form

Γ1, A,Γ2 −→ A, (37) iax

for any formula A ∈ F of the language (35) and for any sequences Γ1,Γ2 ∈ F∗.

Inference rules of LI

The set inference rules is divided into two groups: the structural rules and the
logical rules. They are defined as follows.

Structural Rules of LI

Weakening

(→ weak)
Γ −→

Γ −→ A
.

A is called the weakening formula.

Contraction

(contr →)
A,A,Γ −→ ∆

A,Γ −→ ∆
,

A is called the contraction formula , ∆ contains at most one formula.

Exchange

(exchange→)
Γ1, A,B,Γ2 −→ ∆

Γ1, B,A,Γ2 −→ ∆
,

∆ contains at most one formula.

Logical Rules of LI

Conjunction rules

(∩ →)
A,B,Γ −→ ∆

(A ∩B),Γ −→ ∆
, (→ ∩)

Γ −→ A ; Γ −→ B

Γ −→ (A ∩B)
,

∆ contains at most one formula.

Disjunction rules

(→ ∪)1
Γ −→ A

Γ −→ (A ∪B)
, (→ ∪)2

Γ −→ B

Γ −→ (A ∪B)
,

14



(∪ →)
A,Γ −→ ∆ ; B,Γ −→ ∆

(A ∪B),Γ −→ ∆
,

∆ contains at most one formula.

Implication rules

(→⇒)
A,Γ −→ B

Γ −→ (A⇒ B)
, (⇒→)

Γ −→ A ; B,Γ −→ ∆

(A⇒ B),Γ −→ ∆
,

∆ contains at most one formula.

Negation rules

(¬ →)
Γ −→ A

¬A,Γ −→
, (→ ¬)

A,Γ −→
Γ −→ ¬A

.

Formally we define:

LI = (L, ISQ, LA, Structural rules, Logical rules ), (38) LI

where ISQ is defined by (36), Structural rules and Logical rules are the infer-
ence rules defined above, and LA is the axiom defined by the schema (37).

We write
`LI Γ −→ ∆

to denote that the sequent Γ −→ ∆ has a proof in LI.

We say that a formula A ∈ F has a proof in LI and write it as

`LI A

when the sequent −→ A has a proof in LI, i.e.

`LI A if and only if `LI −→ A.

The completeness of of our cut-free LI follows directly from LI Hauptzatz The-
orem proved in chapter ?? and the Intuitionistic Completeness Theorem 2. The
proof is a straightforward adaptation of the proof of cut free LK Completeness
Theorem proved in chapter ?? and is left as a homework exercise.

Theorem 15 (Completeness of LI)LI-compl

For any sequent Γ −→ ∆ ∈ ISQ,

`LI Γ −→ ∆ if and only of |=I Γ −→ ∆.
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In particular, for any formula A,

`LI A if and only of |=I A.

Theorem 16 (Intuitionistically Derivable Disjunction)G-disj

For any formulas A,B,

`LI (A ∪B) if and only if `LI A or `LI B.

In particular, a disjunction (A ∪ B) is intuitionistically provable in any proof
system I if and only if either A or B is intuitionistically provable in I.

The particular form the theorem 16 was stated without the proof by Gödel in
1931. The theorem proved by Gentzen in 1935 via his Hauptzatz Theorem.
Proof
Assume `LI (A ∪ B). This equivalent to `LI −→ (A ∪ B). The last step in
the proof of −→ (A ∪ B)i LI must be the application of the rule (→ ∪)1 to
the sequent −→ A, or the application of the rule (→ ∪)2 to the sequent −→ B.
There is no other possibilities. We have proved that `LI (A∪B) implies `LI A
or `LI B. The inverse is obvious by respective applications of rules (→ ∪)1
(→ ∪)2 to −→ A and −→ B.

2.1 Decomposition Trees in LI
sec:dtrees

Search for proofs in LI is a much more complicated process then the one in
classical systems RS or GL defined in chapter ??.

Here, as in any other Gentzen style proof system, proof search procedure consists
of building the decomposition trees.

In RS the decomposition tree TA of any formula A, and hence of any sequence
Γ is always unique.

In GL the ”blind search” defines, for any formula A a finite number of decom-
position trees, but it can be proved that the search can be reduced to examining
only one of them, due to the absence of structural rules.

In LI the structural rules play a vital role in the proof construction and hence,
in the proof search. We consider here a number of examples to show the com-
plexity of the problem of examining possible decomposition trees for a given
formula A. We are going to see that the fact that a given decomposition tree
ends with an axiom leaf does not always imply that the proof does not exist.
It might only imply that our search strategy was not good. Hence the problem
of deciding whether a given formula A does, or does not have a proof in LI
becomes more complex then in the case of Gentzen system for classical logic.
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Before we define a heuristic method of searching for proof and deciding whether
such a proof exists or not in LI we make some observations.

Observation 1: the logical rules of LI are similar to those in Gentzen type
classical formalizations we examined in previous chapters in a sense that
each of them introduces a logical connective.

Observation 2: The process of searching for a proof is, as before a decompo-
sition process in which we use the inverse of logical and structural rules
as decomposition rules.

For example the implication rule:

(→⇒)
A,Γ −→ B

Γ −→ (A⇒ B)

becomes an implication decomposition rule (we use the same name
(→⇒) in both cases)

(→⇒)
Γ −→ (A⇒ B)

A,Γ −→ B
.

Observation 3: we write our proofs in as trees, instead of sequences of expres-
sions, so the proof search process is a process of building a decomposition
tree. To facilitate the process we write, as before, the decomposition rules,
structural rules included in a ”tree ” form.

For example the the above implication decomposition rule is written as follows.

