ch6

sec:rs

CHAPTER 6

Propositional Automated Proof Systems

1 Gentzen Style Proof System RS

Hilbert style systems are easy to define and admit different proofs of the Com-
pleteness Theorem but they are difficult to use. By humans, not mentioning
computers. Their emphasis is on logical axioms, keeping the rules of inference,
with obligatory Modus Ponens, at a minimum.

Gentzen style proof systems reverse this situation by emphasizing the impor-
tance of inference rules, reducing the role of logical axioms to an absolute mini-
mum. They may be less intuitive then the Hilbert-style systems, but they allow
us to define effective automatic procedures for proof search, what was impossi-
ble in a case of the Hilbert style systems. For this reason they are also called
automated proof systems. They serve as formal models of computing systems
that automate the reasoning process. Building computing systems means pro-
viding an algorithmic description to a formal proof system so that it can be
implemented on a computer to prove theorems in an efficient manner.

The first proof systems of this style was invented by G. Gentzen in 1934, hence
the name. His proof systems for classical and intuitionistic predicate logics intro-
duced special expressions built of formulas called sequents. Hence the Gentzen
style systems using sequents as basic expressions are often called sequent sys-
tems, or Gentzen sequent systems, or simply Gentzen formalizations.

We present here (section 4) two Gentzen systems GL and G for classical propo-
sitional logic and prove their completeness. We also present a propositional
version of Gentzen original system LK and discuss a proof of Gentzen Haupt-
satz for it. Hauptsatz is literally rendered as the main theorem and is known as
cut-elimination theorem. We prove the equivalency of the cut-free propositional
LK and the complete system G. The Gentzen original formalization for intu-
itionistic propositional logic LI is discussed and presented in chapter ??7. The
classical and intuitionistic predicate versions are discussed in chapter ?77.

The other historically important automated proof system is due to Rasiowa
and Sikorski (1960). Their proof systems for classical propositional and predi-
cate logic use as basic expressions sequences of formulas, less complicated then
Gentzen sequents. As they were inspired Gentzen systems we call them, as we

call many others similarly inspired, Gentzen style proof system, or Gentzen style
formalization. The Rasiowa and Sikorski proof system is simpler and easier to
understand then the Gentzen sequent systems. Hence their system RS is the
first to be presented here in section 1.

Historical importance and lasting influence of Rasiowa and Sikorski work lays
in the fact that they were first to use the proof searching capacity of their proof
system to define a constructive method of proving the completeness theorem for
both propositional and predicate classical logic. We introduce and explain in
detail their method and use it prove the completeness of the RS in section 2.2.
We also introduce and discuss two other RS style system RS1 and RS2 in in
section 3. We also generalize the RS completeness proof method to the Gentzen
sequent systems and prove the completeness of GL and G systems in section
4.1. The completeness proof for proof system RSQ for classical predicate logic
is presented in chapter 77.

2 Proof System RS

We present here a propositional version of the original Rasiowa and Sikorski
(1960) Gentzen style proof system for classical logic. We call it RS system for
Rasiowa-Sikorski. The RS system extends naturally to predicate logic QRS
system which is presented in chapter ?7?7. Both systems admit a constructive
proof of Completeness Theorem. We prove completeness of RS in section 2.2.
We define components and semantics of the system RS as follows.

Components of the proof system RS

Language £

Let F denote a set of formulas of £ = L _, , ~}. The rules of inference of our
system RS operate on finite sequences of formulas, i.e. elements of F*, unlike
on plain formulas F in Hilbert style formalizations.

Expressions £

We adopt as the set of expressions £ of RS the set F*, i.e. £ = F*. We will
denote the expressions of RS, i.e. the finite sequences of formulas by I', A, ¥,
with indices if necessary.

Semantic Link

The intuitive meaning of a sequence I' € F* is that the truth assignment v makes
it true if and only if it makes the formula of the form of the disjunction of all

formulas of T" true. As we know, the disjunction in classical logic is associative
and commutative, i.e., for any formulas A, B, C € F, the formulas (AU(BUC)),
(AuB)UC), (AU(CUB)), (BUA)UC), (CU(BUA)), (CU(AUB)),
((CUA)U B), etc... are logically equivalent. In particular we write

6{A,B,C} =AUBUC

to denote any disjunction of formulas A, B, C.

In a general case, for any sequence I' € F*, if T is of a form
A1, Ag, . Ay (1)

then by dr we will understand any disjunction of all formulas of T". We write it
informally

or=A1UAU...UA,.
Formal Semantics for RS

Let v : VAR — {T, F} be a truth assignment, v* its extension to the set of
formulas F. We formally extend v to the set |calE of expressions of RS | i.e.
to the set F* of all finite sequences of F as follows. For any sequence I' € F*,
if T is the sequence (1), then we define:

v*(T) = v*(dr). (2)

Model

A sequence I' is said to be satisfiable if there is a truth assignment v : VAR —
{T, F} such that v*(I") = T'. Such a truth assignment is called a model for T'.
We denote it as

v ET. (3)

Counter- Model

A sequence I is said to be falsifiable if there is a truth assignment v, such that
v*(I") = F. Such a truth assignment is | called a counter-model for I. We
write it symbolically as

v ET. 4)

Tautology

The sequence T is said to be a tautology if v*(T') = T for all truth assignments
v: VAR — {T, F}. We write it as

=T (5)

Exercise 1

gamma

s—gamma

m-gamma

cm-gamma

Let T' be a sequence a, (bNa),—b, (b= a).

1. Show that the truth assignment v : VAR — {T, F}, such that v(a) = F
and v(b) =T falsifies T, i.e. v ET.

2. LetT be a sequence a,(=bNa),—b,(aUb) and let v be a truth assignment
for which v(a) =T. Prove thatv ET.

3. LetT be a sequence a,(—bNa),—b, (aUb). Prove that =T .

Solution

1. T is the sequence a, (bNa), b, (b = a). We eveluate v*(T') = v*(ér) = v*(a)U
v*(bNa)Uv*(=b)Uv*(b=a) = FU(FNT)UFU(T = F)=FUFUFUF = F.
By (4) we proved v [T

2. Let T be a sequence a,(—bNa), b, (a Ub). We eveluate v*(T") = v*(or
v*(a)Uv*(=bNa)Uv*(=b)Uv*(aUb) = TUv*(=bNa)Uv*(—=b) Uv*(aUb) =
By (3) we proved v =T

~

3. Assume now that I" is falsifiable i.e. that we have a truth assignment v
for which v*(T") = v*(dr) = v*(a) Uv*(=bNa) Uv*(—=b) Uv*(a Ub) = F This is
possible only when (in short-hand notation)

aU(=bNa)U-bUaUb=F,

what is impossible as (mbUb) = T for all v. This contradiction proves that I'
that (5) holds and T is a tautology.

In order to define the axioms LA and the set of rules of inference of RS we need
to introduce some definitions.

Literals

We form a special subset F "C Fof formulas, called a set of all literals, which
is defined as follows.

LT =VARU{~a:a € VAR}. (6)

The variables are called positive literals and the elements of the second set of
the above union (6) are called negative literals. I.e propositional variables are
called positive literals and the negation of a variable is called a negative literal,
a variable or a negation of propositional variable is called a literal.

Indecomposable formulas and sequences

Literals are also called the indecomposable formulas. Now we form finite se-
quences out of formulas (and, as a special case, out of literals). We need to
distinguish the sequences formed out of literals from the sequences formed out

t-axioms

of other formulas, so we adopt the following notation.

We denote by S,
I', A, ¥,... with indices if necessary, (7)

elements of LT* C F* ,ie. I', A', ¥ are finite sequences (empty included)
formed out of literals. We call them indecomposable sequences.