Γ −→ (A⇒ B)

| (→⇒)

A,Γ −→ B

The two premisses implication rule (⇒→) written as the tree decomposition
rule becomes

(A⇒ B),Γ −→∧
(⇒→)

Γ −→ A B,Γ −→
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For example the structural weakening rule is written as the decomposition rule
is written as

(→ weak)
Γ −→ A

Γ −→

We write it in a tree form as follows.

Γ −→ A

| (→ weak)

Γ −→

We define, as before the notion of decomposable and indecomposable formulas
and sequents as follows.

Decomposable formula is any formula of the degree ≥ 1.

Decomposable sequent is any sequent that contains a decomposable for-
mula.

Indecomposable formula is any formula of the degree 0, i.e. any proposi-
tional variable.

Remark: In a case of formulas written with use of capital letters A,B,C, ..
etc, we treat these letters as propositional variables, i.e. as indecomposable
formulas.

Indecomposable sequent is a sequent formed from indecomposable formulas
only.

Decomposition tree construction (1): given a formula A we construct its
decomposition tree TA as follows.

Root of the tree is the sequent −→ A.

Given a node n of the tree we identify a decomposition rule applicable at this
node and write its premisses as the leaves of the node n.

We stop the decomposition process when we obtain an axiom or all leaves of
the tree are indecomposable.

Observation 4: the decomposition tree TA obtained by the construction (1)
most often is not unique.
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Observation 5: the fact that we find a decomposition tree TA with non-axiom
leaf does not mean that 6 `LI A. This is due to the role of structural rules
in LI and will be discussed later in the chapter.

We illustrate the problems arising with proof search procedures, i.e. de-
composition trees construction in the next section 2.2 and give a heuristic
proof searching procedure in the section 2.3.

2.2 Proof Search Examples
sec: examles

We perform proof search and decide the existence of proofs in LI for a given
formula A ∈ F by constructing its decomposition trees TA. We examine here
some examples to show the complexity of the problem.

Remark
In the following and similar examples when building the decomposition trees for
formulas representing general schemas we treat the capital letters A,B,C,D...
as propositional variables, i.e. as indecomposable formulas.

Example 1

Determine whether `LI −→ ((¬A ∩ ¬B)⇒ ¬(A ∪B)).

This means that we have to construct some, or all decomposition trees of

−→ ((¬A ∩ ¬B)⇒ ¬(A ∪B)).

If we find a decomposition tree such that all its leaves are axioms, we have a
proof.

If all possible decomposition trees have a non-axiom leaf, proof of A in LI does
not exist.

Consider the following decomposition tree of −→ ((¬A ∩ ¬B)⇒ ¬(A ∪B)).

T1

−→ ((¬A ∩ ¬B)⇒ (¬(A ∪B))

| (−→⇒)

(¬A ∩ ¬B) −→ ¬(A ∪B)

| (−→ ¬)

(A ∪B), (¬A ∩ ¬B) −→

| (exch −→)

(¬A ∩ ¬B), (A ∪B) −→

| (∩ −→)
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¬A,¬B, (A ∪B) −→

| (¬ −→)

¬B, (A ∪B) −→ A

| (−→ weak)

¬B, (A ∪B) −→

| (¬ −→)

(A ∪B) −→ B∧
(∪ −→)

A −→ B

non− axiom

B −→ B

axiom

The tree T1 has a non-axiom leaf, so it does not constitute a proof in LI. But
this fact does not yet prove that proof doesn’t exist, as the decomposition tree
in LI is not always unique.

Let’s consider now the following tree.

T2

−→ ((¬A ∩ ¬B)⇒ (¬(A ∪B))

| (−→⇒)

(¬A ∩ ¬B) −→ ¬(A ∪B)

| (−→ ¬)

(A ∪B), (¬A ∩ ¬B) −→

| (exch −→)

(¬A ∩ ¬B), (A ∪B) −→

| (∩ −→)

¬A,¬B, (A ∪B) −→

| (exch −→)

¬A, (A ∪B),¬B −→

| (exch −→)

(A ∪B),¬A,¬B −→∧
(∪ −→)
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A,¬A,¬B −→

| (exch −→)

¬A,A,¬B −→

| (¬ −→)

A,¬B −→ A

axiom

B,¬A,¬B −→

| (exch −→)

B,¬B,¬A −→

| (exch −→)

¬B,B,¬A −→

| (¬ −→)

B,¬A −→ B

axiom

All leaves of T2 are axioms, what proves that T2 is a proof of A and hence we
proved that

`LI((¬A ∩ ¬B)⇒ ¬(A ∪B)).

Example 2

Part 1: Prove that
`LI −→ (A⇒ ¬¬A),

Part 2: Prove that
6 `LI −→ (¬¬A⇒ A).

Solution of Part 1
To prove that

`LI −→ (A⇒ ¬¬A)

we have to construct some, or all decomposition trees of

−→ (A⇒ ¬¬A).

We treat the sub formulas A,B as indecomposable formulas.

Consider the following decomposition tree.

T

−→ (A⇒ ¬¬A).

| (−→⇒)

A −→ ¬¬A

| (−→ ¬)

¬A,A −→
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| (¬ −→)

A −→ A

axiom

All leaves of T are axioms what proves that T is a proof of −→ (A ⇒ ¬¬A)
and we don’t need to construct other decomposition trees.

Solution of Part 2
To prove that

6 `LI −→ (¬¬A⇒ A)

we have to construct all decomposition trees of (A⇒ ¬¬A) and show that each
of them has an non-axiom leaf.

Consider the first decomposition tree defined as follows.

T1

−→ (¬¬A⇒ A)

first of 2 choices : (→⇒), (→ weak)

| (→⇒)

¬¬A −→ A

first of 2 choices : (→ weak), (contr →)

| (→ weak)

¬¬A −→

first of 2 choices : (¬ →), (contr →)

| (¬ →)

−→ ¬A

first of 2 choices : (¬ →), (→ weak)

| (→ ¬)

A −→

indecomposable

non− axiom

We use the first tree created to define all other possible decomposition trees by
exploring the alternative search paths as indicated at the nodes of the tree.
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T1

−→ (¬¬A⇒ A)

| (−→⇒)

one of 2 choices

¬¬A −→ A

]

| (contr −→)

second of 2 choices

¬¬A,¬¬A −→ A

| (−→ weak)

first of 2 choices

¬¬A,¬¬A −→

| (¬ −→)

first of 2 choices

¬¬A −→ ¬A

| (−→ ¬)

the only choice

A,¬¬A −→

| (exch −→)

the only choice

¬¬A,A −→

| (−→ ¬)

the only choice

A −→ ¬A

| (−→ ¬)

first of 2 choices

A,A −→

indecomposable

non− axiom
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We can see from the above decomposition trees that the ”blind” construction
of all possible trees only leads to more complicated trees, due to the presence of
structural rules. Observe that the ”blind” application of (contr −→) gives an
infinite number of decomposition trees. To decide that none of them will produce
a proof we need some extra knowledge about patterns of their construction, or
just simply about the number useful of application of structural rules within
the proofs.

In this case we can just make an ”external” observation that the our first tree
T1 is in a sense a minimal one; that all other trees would only complicate this
one in an inessential way, i.e. we will never produce a tree with all axioms
leaves.

One can formulate a deterministic procedure giving a finite number of trees,
but the proof of its correctness require some extra knowledge. We are going to
discuss a motivation and an heuristics for the proof search in the next section.

Within the scope of this book we accept the ”external” explanation for the
heuristics we use as a sufficient solution.

As we can see from the above examples structural rules and especially the
(contr →) rule complicates the proof searching task.

The Gentzen type proof systems RS and GL from chapter don’t contain the
structural rules and are complete with respect to classical semantics, as is the
original Gentzen system LK, which does contain the structural rules. As (via
Completeness Theorem) all three classical proof system RS, GL, LK are equiv-
alent we can say that the structural rules can be eliminated from the system
LK.

A natural question of elimination of structural rules from the intutionistic
Gentzen system LI arizes.

The following example illustrates the negative answer.

Example 3

We know, by the theorem about the connection between classical and intuition-
istic logic (theorem 6) and corresponding Completeness Theorems that for any
formula A ∈ F ,

|= A if and only if `I ¬¬A,

where |= A means that A is a classical tautology, `I means that A is intutionis-
tically provable, i.e. is provable in any intuitionistically complete proof system.
The system LI is intuitionistically complete, so we have that for any formula A,

|= A if and only if `LI ¬¬A.

We have just proved that 6 `LI(¬¬A ⇒ A). Obviously |= (¬¬A ⇒ A), so we
know that ¬¬(¬¬A⇒ A) must have a proof in LI.
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We are going to prove that

`LI ¬¬(¬¬A⇒ A)

and that the structural rule (contr −→) is essential to the existence of its proof,
i.e. that without it the formula ¬¬(¬¬A⇒ A) is not provable in LI.

The following decomposition tree T is a proof of ¬¬(¬¬A⇒ A) in LI.

T

−→ ¬¬(¬¬A⇒ A)

first of 2 choices : (→ ¬), (→ weak)

| (−→ ¬)

¬(¬¬A⇒ A) −→

first of 2 choices : (contr −→), (¬ −→)

| (contr −→)

¬(¬¬A⇒ A),¬(¬¬A⇒ A) −→

one of 2 choices

| (¬ −→)

¬(¬¬A⇒ A) −→ (¬¬A⇒ A)

one of 3 choices

| (−→⇒)

¬(¬¬A⇒ A),¬¬A −→ A

one of 2 choices

| (−→ weak)

¬(¬¬A⇒ A),¬¬A −→

one of 3 choices

| (exch −→)

¬¬A,¬(¬¬A⇒ A) −→

one of 3 choices

| (¬ −→)

¬(¬¬A⇒ A) −→ ¬A

one of 3 choices

| (−→ ¬)
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A,¬(¬¬A⇒ A) −→
one of 2 choices

| (exch −→)

¬(¬¬A⇒ A), A −→
one of 3 choices

| (¬ −→)

A −→ (¬¬A⇒ A)

one of 3 choices

| (−→⇒)

¬¬A,A −→ A

axiom

Assume now that the rule (contr −→) is not available. All possible decomposi-
tion trees are as follows.

T1

−→ ¬¬(¬¬A⇒ A)

| (−→ ¬)

one of 2 choices

¬(¬¬A⇒ A) −→
| (¬ −→)

only one choice

−→ (¬¬A⇒ A)

| (−→⇒)

one of 2 choices

¬¬A −→ A

| (−→ weak)

only one choice

¬¬A −→
| (¬ −→)

only one choice

−→ ¬A
| (−→ ¬)

one of 2 choices

A −→
non− axiom
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T2

−→ ¬¬(¬¬A⇒ A)

| (−→ weak)

second of 2 choices

−→

non− axiom

T3

−→ ¬¬(¬¬A⇒ A)

| (−→ ¬)

¬(¬¬A⇒ A) −→

| (¬ −→)

−→ (¬¬A⇒ A)

| (−→ weak)

second of 2 choices

−→

non− axiom

T4

−→ ¬¬(¬¬A⇒ A)

| (−→ ¬)

¬(¬¬A⇒ A) −→

| (¬ −→)

−→ (¬¬A⇒ A)

| (−→⇒)

]

¬¬A −→ A

| (−→ weak)

only one choice

¬¬A −→

| (¬ −→)
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only one choice

−→ ¬A

| (−→ weak)

second of 2 choices

−→

non− axiom

This proves that the formula ¬¬(¬¬A ⇒ A) is not provable in LI without
(contr −→) rule and hence this rule can’t be eliminated.