We denote by
I', A, X,... with indices if necessary, (8)

the elements of F*, i.e. T', A, ¥ denote finite sequences (empty included)
formed out of elements of F.

Logical Axioms LA

As the logical axiom of RS we adopt any sequence of literals which contains
any propositional variable and its negation, i.e any sequence of the form

I}, a,Th, —a,Ty (9)

or of the form
Iy,—a,l'y,a,T'g (10)

for any variable a € VAR and any sequences I‘ll, I‘IQ, I‘/3 € LT™ of literals.

Semantic Link

Consider axiom (9). Directly from the extension of the notion of tautology
to bf RS (5), we have that for any truth assignments v : VAR — {T, F'},
v*(F;,ﬁ/a,I‘;,a,Fé) = v*(I'}) U v*(—a) U v*(a) U v* ([,) = v*(T) UT U
v*(T'y,T'3) = T The same applies to the axiom (10) We have thus proved the
following.

Fact 1

Logical axzioms of RS are tautologies.

Rules of inference R

All rules of inference of RS are of the form

Iy I'y; Iy

Loy 2

r r -
where I'1, Tg, T' € F*, ie. I'1, I'y, T are any finite sequences (?7) of formulas.
The sequences I'1, 'y are called premisses and I' is called a conclusion of the

indecomp

rule of inference.

Each rule of inference of RS introduces a new logical connective, or a negation
of a logical connective. We denote a rule of inerence that introduces the logical
connective o in the conclusion sequent I' by (o). The notation (— o) means that
the negation of the logical connective o is introduced in the conclusion sequence
I'. As our language contains the connectives: N, U, = and —, so we we are going
to define the following seven inference rules:

(U)a (_‘ U)’ (m)a (_‘ ﬁ)’ (:>)’ (_‘ :>)v and (_‘ _‘)' (11)

We define formally the inference rules of RS as follows.

Disjunction rules

W) I'A B,A) I'.-A,A : I',-BA
I'',(AUB),A’ I',-(AUB),A

Conjunction rules

) I')AA : T',B,A (=) I',-A,-B,A
I',(AnB),A ~ I',-(ANnB),A

Implication rules

) oABA T4 TLoBA
I', (A= B),A’" I', (A= B),A

Negation rule

where I € LT*,A € F*, A,B € F.
The Proof System RS

Formally we define the proof system RS as follows.

RS = (‘C{—'7§7U,ﬁ}7 87 LAa R)? (12)

where £ ={T': T € F*}, LA contains logical axioms of the system defined by
the schemas (9) and (10), R is the set of rules of inference:

R ={(), (L), (M), (=N); (=), (= =), (=)}

defined by (11).

By a formal proof of a sequence I' in the proof system RS we understand

any sequence
Iy, Iy, ... Ty (13)

of sequences of formulas (elements of F*, such that
IhelA T, =T,

and for alli (1 <i<n)I; € AL, or I'; is a conclusion of one of the inference
rules of RS with all its premisses placed in the sequence I'1I's....T; 1.

As the proof system under consideration is fixed, we will write, as usual,
FT

instead of Frg I' to denote that I" has a formal proof in RS.

As the proofs in RS are sequences (definition of the formal proof) of sequences
of formulas (definition of RS) we will not use ”,” to separate the steps of the
proof, and write the formal proof as I'y; T'g; ... Iy

We write, however, the formal proofs in RS in a form of trees rather then in a
form of sequences, ie. in a form of a tree, where leafs of the tree are axioms,
nodes are sequences such that each sequence on the tree follows from the ones
immediately preceding it by one of the rules. The root is a theorem. We
picture, and write our tree-proofs with the node on the top, and leafs on the
very bottom, instead of more common way, where the leafs are on the top and
root is on the bottom of the tree. We adopt hence the following definition.

Definition 1 (Proof Tree)

By a proof tree, or RS-proof of ' we understand a tree T of sequences satisfying
the following conditions:

1. The topmost sequence, i.e the root of Tr is T,
2. all leafs are axioms,

3. the nodes are sequences such that each sequence on the tree follows from the
ones immediately preceding it by one of the rules.

We picture, and write our proof trees with the node on the top, and leafs on
the very bottom, instead of more common way, where the leafs are on the top
and root is on the bottom of the tree.

In particular cases we write our proof trees indicating additionally the name

of the inference rule used at each step of the proof. For example, if the tree-
proof of a given formula A from azioms was obtained by the subsequent use of

the rules (N), (U), (U), (N), (U), (=), and (=), we represent it as the following
proof tree:

A (conclusion of (=))

| (=)
conclusion of (=)
[(==)
conclusion of (U)
| (W)

conclusion of (N)

A
conclusion of (N) conclusion of (U)
[(V) | (V)
aziom conclusion of (N)

A

axiom axiom

The proof trees are often called derivation trees and we will use this notion
as well. Remark that the proof trees don’t represent a different definition of
a formal proof. Trees represent a certain wvisualization of the proofs and any
formal proof in any system can be represented in a tree form.

Example 1
Here is a proof tree in RS of the de Morgan law (—(a Nb) = (—a U —b)).

(=(and) = (—aU b))
[(=)
—=(anb), (—aU-d)

[(=)
(aNb), (maU—b)

A©)

a, (—a U —b) b, (—a U —b)
| (V) | (V)
a, oa, b b, —a, b

To obtain a "linear ” formal proof of (=(aNb) = (~aU—b)) we just write down
the tree as a sequence, starting from the leafs and going up (from left to right)
to the root. The formal proof (with comments) thus obtained is:

a,—a,—b (axiom)

b,—a,—b (axiom)
a, (—aU=b) (rule (U))

b, (maU=b) (rule (U))
(and),(maU=b) (rule(n))
—=(anb), (maU=b) (rule (—))
(=(anbd) = (maU b)) (rule (=)).

2.1 Search for Proofs and Decomposition Trees

The main advantage of the Gentzen style proof systems lies not in a way we
generate proofs in them, but in the way we can search for proofs in them.
That such proof searches happens to be deterministic and automatic. Before
we describe a general proof search procedure for RS let us look at few simple
examples. Consider now a formula A of the form of another de Morgan law

(=(aUb) = (—an—b)).

Obviously it should have a proof in RS as we want it to be, and will prove later
to be complete. The search for the proof consists of building a certain tree.
We call it a decomposition tree, to be defined formally later. We proceed as
follows.

Observe that the main connective of A is =. So, if A had a proof in RS it
would have come from the only possible rule used in its last step, namely the
rule (=) applied to its premiss, namely a sequence =—(aUb), (ma N —=b). So the
last step in the proof of A would look as follows.

(=(aUb) = (man-d))

[(=)
—=(aUb), (—a N —b)
Now, if the sequence =—(aUb), (—ma N —b) (and hence also the formula A) had a
proof in RS its only step at this stage would have been the application of the
rule (——) to a sequence (aUb), (—aN—b). So, if A had a proof, its last two steps

would have been:
(=(aUb) = (man-b))

[(=)

—=(aUb), (—an -b)
[(=)
(a Ub), (ma N —b)

Again, if the sequence (a Ub), (—a N —b) had a proof in RS its only step at this
stage would have been the application of the rule (U) to a sequence a, b, (maN—b).
So, if A had a proof, its last three steps would have been as follows.

(—(aUb) = (~an-b))

| (=)
—=(aUb), (—a N —b)
(=)
(a Ub), (—an—b)
[(V)
a,b, (—a N —b)

Now, if the sequence a, b, (maN—b) had a proof in RS its only step at this stage
would have been the application of the rule (N) to the sequences a,b, ~a and
a,b,—b as its left and right premisses, respectively. Both sequences are axioms
and the following tree is a proof of A in RS.

a,b,—a a,b,—b

From the above proof tree of A we construct, if we want, its formal proof, written
in a vertical manner, by writing the two axioms, which form the two premisses of
the rule (N) one above the other. All other sequences remain the same. Le. the
following sequence of elements of F* is a formal proof of (—(aUb) = (-an-b))
in RS.

10

a,b,—b

a,b,—a
a,b, (—a N -b)
(aUb), (man-b)
—=(aUb), (—a N -b)
(=(aUb) = (man-b))

Consider now a formula A of the form
(((a=b)N=c)U(a=c)).

Observe that the main connective of A is U. So, if A had a proof in RS it would
have come from the only possible rule used in its last step, namely the rule (U)
applied to a sequence ((a = b) N —c¢), (a = ¢). So the last step in the proof of A
would have been:

(((a=b)N-c)U(a=c))

| (V)
((a = b)N=e), (a=c)

Now, if the sequence ((a = b) N —¢), (a = ¢) (and hence also had our formula)
had a proof in RS its only step at this stage would have been the application
of the rule (N) to the sequences (a = b), (a = ¢) and —¢, (a = c¢) as its left and
right premisses, respectively. So, if A had a proof, its last two steps would have
been:

(((la=b)N=c)U(a=c))

| (V)

((a =b)N—c), (a=c)
A)

—¢, (a = ¢)
(a=10),(a=c)

11

Now, if the sequences (a = b), (a = ¢) and —¢, (a = ¢) had proofs in RS, then
their last, and the only steps would have been the the separate application of
the rule (=) to the sequences —a,b, (a = ¢) and —¢, —a, ¢, respectively. The
sequence —¢, —a,c is an axiom, so we stop the search on this branch. The
sequence —a,b, (a = ¢) is not an axiom, so the search continues. In this case
we can go one step further: if —a,b, (e = ¢) had a proof it would have been
only by the application of the rule (=) to a sequence —a,b, —a, ¢ which is not
an axiom and the search ends. The tree generated by this search is called a
decomposition tree and is the following.

(((a=b)N-c)U(a=c))

(a=b),(a= 0 o =
| (=)
=)

-a,b,—a,c

The tree generated by this search contains a non-axiom leaf, so by definition,
it is not a proof.

Decomposition Rules and Trees

The process of searching for the proof of a formula A in RS consists of building
a certain tree, called a decomposition tree whose root is the formula A, nodes
correspond to sequences which are conclusions of certain rules (and those rules
are well defined at each step by the way the node is built), and leafs are axioms or
are sequences of a non- axiom literals. We prove that each formula A generates
its unique, finite decomposition tree, T 4 such that if all its leafs are axioms,
the tree constitutes the proof of A in RS. If there is a leaf of T4 that is not
an azxiom, the tree is not a proof, moreover, the proof of A does not exist.

Before we give a proper definition of the proof search procedure by building a
decomposition tree we list few important observations about the structure of
the rules of the system RS.

12

Introduction of Connectives

The rules of RS are defined in such a way that each of them introduces
a new logical connective, or a negation of a connective to a sequence in
its domain (rules (U), (=), (N)) or a negation of a new logical connective
(rules (= V), (= M), (= =), (= 7).

The rule (U) introduces a new connective U to a sequence F/,A, B, A and
it becomes, after the application of the rule, a sequence I' , (A U B), A.
Hence a name for this rule is (U).

The rule (—U) introduces a negation of a connective, U by combining
sequences I' ;= A, A and T",—B, A into one sequence (conclusion of the
rule) I', ~(A U B), A. Hence a name for this rule is (—U).

The same applies to all remaining rules of RS, hence their names say which
connective, or the negation of which connective has been introduced by
the particular rule.

Decomposition Rules

Building a proof search decomposition tree consists of using the inference
rules in an inverse order; we transform them into rules that transform
a conclusion into its premisses. We call such rules the decomposition
rules. Here are all of RS decomposition rules.

Disjunction decomposition rules

) I',(AUB),A =) I',-(AUB),A
I'A,B,A ’ I',-A,A : IT',-B,A
Conjunction decomposition rules
I',(AnB),A I',-(AnB),A

N - N
() I'AA ; T',B,A’ (=) I, -A,-B,A
Implication decomposition rules

I',(A= B),A I',~(A= B),A

v asa T Aia o T-BA
Negation decomposition rule
(= =) I, ——AA
', A A

where I € LT*, A € F*, A, B € F.

We write the decomposition rules in a visual tree form as follows.

13

Tree Decomposition Rules

(U) rule
I' (AUB),A
[(V)
I' A, B, A
(- U) rule
I', =(AUB), A
A=v)
', -4, A ', -B, A
(N) rule:
I', (ANB), A
A
', A A I', B, A
(= N) rule:
I',~(ANB),A
[(=)
I',-A,-B,A
(=) rule:
I', (A= B), A
®)
I',-A, B A

indecomp

observ

(= =) rule:

(= =) rule:
', =—A, A
[(=)
', A, A
Observe that we use the same names for the inference and decomposition rules,
as once the we have built the decomposition tree (with use of the decomposition

rules) with all leaves being axioms, it constitutes a proof of A in RS with
branches labeled by the proper inference rules.

Now we still need to introduce few useful definitions and observations.

Definition 2
1. A sequence T' is indecomposable if and only if T' € LT™.
2. A formula A is decomposable if and only if A€ F — LT.

3. A sequence I' is decomposable if and only if it contains a decomposable
formula.

Directly from the definition 8 we have three simple, but important observations.

Fact 2

1. For any decomposable sequence T', i.e. for any T' & LT™ there is exactly
one decomposition rule that can be applied to it. This rule is determined by the
first decomposable formula in T, and by the main connective of that formula.

2. If the main connective of the first decomposable formula is U,N, or =, then
the decomposition rule determined by it is (U), (N), or (=), respectively.

3. If the main connective of the first decomposable formula is -, then the de-
composition rule determined by it is determined by the second connective of the
formula. If the second connective is U,N, -, or =, then corresponding decom-
position rule is (-U), (-N), (=) and (- =).

15

unique

Directly from the Fact 2 we we have the following lemma.

Lemma 1 (Unique Decomposition)

For any sequence I' € F*,

I'e LT* orT is in the domain of only one of the RS Decomposition Rules.
Now we define formally, for any formula A € F and I" € F* their decompositions

trees. The decomposition tree for for the formula A is a particular case (one
element sequence) of the tree for a sequence I'.

Definition 3 (Decomposition Tree T ,4)
For each formula A € F, its decomposition tree T 4 is a tree build as follows.

Step 1. The formula A is the root of T4 and for any node ' of the tree we
follow the steps below.

Step 2. If ' is indecomposable, then I' becomes a leaf of the tree.

Step 3. If T is decomposable, then we traverse I' from left to right to identify
the first decomposable formula B and identify the decomposition rule deter-
mined by the main connective of B. In case of a one premisses rule we put
is premise as a leaf; in case of a two premisses rule we put its left and right
premisses as the left and right leaves respectively.

Step 4. We repeat Step 2 and Step 8 until we obtain only leaves.

We now prove the following Decomposition Tree Theorem 1. This Theorem
provides a crucial step in the proof of the Completeness Theorem for RS.
Theorem 1 (Decomposition Tree)

For any sequence I' € F* the following conditions hold.