2.3 Proof Search Heuristic Method
sec:hproc

Before we define a heuristic method of searching for proof in LI let’s make some
additional observations to the observations 1-5 from section 2.1.

Observation 6: Our goal while constructing the decomposition tree is to ob-
tain axiom or indecomposable leaves. With respect to this goal the use
logical decomposition rules has a priority over the use of the structural
rules and we use this information while describing the proof search heuris-
tic.

Observation 7: all logical decomposition rules (◦ →), where ◦ denotes any
connective, must have a formula we want to decompose as the first formula
at the decomposition node, i.e. if we want to decompose a formula ◦A,
the node must have a form ◦A,Γ −→ ∆. Sometimes it is necessary to
decompose a formula within the sequence Γ first in order to find a proof.

For example, consider two nodes

n1 = ¬¬A, (A ∩B) −→ B

and
n2 = (A ∩B),¬¬A −→ B.

We are going to see that the results of decomposing n1 and n2 differ dramatically.

Let’s decompose the node n1. Observe that the only way to be able to de-
compose the formula ¬¬A is to use the rule (→ weak) first. The two possible
decomposition trees that starts at the node n1 are as follows.

T1n1

¬¬A, (A ∩B) −→ B
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| (→ weak)

¬¬A, (A ∩B) −→

| (¬ →)

(A ∩B) −→ ¬A

| (∩ →)

A,B −→ ¬A

| (→ ¬)

A,A,B −→

non− axiom

T2n1

¬¬A, (A ∩B) −→ B

| (→ weak)

¬¬A, (A ∩B) −→

| (¬ →)

(A ∩B) −→ ¬A

| (→ ¬)

A, (A ∩B) −→

| (∩ →)

A,A,B −→

non− axiom

Let’s now decompose the node n2. Observe that following our Observation 6
we start by decomposing the formula (A∩B) by the use of the rule (∩ →) first.
A decomposition tree that starts at the node n2 is as follows.

T1n2

(A ∩B),¬¬A −→ B

| (∩ →)

A,B,¬¬A −→ B

axiom
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This proves that the node n2 is provable in LI, i.e.

`LI (A ∩B),¬¬A −→ B.

Of course, we have also that the node n1 is also provable in LI, as one can
obtain the node n2 from it by the use of the rule (exch→).

Observation 8: the use of structural rules are important and necessary while
we search for proofs. Nevertheless we have to use them on the ”must”
basis and set up some guidelines and priorities for their use.

For example, use of weakening rule discharges the weakening formula, and
hence an information that may be essential to the proof. We should use
it only when it is absolutely necessary for the next decomposition steps.
Hence, the use of weakening rule (→ weak) can, and should be restricted
to the cases when it leads to possibility of the use of the negation rule
(¬ →).

This was the case of the decomposition tree T1n1
. We used it as an

necessary step, but still it discharged too much information and we didn’t
get a proof, when proof of the node existed.

In this case the first rule in our search should have been the exchange
rule, followed by the conjunction rule (no information discharge) not the
weakening (discharge of information) followed by negation rule. The full
proof of the node n1 is the following.

T3n1

¬¬A, (A ∩B) −→ B

| (exch −→)

(A ∩B),¬¬A −→ B

| (∩ →)

A,B,¬¬A −→ B

axiom

As a result of the observations 1- 5 from section 2.1 and observations 6 -
8 above we adopt the following.

Heuristic Procedure for Proof Search in LI.

For any A ∈ F we construct the set of decomposition trees T→A following the
rules below.
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Rules for Decomposition Tree Generation

1. Use first logical rules where applicable.

2. Use (exch→) rule to decompose, via logical rules, as many formulas on the
left side of −→ as possible.

3. Use (→ weak) only on a ”must” basis in connection with (¬ →) rule.

4. Use (contr →) rule as the last recourse and only to formulas that contain ¬
or ⇒ as connectives.

5. Let’s call a formula A to which we apply (contr →) rule a contraction
formula.

6. The only contraction formulas are formulas containing ¬ between theirs log-
ical connectives.

7. Within the process of construction of all possible trees use (contr →) rule
only to contraction formulas.

8. Let C be a contraction formula appearing on the node n of the decomposi-
tion tree of T→A. For any contraction formula C, any node n, we apply
(contr →) rule the the formula C at most as many times as the number
of sub-formulas of C.

If we find a tree with all axiom leaves we have a proof, i.e. `LI A and if all
(finite number) trees have a non-axiom leaf we have proved that proof of A does
not exist, i.e. 6 `LIA.

3 Introduction to Modal S4 and S5 Logics

The non-classical logics can be divided in two groups: those that rival classical
logic and those which extend it. The Lukasiewicz, Kleene, and Intuitionistic
Logics are in the first group. The modal logics are in the second.

The rival logics do not differ from classical logic in terms of the language em-
ployed. Rather, rival logics differ in that certain theorems or tautologies of
classical logic are rendered false, or not provable in them.

Perhaps the most notorious example of this is the law of excluded middle (A∪
¬A). This is provable in, and is a tautology of classical logic but is not provable
in, and is not tautology of intuitionistic logic, or is not a tautology under any
of the extensional logics semantics we have discussed.

Logics which extend classical logic sanction all the theorems of classical logic
but, generally, supplement it in two ways. Firstly, the languages of these non-
classical logics are extensions of those of classical logic, and secondly, the the-
orems of these non-classical logics supplement those of classical logic. Usually,
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such supplementation is provided by the enriched language. For example, modal
logics are enriched by the addition of two new connectives that represent the
meaning of it is necessary that and it is possible that. We use the notation I for
it is necessary that and C for it is possible that. Other notations used are: ∇,
N, L for it is necessary that, and ♦ P, M for it is possible that. The symbols N,
L, P, M or alike, are often used in computer science investigations. The symbols
∇ and � were first to be used in modal logic literature, the symbols I, C come
from algebraic and topological interpretation of modal logics. I corresponds to
the interior of the set and C to its closure.