1. Tr is finite and unique.
2. Tr is a proof of T in RS if and only if all its leafs are axioms.

3. Frs if and only if Tt has a non- axiom leaf.

Proof

The tree Tt is unique by the Unique Decomposition Lemma 1. It is finite
because there is a finite number of logical connectives in I and all decomposition
rules diminish the number of connectives. If the tree has a non- axiom leaf it is
not a proof by definition. By the its uniqueness it also means that the proof
does not exist.

16

Exercise 2

Construct a decomposition tree T o of the following formula A.

A= ((aUb) = —a)U (-a = —c))

Solution

The formula A forms a one element decomposable sequence. The first decom-
position rule used is determined by its main connective. We put a box around
it, to make it more visible. The first and only rule applied is (U) and we can
write the first segment of our decomposition tree T 4:

Tx

((aUb) = ﬂa)(—wz = —¢))
| (U)

((aUb) = —a), (—a = —c)
Now we decompose the sequence ((a Ub) = —a),(-a = —¢)). It is a decom-
posable sequence with the first, decomposable formula ((a Ub) = —a). The
next step of the construction of our decomposition tree is determined by its
main connective = (we put the box around it), hence the only rule determined

by the sequence is (=). The second stage of the decomposition tree is now as
follows.

Ta

((aUb) = ﬂa)(ﬁa = —¢))

[(V)
((aUb)[=Tra), (—a = —c)
(=)
—(aUb),—a, (—a = —c)
The next sequence to decompose is the sequence —(a U b), —a, (—a = —c).
The first decomposable formula is =(aUb). Its main connective is -, so determine

the appropriate decomposition rule we have to examine next connective, which
is U.

The rule determine by this stage of decomposition is (= U) and now the next
stage of the decomposition tree T 4 is as follows.

17

Ta
((aUb) = ﬂa)(ﬁa = —¢))
| (U)
((aUb)[=Ta), (ma = —c)
| (=)
(ab), -a, (ma = —c)

A=V

—a, —a, (ma = —c) =b, —a, (ma = —c)

Now we have two decomposable sequences: —a, —a, (—a = —¢) and —b, —a, (—a =
—¢). They both happen to have the same first decomposable formula (—a = —c¢).
We decompose it simultenously and obtain the following:

Ta

((aUb) = ﬂa)(ﬁa = —¢))

| (V)
((aUb)[=Ta), (—a = —c)
[(=)
[=1(a[Up), —a, (ma = —c)

AV)

—a, —a, (—a[=]~c) —b, —a, (—a[=]~c)
| (=) | (=)

—|a7 —|a7 _‘_‘Cl, —C —|b, —|CL7 _‘_‘CL, —C

It is easy to see that we need only one more step to complete the process of
constructing the unique decomposition tree of T 4, namely, by decomposing the
sequences: —a, -a, "—a, ¢ and —b, —a, ——a, c.

The complete decomposition tree T 4 is:

18

Ta
((aUd) = ﬁa)(ﬁa = —¢))
®)
((aUb)[=]a), (—a = —c)
| (=)
(ab), —a, (—a = —c)

A=)

—a, —a, (—a[=]~c) —b, —a, (—a[=T]~c)
| (=) | (=)
-a,~a,[-—la, e —b, ~a,[——a, ¢
| (=) | (=)

-a, —a, a, c =b, —-a, a, —c
All leafs are axioms, the tree represents a proof of A in RS

Exercise 3

Prove that the formula A = (((a = b) N —¢) U (a = ¢)) is not provable in RS,
i.€.
Frs (((a=0b)N=c)U(a=c)).

Solution
We construct the formula A decomposition tree as follows.
Ta
(((a=b)N=c)U(a=c))
| (L)

((a=b)N=c),(a=c)

A

(a=0b),(a=c) -, (a = ¢)
| (=) | (=)
-a, b, (a = c) ¢, —a, ¢
(=)

—a, b, —a,c

The above tree T 4 is unique by the Theorem 1 and represents the only possible
search for proof of the formula A = ((a = b) N —=¢) U (a = ¢)) in RS. It has a
non-axiom leaf, hence by Theorem 1 the proof of A in RS does not exists.

19

r-strsound

2.2 Strong Soundness and Completeness

Our main goal is to prove the Completeness Theorem for RS. The proof of
completeness presented here is due to Rasiowa and Sikorski, as is the proof
system RS. Their proof, and the proof system was inverted for the classical
predicate logic and was published in 1961. We present their predicate logic proof
system QRS together with the proof of its completeness in chapter ?7. Both
completeness proofs, for propositional RS and predicate QRS proof systems,
are constructive as they are based on a direct construction of a counter model
for any unprovable formula. The construction of a counter model for a formula
A uses directly its decomposition tree T 4. We call such constructed model a
counter model determined by the tree T 4. Both proofs relay heavily of the
notion of a strong soundness. We define it now, adopting Chapter 7?7 general
definition to our semantics.

Definition 4 (Strongly Sound Rules)
Given a proof system S = (L,E, LA, R) An inference rule r € R of the form

r) P P ... P,
C

is strongly sound (undef classical semantics) if the following condition holds
forallv: VAR — {T,F}

v ={P, Py, .Pn} ifandonlyif v E C. (14)

We say it less formally that a rule (1) is strongly sound if the conjunction of
its premisses is logically equivalent with the conclusion, i.e.

PNPN...NP,=C. (15)

Definition 5 (Strongly Sound S)

A proof system S = (L,E,LA,R) is strongly sound (undef classical semantics)
if and only if all logical axioms LA are tautologies and all its rules of inference
r € R are strongly sound.

Theorem 2 (Strong Soundness)
The proof system RS (18) is strongly sound.

Proof

The logical axioms (9), (10) are tautologies by Fact ??. We prove as an example
the strong soundness of two of inference rules: (U) and (—U). Proofs for all
other rules follow the same patterns and are left as an exercise. By definition
4 of strong soundness we have to show the condition (15). Written formally

20

ssound

ss-equiv

it says that we have to show that that if P;, P, are premisses of a given rule
and C is its conclusion, then for all truth assignments v : VAR — {T, F},
v*(Py) = v*(C) in case of one premiss rule, and v*(P;) Nv*(Py) = v*(C), in
case of a two premisses rule. Consider the rule (U).

I'A B,A

V) v aop.a

By the definition:
v (I, A, B,A) = v* (6 4 pay) = 0" () U™ (A) Uv*(B) Uv*(A) = v*(I') U
v (AU B) Uv*(A) = v*(p (aum),ay) = v* (T, (AU B), A).

Consider the rule (—U).

—U) I',-A,A : I',-BA
F/,—\(AUB),A

By the definition:

v*(T', A4, A)No*(T", =B, A) = (v*(I') Uv* (=A) Uv*(A)) N (v*(I) Uv* (~B) U
v*(A)) = (v*(I",A) Uv*(=A)) N (v*(I",A) Uv*(=B)) = by distributivity =
(v*(I", A)U (v* (~A) Nv*(=B)) = v*(I") Uv* (A) U (v*(wAN=B)) = by the log-
ical equivalence of (mAN=B) and =(AUB) = v* (01 _(aup)a} = v* (I, ~(AU
B), A)).

Observe that the strong soundness implies soundness (not only by name!), hence
we have also proved the following.

Theorem 3 (Soundness for RS)

For any T" € F*,
if FrsT, then | T. In particular, for any A€ F, if Frs A, then = A.

We have just proved (Theorem 2) that all the rules of inference of RS of are
strongly sound, i.e. C'= P and C' = P; N P,. The strong soundness of the rules
means that if at least one of premisses of a rule is false, so is its conclusion. Hence
given a formula A, such that its T 4 has a branch ending with a non-axiom leaf.
By Strong Soundness Theorem 2, any v that make this non-axiom leaf false also
falsifies all sequences on that branch, and hence falsifies the formula A. This
means that any v, such that it falsifies a non-axiom leaf is a counter-model
for A. We have hence proved the following.

Theorem 4 (Counter Model)

21

Given a formula A € F such that its decomposition tree T4 contains a non-
axiom leaf L. Any truth assignment v that falsifies the non-axiom leaf L 4 is
a counter model for A. We call it a counter-model for A determined by the
decomposition tree T 4.

Here is a simple example explaining how the construction of a counter-model
determined by the decomposition tree of a works. Consider a tree

Ta
(((a=b)N=c)U(a=c))

| (V)

((a=b)N=c),(a=c)

A

(a=0b),(a=c) -, (a = c)
| (=) | (=)
—a, b, (a = c) —c, —a, ¢
| (=)

—a, b, na,c
b)

The tree T4 has a non-axiom leaf L4 : —a, b,—a, c¢. The truth assignment
v: VAR — {T,F} that falsifies the leaf —a, b, —a, ¢ must be such that

v*(—a, b, —a, c) = v*(—a)Uv* (b)Uv* (—a)Uv*(c) = —w(a)Uv(b)U-w(a)Uv(c) = F,
i.e. v must be such that —v(a) U v(b) U —w(a) Uwv(c) = F. We hence get that
v(a) =T, v()=7F, wv(c)=F. By the Counter Model Theorem 4, the truth
assignment v determined by the non-axiom leaf also falsifies the formula A, i.e.
we proved that v is a counter model for A and

E (((a=b)N-c)U(a=c)).
The Counter Model Theorem 4, says that the logical value F determined by the

evaluation a non-axiom leaf ”climbs” the decomposition tree. We picture it as
follows.

(a=b),(a=c)=F —¢, (a = c)

[(=) | (=)
—a,b,(a=c)=F —c, a, ¢
| (=) aziom

-a,b,—a,c=F

Observe that the same counter model construction applies to any other non-
axiom leaf of T 4, if exists. The other non-axiom leaf of T 4 defines another
evaluation of the non- axiom leaf to F that also ”climbs the tree” and hence
defines another counter- model for a formula A. By Counter Model 4 all possible
restricted counter-models for A are those determined by its all non- axioms
leaves.

In our case the tree T4 has only one non-axiom leaf, and hence the formula
(((a = b) N —¢) U (a = ¢)) only only one restricted counter model.

Our main goal is to prove the Completeness Theorem for RS. We prove first
the Completeness Theorem for formulas A € F and then we generalize it to any
sequences I' € F*.

Theorem 5 (Completeness Theorem)

For any formula A € F,
1. Frs A if and only if = A, and for any T' € F*,
2. bFrs T if and only if = T.

Proof
Case 1. We have already proved the Soundness Theorem 3, so we need to prove
only the completeness part of it, namely to prove the implication:

if E A, then btgrg A. (16)
We prove instead of the opposite implication:

if /%RS A then bé A. (17)

Assume that A is any formula is such that Jrs A. By the Decomposition Tree
Theorem 1 the tree T 4 contains a non-axiom leaf L 4. We use the non-axiom
leaf L4 to define a truth assignment v: VAR — {T, F} which falsifies it
as follows:

F if a appearsin L4
via)=<¢ T if -a appearsin La
any value if a does not appear in L4

By the Counter Model Theorem 4we have that v also falsifies the formula A.
We proved that
A

23

sec:rsl

and it ends the proof of the case 1.

Case 2. Assume that I' € F* is any sequence such that J-rs I'. But obviously,
Frs I if and only if Frs dr, where o1 is any disjunction of all formulas of T'.
So Frs I if and only if frs dr and by already proven Case 1, = dr what is
obviously equivalent to = T'. This ends the proof of Case 2 and Completeness
Theorem.

3 Proof Systems RS1 and RS2

We present here a two modifications of the system RS as an exercise of impor-
tance of paying close attention to the syntax. Proof systems might be, as all
presented here RS type systems are, semantically identical, nevertheless they
are very different proof systems.

Language of RS1 is the same as the language of RS, i.e.
E == E{“,ﬁ,u,ﬂ}‘

Rules of inference of RS1 operate as rules of RS on finite sequences of for-
mulas and we adopt

E=F"
as the set of expressions of RS1 . We denote them, as before, by I'; A; > ...,
with indices if necessary.

The proof system RS1 contains seven inference rules, denoted by the same
symbols as the rules of RS, namely (U), (-U), (N), (-N), (=), (=

) (=)

The inference rules of RS1 are quite similar to the rules of RS Look at them
carefully to see where lies the difference.

Reminder Any propositional variable, or a negation of propositional variable
is called a literal. The set LT =VARU{-a: a € VAR} is called a set of
all propositional literals. The variables are called positive literals. Negations of
variables are called negative literals. We denote, as before, by F', A', E/, e
finite sequences (empty included) formed out of literals. We adopt all logical
axiom of RS as the axioms of RS1, i.e. logical axioms LA of RS1 are:

!’ !’ !
Fl; a, FQ» -a, F3a

Iy, ma, I'y, a, I'y
where a € VAR is any propositional variable.

We define the inference rules of RS1 as follows.

24

Disjunction rules

W) I, A, B, A =) I, -4, A" : T, -B, A
I, (AUB), A” T, - (AUB), A ’

Conjunction rules

()F,A, A", I, B, A (m)r, —A, =B, A’
r, (AnB), A ’ I',-(AnB),A’
Implication rules
I, A, B,A r, A, A" : T, -B, A

S rasp s U7 T Troash A

Negation rule
=) I, A, A
VT, oA A

where I' € F*, A" e LT*, A, B € F.
Proof System RS1

Formally we define the proof system RS1 as follows.

RS]— = (L{ﬁ,=>,u,m}» 5, LAa R), (18)

where £ = {T": T € F*}, LA is the set logical axioms and R is the set of rules
of inference defined above.

Exercise 4

Construct a proof in RS1 of a formula

A= (~(anb) = (~aU-b)).

Solution
The decomposition tree below is a proof of A in RS1 as all its leaves are axioms.

Ta
(=(anNb) = (—aU-b))
| (=)

(==(and), (—aU-d)

25

| ()

—\—\(a Nb), ~a, =b

| (=)

(anb),—a,—d
A

a,—a, b b, —a, b

Exercise 5

Prove that RS1 is strongly sound.

Solution

Observe that the system RS1 is obtained from RS by changing the sequence I”
into I' and the sequence A into A’ in all of the rules of inference of RS. These
changes do not influence the essence of proof of strong soundness of the rules
of RS. One has just to replace the sequence I'' by T’ and the sequence A by A
in the proof of strong soundness of each rule of RS to obtain a corresponding
proof of strong soundness of corresponding rule of RS1. We do it, for example
for the rule (U) of RS1. Consider the rule (U) of RS1:

I, A, B, A

W)t G@on, A

We evaluate:

’

V(0 A, B,A") = 0" (§ip 4 5 ary) = v (D) Uv™(A) Uv*(B) Uv™(A)
=v"(T)U v (AUB)Uv*(A") = 0" (8;r (aumyary) = 0" (T, (AU B), A).

Exercise 6

Define in your own words, for any formula A € F the decomposition tree T 4
in RS1.

Solution

The definition of the decomposition tree T, is again, it its essence similar
to the one for RS except for the changes which reflect the differences in the
corresponding rules of inference. We follow now the following steps.

Step 1 Decompose A using a rule defined by its main connective.

Step 2 Traverse resulting sequence I' on the new node of the tree from right
to left and find the first decomposable formula.

Step 3 Repeat Step 1 and Step 2 until there is no more decomposable
formulas. End of tree construction.