The idea of a modal logic was first formulated by an American philosopher,
C.I. Lewis in 1918. He has proposed yet another interpretation of lasting con-
sequences, of the logical implication. In an attempt to avoid, what some felt,
the paradoxes of semantics for classical implication which accepts as true that a
false sentence implies any sentence he created a notion of a modal truth, which
lead to the notion of modal logic. The idea was to distinguish two sorts of truth:
necessary truth and mere possible (contingent) truth. A possibly true sentence
is one which, though true, could be false. A necessary truth is hence the one
which could not be otherwise; a contingent (possible) truth is one which could.
The distinction between them is a metaphysical one and should not be confused
with the distinction between a priori and a posteriori truths. An a priori
truth is one which can be known independently of experience, and an a poste-
riori truth is one which cannot. Such notions appeal to epistemic considerations
and the whole area of modal logics bristles with philosophical difficulties and
hence the numbers of logics have been created. Unlike the classical connectives,
the modal connectives do not admit of truth-functional interpretation. This was
the reason for which modal logics was first developed as a proof systems, with
intuitive notion of semantics expressed by the set of adopted axioms.

The first semantics, and hence the proofs of the completeness theorems came
some 20 years later. It took yet another 25 years for discovery and development
of the second more general approach to the semantics. These are two established
ways of interpret modal connectives, i.e. to define modal semantics.

The historically first one is due to Mc Kinsey and Tarski (1944, 1946). It is a
topological interpretation that provides a powerful mathematical interpretation
of some of them, namely S4 and S5. It connects the modal notion of necessity
with the topological notion of interior of a set, and the notion of possibility with
the notion of its closure . Our choice of symbols I and C for modal connectives
comes from this interpretation. The topological interpretation powerful as it is,
is less universal in providing models for other modal logics. The most recent
one is due to Kripke (1964). It uses the notion possible world. Roughly, we say
that CA is true if A is true in some possible world, called actual world, and IA
is true if A is true in every possible world.

We present the formal definition later in this chapter, but this intuitive meaning
can be useful in unconvincing ourselves about validity (or sense) of adopted
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axioms and rules of inference.

As we have already mentioned, modal logics were first developed, as was the
intuitionistic logic, in a form of proof systems only. First Hilbert style modal
proof system was published by Lewis and Langford in 1932. They presented
a formalization for two modal logics, which they called S1 and S2. They also
outlined three other proof systems, called S3, S4, and S5.

In 1933 Gödel worked with Heyting’s ”sentential logic” proof system, what we
are calling now Intuitionistic logic. He considered a particular modal proof sys-
tem and asserted that theorems of Heyting’s ”sentential logic” could be obtained
from it by using a certain translation. His presentation of the discovered proof
system, now known as S4 logic, was particularly elegant.

Since then hundreds of modal logics have been created. There are some standard
texts in the subject. These are, between the others: Hughes and Cresswell
(1969) for philosophical motivation for various modal logics and Intuitionistic
logic, Bowen (1979) for a detailed and uniform study of Kripke models for
modal logics, Segeberg (1971) for excellent classification, and Fitting (1983), for
extended and uniform studies of automated proof methods for classes of modal
logics.

Hilbert Style Modal Proof Systems

We present here Hilbert style formalization for S4 and S5 logics due to Mc
Kinsey and Tarski (1948) and Rasiowa and Sikorski (1964). We also discuss
the relationship between S4 and S5, and between the Intuitionistic logic and S4
modal logic, as first observed by Gödel.

They stress the connection between S4, S5 and topological spaces which consti-
tute models for them. Hence the use of symbols I, C for necessity and possibility,
respectively. The connective I corresponds to the symbol denoting a topological
interior of a set and C to the closure of a set.

Modal Language
We add to the propositional language L{∪,∩,⇒,¬} two extra one argument con-
nectives I and C. I.e. we adopt

L = L{∪,∩,⇒,¬,I,C} (39) mlang

as our modal language. We read a formula IA, CA as necessary A and possible
A, respectively.

The language is common to all modal logics. Modal logics differ on a choice of
axioms and rules of inference, when studied as proof systems and on a choice of
semantics.

McKinsey, Tarski (1948)
As modal logics extend the classical logic, any modal logic contains two groups
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of axioms: classical and modal.

Axioms Group 1: classical axioms

Any modal logic adopts as its classical axioms any complete set of axioms for a
classical propositional logic.

Axioms Group 2: modal axioms

M1 (IA⇒ A),

M2 (I(A⇒ B)⇒ (IA⇒ IB)),

M3 (IA⇒ IIA),

M4 (CA⇒ ICA).

Rules of inference

We adopt the Modus Ponens (MP )

(MP )
A ; (A⇒ B)

B

and an additional modal rule (I) introduced by Gödel

(I)
A

IA

referred to as necessitation.

We define modal proof systems S4 and S5 as follows.

S4 = ( L, F , classical axioms, M1−M3, (MP ), (I) ), (40) s4

S5 = ( L, F , classical axioms, M1−M4, (MP ), (I) ). (41) s5

Observe that the axioms of S5 extend the axioms of S4 and both system share
the same inference rules, hence we have immediately the following.

mfact Fact 3

For any formula A ∈ F , if `S4 A, then `S5 A.

Rasiowa, Sikorski (1964)

It is often the case, and it is in our systems, that modal connectives are express-
ible by each other, i.e. that we can adopt one of them and define the other as
follows.