26

c-rsl

Exercise 7

Prove the following Completeness Theorem for RS1.

Theorem 6

For any formula A € F,
1. Frs1 A if and only if &= A, and for any T € F*,
2. Frsi Difand only if E T.

Solution Part 1.
Observe that directly from the definition of the uniqueness of the decomposition
tree T4 we have that the following holds.

Fact 3

The decomposition tree T o is a proof if and only if all leaves are axioms and
the proof does not exist otherwise, i.e. we have that frs1 A if and only if
there is a non- axiom leaf on T 4.

The Fact 3 together with strong soundness of the rules of inference of RS1
justify the correctness of construction of a counter-model generated by a the
a non- axiom leaf and hence the correctness of the following proof of the
Completeness Theorem.

We prove, as we did in case of RS the implication

if Jrs1 A then K A

Assume that A is any formula such that frs; A. By the Fact 3 the decom-
position tree T 4 contains a non-axiom leaf L 4. We use the non-axiom leaf L 4
and define a truth assignment v which falsifies A, as follows:

F if a appearsin Ly
via) =< T if -a appears in Ly4
any value if a does not appear in L 4.

This proves, by the strong soundness of RS1, that [~ A.

The proof of Part 2. is identical to the proof in RS case.

Proof System RS2 (19)

System RS2 is a proof system obtained from RS by changing the sequences r
intoI' in all of the rules of inference of RS. The logical axioms LA remain
the same. Observe that now the decomposition tree may not be unique

Exercise 8

27

RS2

Construct two decomposition trees in RS2 of the formula

A= (=(-a= (an=b)) = (maN(-aU-Db))).

Solution
Here are two out of many more decomposition trees.

T1a
(=(ma => (an=b)) => (-an (-a U -b)))
| (=)
—=(ma => (an-b)), (~a N (—aU b))
| (==)
(ma => (an b)), (ma N (—a U b))
| (=)
==a, (@ N =b), (—a N (—a U —b))
| (==)
a, (aN=b), (—a N (-aU-b))
A
a,a, (—a N (—a U -b)) a, —b, (—ma N (—a U —b))

AGQ) A

a,a.ma, (maU=db) a,a,(—-aU-b) a,—b,—-a a,—b,(—aU-b)
| (V) | (L) axiom | (L)
a, a.—a, oa, b a,a,~a, b a, b, —a, b
axiom axiom axiom

The other tree is:

T24
(=(ma => (an—b)) => (—ma N (ma U-Dd)))

| (=)
—=(—a => (aN b)), (ma N (—a U b))
| (=)

(ma => (an b)), (ma N (—a U -b))

A

28

(ma => (an b)), na
(ma => (anN b)), (ma U —b)

(=)
(==a, (a N =b)), —~a | (U)
| (=) (ma => (an—b)),a,-b
a, (aN=b),—a | (=)
/\(ﬂ) (=—a, (a N =b),—a,—b
| (=)
0.0 —a 4 —b,—a a, (a N =b),—a, b
. _ A

a,a,—a,—b a,—b,—a, b

ariom azxiom

Exercise 9

Ezxplain why the system RS2 is strongly sound. You can use the strong
soundness of the system RS.

Solution

The only one difference between RS and RS2 is that in RS2 each inference rule
has at the beginning a sequence of any formulas, not only of literals, as in RS.
So there are many ways to apply the decomposition rules while constructing the
decomposition tree, but it does not affect strong soundness, since for all rules
of RS2 premisses and conclusions are still logically equivalent as they were in
RS .

Consider, for example, RS2 rule

L) I''A, B,A
I, (AUB),A"
We evaluate v*(I', A, B, A) = v*(I') Uv*(A) Uv*(B) Uv*(A) = v*(T) Uv* (AU
B)Uv*(A) =v*(T', (AU B), A). Similarly, as in RS, we show all other rules of
RS2 to be strongly sound, thus RS2 is sound.

Exercise 10

Define shortly, in your own words, for any formula A, its decomposition tree
T4 in RS2. Justify why your definition is correct. Show that in RS2 the
decomposition tree for some formula A may not be unique.

Solution
Given a formula A. The decomposition tree T 4 can be defined as follows. It has

29

c-rs2

A as a root. For each node, if there is a rule of RS2 which conclusion has the
same form as node sequence, i.e. there is a decomposition rule to be applied,
then the node has children that are premises of the rule. If the node consists
only of literals (i.e. there is no decomposition rule to be applied), then it does
not have any children. The last statement define a termination condition for
the tree T 4.

This definition defines correctly the decomposition tree T 4 as it identifies and
uses appropriate decomposition rules. Since all rules of inference of RS2 have
a sequence I instead of IV as it was in RS, the choice of the decomposition rule
for a node may not unique. For example consider a node (a => b), (bUa).
I' in the RS2 rules may be a sequence of formulas, not only literals, so for the
node (a=>1), (bUa) we can choose as a decomposition rule either (=>) or
(U). This leads to a non-unique tree.

Exercise 11

Prove the following Completeness Theorem for RS2.

Theorem 7

For any formula A € F,
1. Frs2 A if and only if = A, and for any T € F*,
2. Frs2 Difand only if E T.

Solution
We need to prove the completeness part only, as the Soundness has been already
proved, i.e. we have to prove the implication (Part 1): for any formula A,

if /ps2 A then I#A

Assume Frgo A. Then every decomposition tree of A has at least one non-
axiom leaf. Otherwise, there would exist a tree with all axiom leaves and it
would be a proof for A. Let T4 be a set of all decomposition trees of A. We
choose an arbitrary T4 € T4 with at least one non-axiom leaf L. We use the
non-axiom leaf L4 to define a truth assignment v which falsifies A, as follows:

F if a appearsin Ly
via)=<9 T if -a appearsin L4

any value if a does not appear in L

The value for a sequence that corresponds to the leaf in is F. Since, because of
the strong soundness F ”climbs” the tree, we found a counter-model for A. This
proves that (= A. Part 2. proof is identical to the proof in RS case.

Exercise 12

30

sec:Gentzen

Write a procedure TREFE 4 such that for any formula A of RS2 it produces its
unique decomposition tree.

Solution
Here is the procedure.

Procedure TREE 4(Formula A, Tree T)

{

B = ChoseLeftMostFormula(A) // Choose the left most formula that is
not a literal

¢ = MainConnective(B) // Find the main connective of B

R = FindRule(c)// Find the rule which conclusion that has this connective

P = Premises(R)// Get the premises for this rule

AddToTree(A, P)// add premises as children of A to the tree

For all p in P // go through all premises

TREE4(p,T) // build subtrees for each premiss

Exercise 13

Prove completeness of your Procedure TREFE 4.

Solution

Procedure TREE 4 provides a unique tree, since it always chooses the most
left indecomposable formula for a choice of a decomposition rule and there is
only one such rule. This procedure is equivalent to RS system, since with the
decomposition rules of RS the most left decomposable formula is always chosen.
The proof RS system is complete, thus this Procedure TREFE 4 is complete.

4 Gentzen Sequent Systems GL, G, LK

Gentzen proof systems GL and G for the classical propositional logic presented
here are inspired by and all are versions of the original (1934) Gentzen system
LK. Their axioms, the rules of inference of the proof system considered here
operate, as the original Gentzen system LK, on expressions called by Gentzen
sequents, hence the name Gentzen sequent proof systems, called also Gentzen
sequent calculus, or sequents calculus. The original system LK is presented and
discussed in detail in section 6.

4.1 Gentzen Sequent Systems GL and G

The system GL presented here is the most similar in its structure to the system
RS (18) and hence is the first to be considered. It admits a constructive proof of

31

the Completeness Theorem that is very similar to the proof of the Completeness
Theorem for the system RS.