IA = ¬C¬A, (42) mI

and
CA = ¬I¬A. (43) mC
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The equality sign in equations (42), and (43) means that we replace the formula
in left side of the equation by the formula in the right side anywhere where the
left side (or right side) formula is appears as a sub formula of a formula of L.
In modal logics S4 and S5 the connective C is expressible by ¬ and I, as stated
above by (43), we hence assume now that the language L contains only one
modal connective I.

Language

L = L{∩,∪,⇒,¬,I}. (44) l1

There are, as before, two groups of axioms: classical and modal.

Axioms Group 1: classical axioms

We adopt as classical axioms any complete set of axioms for a classical propo-
sitional logic.

Axioms Group2: modal axioms

R1 ((IA ∩ IB)⇒ I(A ∩B)),

R2 (IA⇒ A),

R3 (IA⇒ IIA),

R4 I(A ∪ ¬A),

R5 (¬I¬A⇒ I¬I¬A)

Rules of inference

We adopt the Modus Ponens (MP )

(MP )
A ; (A⇒ B)

B

and an additional modal rule ( RI)

(RI)
(A⇒ B)

(IA⇒ IB)
.

We define modal logic proof systems RS4, RS5 as follows.

RS4 = ( L, F , classical axioms, R1−R4, (MP ), (RI) ). (45) rs4

RS5 = ( L, F , classical axioms, R1−R5, (MP ), (RI) ). (46) rs5

Observe that the axioms of RS5 extend, as the axioms of TS5, the axioms of
TS4 and both system share the same inference rules, hence we have immediately
the following.

rfact Fact 4

For any formula A ∈ F , if `RS4 A, then `RS5 A.
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3.1 Algebraic Semantics for S4 and S5

The McKinsey, Tarski proof systems (40), (41), and Rasiowa, Sikorski proof
systems (45), (45) for modal logics S4, S5 are complete with the respect to both
algebraic topological semantics, and Kripke semantics.

We shortly discuss the topological semantics, and algebraic completeness the-
orems and leave the Kripke semantics for the reader to explore from other,
multiple sources.

The topological semantics was initiated by McKinsey, Tarski’s (1946, 1948) and
consequently developed and examined by many authors into a field of Alge-
braic Logic.They are presented in detail in now classic algebraic logic books:
”Mathematics of Metamathematics”, Rasiowa, Sikorski (1964) and ”An Alge-
braic Approach to Non-Classical Logics”, Rasiowa (1974).

We want to point out that the first idea of a connection between modal propo-
sitional calculus and topology is due to Tang Tsao -Chen, (1938) and Dugunji
(1940).

Here are some basic definitions.

Boolean Algebra
An abstract algebra

B = (B, 1, 0, ⇒, ∩, ∪,¬) (47) Balg

is said to be a Boolean algebra if it is a distributive lattice and every element
a ∈ B has a complement ¬a ∈ B.

Topological Boolean algebra
By a topological Boolean algebra we mean an abstract algebra

B = (B, 1, 0, ⇒, ∩, ∪,¬, I), (48) Talg

where (B, 1, 0, ⇒, ∩, ∪,¬) is a Boolean algebra (47) and, moreover, the
following conditions hold for any a, b ∈ B.

I(a ∩ b) = Ia ∩ Ib, Ia ∩ a = Ia, IIa = Ia, and I1 = 1. (49) Icond

The element Ia is called a interior of a. The element ¬I¬a is called a closure
of a and will be denoted by Ca. Thus the operations I and C are such that

Ca = ¬I¬a and Ia = ¬C¬a.

In this case we write the topological Boolean algebra (48) as

B = (B, 1, 0, ⇒, ∩, ∪,¬, I, C). (50) Talg1

It is easy to prove that in in any topological Boolean algebra (50) the following
conditions hold for any a, b ∈ B.
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C(a ∪ b) = Ca ∪ Cb, Ca ∪ a = Ca, CCa = Ca, and C0 = 0. (51) Ccond

If X is a topological space with an interior operation I, then the family P(X)
of all subsets of X is a topological Boolean algebra with 1 = X, the operation
⇒ defined by the formula

Y ⇒ Z = (X − Y ) ∪ Z, for all subsets Y,Zof X,

set-theoretical operations of union, intersection, complementation, and the in-
terior operation I. Obviously, every sub algebra of this algebra is a topological
Boolean algebra, called a topological field of sets or, more precisely, a topological
field of subsets of X.

Given a topological Boolean algebra (47) (B, 1, 0, ⇒, ∩, ∪,¬). The element
a ∈ B is said to be open (closed) if a = Ia (a = Ca).

Clopen Topological Boolean algebra
A topological Boolean algebra (50)

B = (B, 1, 0, ⇒, ∩, ∪,¬, I, C ).

such that every open element is closed and every closed element is open, i.e.
such that for any a ∈ B

CIa = Ia and ICa = Ca (52) clopen

is called a clopen topological Boolean algebra.

We loosely say that a formula A of a modal language is a modal S4 tautology
if and only if any topological Boolean algebra (50) is a model for A.
We say that A is a modal S5 tautology if and only if any clopen topological
Boolean algebra (52) is a model for A.

We put it formally as follows.

Amodel Definition 4 (Modal Algebraic Model)

For any formula A of a modal language L{∪,∩,⇒,¬,I,C} and for any topological
Boolean algebra B = (B, 1, 0, ⇒, ∩, ∪,¬, I, C),

the algebra B is a model for the formula A and denote it by

B |= A

if and only if v∗(A) = 1 holds for all variables assignments v : V AR −→ B.

Mtaut Definition 5 (S4, S5 Tautology)

The formula A is a modal S4 tautology (S5 tautology) and is denoted by

|=S4 A (|=S5 A)
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if and only if for all topological Boolean algebras (clopen topological
Boolean algebras) B we have that

B |= A (B |= A).

In Algebraic Logic the notion of tautology is often defined using a notion ”a
formula A is valid in an algebra B ”.It is formally defined in our case as as
follows.

valid Definition 6

A formula A is valid in a topological Boolean algebra B = (B, 1, 0, ⇒
, ∩, ∪,¬, I, C), if and only if v∗(A) = 1 holds for all variables assignments
v : V AR −→ B.

Directly form definitions 5, 6 we get the following.

Fact 5 For any formula A, |=S4 A (|=S5 A) if and only if A is valid in
all topological Boolean algebras (A is valid in all clopen topological Boolean
algebras).

We write `S4 A and `S5 A do denote any proof system for modal S4, S5 logics
and in particular the proof systems (40), (45), and (41), (46), respectively.

cs4 Theorem 17 (Completeness Theorem) For any formula A of the modal
language L{∪,∩,⇒,¬,I,C},

`S4 A if and only if |=S4 A,

`S5 A if and only if |=S5 A.

The completeness for S4 follows directly from the Theorem 18. The complete-
ness for S5 follows from the S4 completeness and Embedding Theorems 22, 23.
It also can be easily proved independently by adopting the Algebraic Complete-
ness Theorem proof for S4 to clopen topological algebras.

cthm Theorem 18 (Algebraic Completeness Theorem)

For any formula A of the modal language L= L{∪,∩,⇒,¬,I,C} the following con-
ditions are equivalent.

(i) `S4 A,

(ii) |=S4 A,

(iii) A is valid in every topological field of sets B(X),
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(iv) A is valid in every topological Boolean algebra B with at most 22
r

elements,
where r is the number of all sub formulas of A,

(iv) v∗(A) = X for every variable assignment v in the topological field of sets
B(X) of all subsets of a dense-in -itself metric space X 6= ∅ (in particular of an
n-dimensional Euclidean space X).

On S4 derivable disjunction

In a classical logic it is possible for the disjunction (A ∪ B) to be a tautology
when neither A nor B is a tautology. The tautology (A ∪ ¬A) is the simplest
example. This does not hold for the intuitionistic logic. We have a similar
theorem for modal S4 logic, as proved by McKinsey and Tarski.

mdis Theorem 19

A disjunction (IA∪IB) is S4 provable if and only if either A or B is S4 provable,
i.e.

`S4 (IA ∪ IB) if and only if `S4A or `S4 B.

The proof follows directly from the Completeness Theorem 18 and the following
semantical, proof system independent version of the theorem 19.

Theorem 20 (McKinsey, Tarski, 1948)

For any A ∈ F ,

|=S4(IA ∪ IB) if and only if |=S4 A or |=S4B.

The completeness theorem allows us to formulate theorems about logics in terms
independent of the proof system considered. In this sense the notion of tautology
is more general then the notion of provability. This is why often we use rather the
tautology formulation of the known facts about the logic and their relationships
instead of the notion of provability.

Following the Completeness Theorem 18 we get a semantical version of the
theorem 3.

tfact Theorem 21

For any formula A ∈ F ,

if |=S4 A, then |=S5 A.

Consider a modal language L with both modal connectives, i.e.

L= L{∪,∩,⇒,¬,I,C}.

The above theorem21 says that the S4 tautologies form a subset of S5 tautolo-
gies. We have even a more powerful relationship, namely the following.
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eb1 Theorem 22 (Embedding 1)

For any formula A ∈ F ,

|=S4A if and only if |=S5 ICA,

`S4 A if and only if `S5 ICA.

eb2 Theorem 23 (Embedding 2)

For any formula A ∈ F ,

|=S5A if and only if |=S4ICIA.

`S5A if and only if `S4 ICIA.

eb3 Theorem 24 (Embedding 3)

For any formula A ∈ F ,

if |=S5 A, then |=S4 ¬I¬A.

The fist proof of the above embedding theorems was given by Matsumoto in
1955. Provability. Fitting semantical 1983 Ohnishi and Matsumoto 1957/59
Gentzen Methods in Modal Calculi Osaka Mathematical Journal 9.113 -130

3.2 S4 and Intuitionistic Logic, S5 and Classical Logic

As we have said in the introduction, Gödel was the first to consider the connec-
tion between the intuitionistic logic and a logic which was named later S4. His
proof was purely syntactic in its nature, as semantics for neither intuitionistic
logic nor modal logic S4 had not been invented yet.

The algebraic proof of this fact, was first published by McKinsey and Tarski
in 1948. We now define the mapping establishing the connection (definition 7)
and refer the reader to Rasiowa and Sikorski book ”Mathematics of Metamath-
ematics” for its proof.

Let L be a propositional language of modal logic, as defined by (44), i.e the
language

L = L{∩,∪,⇒,¬,I}.

Let L0 be a language obtained from L by elimination of the connective I and by
the replacement the negation connective ¬ by the intuitionistic negation, which
we will denote here by a symbol ∼. Such obtained language

L0 = L{∩,∪,⇒,∼} (53) l2

is a propositional language of the intuitionistic logic.
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In order to establish the connection between the languages (44) and (53), and
hence between modal and intuitionistic logic, we define a mapping f which to
every formula A ∈ F0 of L0 assigns a formula f(A) ∈ F of L.

We define a mapping f as follows.

mapping Definition 7 (Gódel - Tarski)

A function f : F0 → F be such that

f(a) = Ia for any a ∈ V AR,

f((A⇒ B)) = I(f(A)⇒ f(B)),

f((A ∪B)) = (f(A) ∪ f(B)),

f((A ∩B)) = (f(A) ∩ f(B)),

f(∼ A) = I¬f(A),

where A,B denote any formulas in L0 is called a Gödel - Tarski mapping.