Language of GL

We adopt a propositional language £ = Ly n - -} with the set of formulas
denoted by F and we add a new symbol —— called a Gentzen arrow, to it.
It means we consider formally a new language £1 = L= -3 U{—}. As
the next step we build expressions called sequents out of £1. The sequents are
built out of finite sequences (empty included) of formulas, i.e. elements of F*
of L{y,n,= -}, and the additional sign —.

We denote , as in the RS system, the finite sequences of formulas of of L{, n = -y
by Greek capital letters
| RAVAND DRI

with indices if necessary. We define a sequent as follows.

Definition 6 (Sequent)

For any I', A € F*, the expression
r —A

18 called a sequent. I is called the antecedent of the sequent, A is called the
succedent, and each formula in T' and A is called a sequent-formula.

Intuitively, a sequent Ajp,...,A, — Bi,..., By (where n,m > 1) means: if
AiN..NA, then ByU..UB,,. The sequent Ai,...,A, — (where n > 1)
means that Ay N...N A, yields a contradiction. The sequent — By, ..., B,,
(where m > 1) means that By U...U B, is true. The empty sequent —
means a contradiction.

Given non empty sequences I'; A, we denote by or any conjunction of all
formulas of I', and by da any disjunction of all formulas of A. The intuitive
semantics for a sequent I' — A (where I'; A are nonempty) is hence that it is
logically equivalent to the formula (or = da), i.e.

I' — A = (or = da).

Formal semantics

Formally, let v : VAR — {T, F'} be a truth assignment, v* its extension to the
set of formulas F. We extend v* to the set

SQ={T'—A: T,AcF} (20)

of all sequents as follows.

32

Definition 7 For any sequent ' — A € SQ,
v (0 — A) = v*(or) = v*(da).

In the case when I' =) we define: v*(— A) = T = v*(0a). In the case
A = () we define v*(I' —) = v*(op) = F.
Model

The sequent I' — A'is satisfiable if there is a truth assignment v : VAR —
{T, F} such that v*(I' — A) = T'. Such a truth assignment is called a model
for ' — A. We write

vE T — A

Counter- model

The sequent I' — A is falsifiable if there is a truth assignment v, such that
v*(I — A) = F. In this case v is called a counter-model for ' — A and
we write it as

vE T — A

Tautology

The sequent ' — A is a tautology if v*(I' — A) = T for all truth
assignments v : VAR — {T, F'} and we write

ET — A

Example 2
LetT' — A be a sequent
a,(bNa) — b, (b= a).

Any truth assignment v, such that v(a) = T and v(b) = T is a model for
r — A, e
E a (bNa) — —b, (b= a).

We verify it by performing the following computation.

v*(a,(bNa) — —b, (b= a)) = v (0(a,pra)}) = V" (6-bp=a}) = v(a)N
(v(b)Nv(a)) = wb)U(vbd) =v(a) = TNTecapT = -TU(T =T) = T=
(FUT) = T=T = T.

Observe that the only v for which v*(T') = v*(a, (bNa) = T is the above v(a) = T
and v(b) = T that is a model for ' — A. Hence it is impossible to find v
which would falsify it, what proves that I' — A is a tautology, i.e.

E a,(bNa) — —b, (b= a).

33

indecomp

The Proof System GL

The rules of inference of GL are of the form:

Py P P
or ——=

C c

where Py, P> and C are sequents. P;, P> are called premisses and C' is called the
conclusion of the rule of inference. Each rule of inference introduces a new logical
connective to the antecedent or to the succedent of the conclusion sequent. We
denote the rule that introduces the logical connective o to the antecedent of the
conclusion sequent P by (o —). The notation (— o) means that the logical
connective is introduced to the succedent of the conclusion sequent P.

As our language contains the connectives: N, U, = and —, we are going to adopt
the following inference rules: (N —) and (— N), (U —) and (— U), (=—) and
(—=), and finally, (— —) and (— —).

Definition 8

Finite sequences formed out of positive literals i.e. out of propositional vari-
ables are called indecomposable. We denote them as before by

’ ’
r,A, ...
with indices, if necessary.

A sequent is indecomposable if it is formed out of indecomposable sequences,
i.e. is of the form))

r — A
for any I',A" € VAR*.

Remark that now the symbols I, A', ... denote sequences of variables (pos-
itive literals), and not sequences of literals as in (RS.

Axioms of GL

As the axioms of GL we adopt any indecomposable sequent sequent which
contains a positive literal a (variable) that appears on both sides of the sequent
arrow —, i.e any sequent of the form

F/l, a, FIQ — All, a, A’Q, (21)

for any a € VAR and any sequences I''1,IV5, A’1, A’y € VAR™.

Semantic Link

34

Consider axiom (21). Directly from the Definition 7 of semantics for bf GL
we evaluate (in shorthand notation), for any truth assignments v : VAR —
{T, F'}, the following (in shorthand notation).

v*(I'1, a, Iy — Ay a,A') =

(or, N a Nor,) = (da, UaUdar,)=T.

The evaluation is correct because = (((AN a)NB) = (CUa)U D))). We have
thus proved the following.

Fact 4

Logical azioms of GL are tautologies.

Inference Rules of GL (22)

We adopt the following rules of inference.

Conjunction rules

I'A,B,T — A I — AAA ;T — ABA

=) v aner > a0 &0 T — A (ANB),A !

Disjunction rules

I — AAB,A U) I' AT — A" ;T",B,T — A’
I — A, (AUB),A” I',(AuB),I — A’ ’

(=)

Implication rules

' AT — A,B A

=) T S Aa@sB.A

I')T' — AAAN T BT — AN

(=) I'.(A= B),l — AA ’

Negation rules

I'T — AAN I' AT — AN

=) v AT S AA T S AcAA

Formally we define:

GL = ([’? 5Q, LA, (U)a (_‘U)a (ﬁ), (_\ﬂ), (:>)7 (_‘ :>)7 (ﬂ_‘))v (23)

35

where SQ ={T' — A: T A € F* }, (U),(=V),(N),(—-N), (=), (=~ =), ()
are the inference rules defined above and AL are the logical axioms of the system
defined by the schema (21).

We define the notion of a bf formal proof in GL as in any proof system, i.e.,
by a formal proof of a sequent I' — A in the proof system GL we understand
any sequence

Fl — Al, FQ — Ag, ceeny Fn — An

of sequents, such that 'y — Ay € AL, T, — A, =T — A, and for all i
(I1<i<n)T; — A; € AL, or I'; — A, is a conclusion of one of the inference

rules of GL with all its premisses placed in the sequence I'y — Aq, ...I,_1 —
AZ‘, 1.

We write, as usual, Fqr, I' — A to denote that I' — A has a formal proof in
GL, or we write simply - I' — A when the system GL is fixed.

We say that a formula A € F, has a proof in GL and denote it by Fgr, A if the
sequent —> A has a proof in GL, i.e. we define:

Fqr A if and only if Fq, — A. (24)

We write, however, the formal proofs in GL in a form of proof trees rather then
in a form of sequences of sequents.

Proof trees

A proof tree ' — A is a tree Tr__, A satisfying the following conditions:
1. The topmost sequent, i.e the root of Tr_.a isT' — A.

2. All leaves are axioms.

3. The nodes are sequents such that each sequent on the tree follows from the
ones immediately preceding it by one of the rules.

We picture, and write our proof-trees, as we did in case of RS type systems,
with the node on the top, and leafs on the very bottom, instead of more common
way, where the leaves are on the top and root is on the bottom of the tree. We
also write the proof- trees indicating additionally the name of the inference rule
used at each step of the proof.