Example

Let A be a formula
((∼ A ∩ ∼ B)⇒∼ (A ∪B))

and f be the mapping of definition 7. We evaluate f(A) as follows

f((∼ A ∩ ∼ B)⇒∼ (A ∪B)) =

I(f(∼ A ∩ ∼ B)⇒ f(∼ (A ∪B)) =

I((f(∼ A) ∩ f(∼ B))⇒ f(∼ (A ∪B)) =

I((I¬fA ∩ I¬fB)⇒ I¬f(A ∪B)) =

I((I¬A ∩ I¬B)⇒ I¬(fA ∪ fB)) =

I((I¬A ∩ I¬B)⇒ I¬(A ∪B)).

We use notation `I A do denote the fact that A is intuitionistically provable,
i.e. provable in any intuitionistic proof system I.

With these hypotheses and notation the following theorem holds.

pmint Theorem 25

Let f be the Gödel mapping (definition 7). For any formula A of L0,

`I A if and only if `S4 f(A),

where I, S4 denote any proof systems for intuitionistic and and S4 logic, re-
spectively.
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In order to establish the connection between the modal logic and classical logic
we consider the Gódel - Tarski mapping (definition ??) between the modal
language L{∩,∪,⇒,¬,I} and its classical sub-language L{¬,∩,∪,⇒}.

Now with every classical formula A we associate a modal formula f(A) defined
by induction on the length of A as follows:

f(a) = Ia, f((A⇒ B)) = I(f(A)⇒ f(B)),

f((A ∪B)) = (f(A) ∪ f(B)), f((A ∩B)) = (f(A) ∩ f(B)), f(¬A) = I¬f(A).

We use notation `H A do denote the fact that A is classically provable, i.e.
provable in any proof system for classical propositional logic.

The following theorem established relationship between classical logic and modal
S5.

Theorem 26

Let f be the Gödel mapping (definition 7) between L{¬,∩,∪,⇒} and L{∩,∪,⇒,¬,I}.

For any formula A of L{¬,∩,∪,⇒},

`H A if and only if `S5 f(A),

where H, S5 denote any proof systems for classical and and S5 modal logic,
respectively.

4 Homework Problems

1. The algebraic models for the intuitionistic logic are defined in terms of
Pseudo-Boolean Algebras in the following way. A formula A is said to be
an intuitionistic tautology if and only if v |= A, for all v and all Pseudo-
Boolean Algebras, where v maps V AR into universe of a Pseudo-Boolean
Algebra. I.e. A is an intuitionistic tautology if and only if it is true in all
Pseudo-Boolean Algebras under all possible variable assignments.

A 3 element Heyting algebra as defined in chapter ?? is a 3 element
Pseudo-Boolean Algebra.

(i) Show that the 3 element Heyting algebra is a model for all formulas
(12) - (27).

(ii) Determine for which of the formulas (28) - (34) the 3 element Heyting
algebra acts as a counter-model.

2. Find proofs by constructing proper decomposition trees in Gentzen System
LI of axioms A1 - A11 of the proof system I defined by (4).
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3. The completeness with respect to algebraic semantics of system LI follows
from the Hauptzatz Theorem and the completeness theorem 2. The proof
is a straightforward adaptation of the proof of the completeness theorem
for LK included in chapter ??. Write carefully all steps of the proof of
completeness theorem for LI .

4. Find proofs by constructing proper decomposition trees in Gentzen System
LI of the intuitionistic tautologies (12) - (27).

5. Show that none of the formulas (28) - (34) is provable in LI.

6. Find proofs by constructing proper decomposition trees in Gentzen System
LI of double negation of all of the formulas (28) - (34).

7. Give the proof of the Glivenko theorem 7, i.e. prove that any formula A is
a classically provable if and only if ¬¬A is an intuitionistically provable.

8. Give few examples of formulas illustrating that the following theorems
hold.

Gödel (1) For any A,B ∈ F , a formula (A ⇒ ¬B) is a classically
provable if and only if it is intuitionistically provable.

9. Give examples of formulas illustrating that the following theorems hold.

Gödel (2) If a formula A contains no connectives except ∩ and ¬, then
A is a classically provable if and only if it is an intuitionistically provable.

10. Use the Completeness Theorem 18 to show that the following proof system
CS4 is a complete proof system for the modal logic S4.

We adopt the modal language L{∪,∩,⇒,¬,I,C}. We adopt, as before, two
groups of axioms: classical and modal.
Group 1: we take any complete set of axioms for a classical propositional
logic. Group 2: the following modal axioms.
C1 (C(A ∪B)⇒ (CA ∪CB)),

C2 (A⇒ CA),

C3 (CCA⇒ CA),

C4 C(A ∩ ¬A).

Rules of inference: we adopt the Modus Ponens (MP ) and an additional
rule,

(C)
(A⇒ B)

(C¬B ⇒ C¬A)
.

We define the proof system CS4 as follows

CS4 = ( L,F , classical axioms, C1− C4, (MP ), (C) ).
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11. Evaluate f(A), where f is the Gödel- Tarski mapping (definition 7), for
all the formulas A listed below.

(i) (¬A ∪ ¬B)⇒ (¬A ∩ ¬B))

(ii) ((A⇒ B)⇒ (¬B ⇒ ¬A))

(iii) ((A⇒ ¬B)⇒ (B ⇒ ¬A))

(iv) (¬¬¬A⇒ ¬A)

(v) (¬A⇒ ¬¬¬A)

(vi) (¬¬(A⇒ B)⇒ (A⇒ ¬¬B))

(vii) ((C ⇒ A)⇒ ((C ⇒ (A⇒ B))⇒ (C ⇒ B))

12. Use the Completeness Theorem 18 and Embedding Theorems 22, 23 to
show the following.

(i) For any formula A, `RS4 A, if and only if vdashRS5 I¬I¬A,
where RS4, RS5 are proof system (45) and (46).

(ii) For any formula A, `S5 A, if and only if |=S4 I¬I¬IA,
where S4, S5 are proof system (40) and (41).
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