Here is a tree- proof of the de Morgan law (—(aNb) = (—a U -b)).

— (=(anb) = (—aU-b))

| (==)

36

=(anbd) — (—aU-d)
| (= V)
=(anb) — —a,—b
| (=)
b,—(aNdb) — -a
| (=)
b,a,—~(aNb) —
(= =)
b,a — (aNb)

/\(—> N)

ba — a ba— b

Remark 1

The proof search in GL (to be defined by the decomposition tree) results are not
always unique; one formula (sequent) can have many proofs.

Here is another proof in GL of the de Morgan Law.

— (=(anbd) = (maU-D))
| (==)
=(anbd) — (—aU-d)

| (= V)

=(anb) — —a,—b
[(=)

b,—(aNd) — -a
[(=—)

b — —a,(anb)

/\(% N)

b— —a,a b— —a,b
[(—) [(—)
b,a — a ba— b

37

The process of searching for proofs of a formula A in GL consists, as in the RS
type systems, of building decomposition trees. Their construction is similar to
the one defined for RS type systems and is described intuitiively as follows.

We take a root of a decomposition tree T4 a sequent — A. For each node, if
there is a rule of GL which conclusion has the same form as the node sequent,
then the node has children that are premises of the rule. If the node consists
only of an indecomposable sequent (built out of variables only), then it does not
have any children. This is a termination condition for the decomposition tree.

We prove that each formula A generates a finite set T of decomposition trees,
such that the following holds. If there exist a tree T4 € T4 whose all leaves are
axioms, then tree T4 constitutes a proof of A in GL. If all trees in T4 have at
least one non-axiom leaf, the proof of A does not exist.

The first step in formally defining a notion of a decomposition tree consists of
transforming the inference rules of GL, as we did in the case of the RS type
systems, into corresponding decomposition rules.

Decomposition rules of GL

Building a proof search decomposition tree consists of using the inference rules
in an inverse order; we transform the inference rules into decomposition rules
by reversing the role of conclusion and its premisses. We call such rules the
decomposition rules. Here are all of GL decomposition rules.

Conjunction decomposition rules

I — A, (AnB),A
r — AAA ;T — ABA”

(=) ', (ANB),I — A’
I'A,B,T — A’

(=)

Disjunction decomposition rules

I',(AUB),I — A
I'AT — A" ;T",B,T' — A"

I — A, (AUB), A
I — AABA

(=) (U—)

Implication decomposition rules

I'I' — A, (A= B),A
')A T — A,B,A"

I')(A= B),I' — A,A

I'T — AAAN ;T'.BT — A A"’

(==)

(=-)
Negation decomposition rules

38

(o) I',-AT — A A -)r’,r — A, AN
B I'T — AAA UV TUAT — AN

We write the decomposition rules in a visual tree form as follows.

(= U) rule
I — A, (AUB), A
| (= V)
I — A A BA
(U =) rule
I' (AUB),T — A
NGRS
I'JAT — A r',B,T — A
(= N) rule
I — A, (ANB),A
/\(% N)
) I - A,B A
I — AAA
(N —) rule
I' (AnB),T — A’
| (N =)
I' A, BT — A
(—==) rule
I'T — A, (A= B),A’
| (==)
I' AT — ABA
(=—) rule

39

I' (A= B),l — AA

/\(:>—>)

I'T — AAA ' B,T — AA

(= =) rule

I',-AT — AN
| (= =)

I'T — AAA

(— =) rule
I'T — A-4A

[(==)

I' AT — AA

Observe that we use the same names for the inference and decomposition rules,
as once the we have built a decomposition tree (with use of the decomposition
rules) with all leaves being axioms, it constitutes a proof of A in GL with
branches labeled by the proper inference rules.

We have already defined (definition 8) indecomposable sequence as any sequence
I' — A" when I', A" € VAR*. In particular, a formula that is not a positive
literal (propositional variable) is called a decomposable formula, and a se-
quent I' — A where either I or A contains a decomposable formula is called
a decomposable sequent.

By inspecting the domain of the rules we can see that at most two rules could
apply for any given decomposable sequent I' — A.

For any decomposable sequent, at most two decomposition rules can be applied
to it. This rule is determined by the first decomposable formula in I' when we
traverse it from left to right, and by the main connective of that formula, or by
the first decomposable formula in A when we traverse it from the right to left,
and by the main connective of that formula. We hence are now ready to define
a decomposition tree.

40

Decomposition Tree T_ 4
For each formula A € F, a decomposition tree T_, 4 is a tree build as follows.

Step 1. The sequent — A is the root of T_, 4 and for any node I' — A of
the tree we follow the steps below.

Step 2. If I' — A is indecomposable, then I' —> A becomes a leaf of the
tree.

Step 3. If I' — A is decomposable, then we pick a decomposition rule that
applies by matching the sequent of the current node with the domain of the
decomposition rule. To do so we proceed as follows.

1. We traverse I' from left to right to find the first decomposable formula.
Its main connective o identifies a possible decomposition rule (o —). Then
we check if this decomposition rule applies. If it does we put its conclusions
(conclusion) as leaves (leaf).

2. We traverse A from right to left to find the first decomposable formula.
Its main connective o identifies a possible decomposition rule (— o). Then
we check if this decomposition rule applies. If it does we put its conclusions
(conclusion) as leaves (leaf). 3. If 1. and 2. applies we choose one of the rules.

Step 4. We repeat steps 2 and 3 until we obtain only leaves.

Observation 1

The decomposable ' — A is always in the domain in one of the decomposition
rules (o0 —), (— o), or in the domain of both. Hence the tree T_, 4 may not
be unique and all possible choices of 3. give all possible decomposition trees.

We generalize the definition of T 4 to the decomposition tree Ty_,5 of any
sequent ¥ — A € SQ as follows.

Decomposition Tree Ty .5

Step 1. The sequent . — A is the root of Ty, 4, and for any node I' — A
of the tree we follow the steps below.

Step 2. If I' — A is indecomposable, then ' — A becomes a leaf of the
tree. Step 3. and Step 4. are the same as in the above definition of the tree
T_ 4.

Exercise 14

Prove, by constructing a proper decomposition tree that

FeL((—a = b) = (=b = a)).

41

Solution
By definition,we have that

Fer((—a = b) = (-b=-a)) if and only if Fgr — ((—a = b) = (=b = a)).

We construct a decomposition tree as follows.

T4

— ((ma=b) = (b= a))

— -a,b,a b—b,a
| (= =) axiom
a — b,a
axiom

All leaves of the tree are axioms, hence it constitutes a proof in GL.

Exercise 15

Prove, by constructing proper decomposition trees that

Far((a=0b) = (-b=a)).

Solution

Observe that for some formulas A, their decomposition tree T_, 4 in GL may
not be unique. Hence we have to construct all possible decomposition trees to
see that none of them is a proof, i.e. to see that each of them has a non axiom
leaf. We construct the decomposition trees for — A as follows.

T1~>A
— ((a=b) = (-b=a))

(one choice)

42

| (==)
(a=b) — (-b=a)
(first of two choices)
| (—==)
-b,(a=b) — a
(one choice)
| (= =)
(a=b) — ba

(one choice)

NE=—)

— a,b,a b—b,a

non — ariom ariom

The tree contains a non- axiom leaf, hence it is not a proof. We have one more
tree to construct.
T2, 4
— ((a = b) = (b= a))

| (==)
(a=b) — (=b=a)

(second choice)

/\(:>*>)

— (0b=a),a b— (-b=a)
| (—=) | (—==)
-b— a,a b,-b— a
| (= =) | (= =)

— b,a,a b — a,b

non — axiom ariom

All possible trees end with a non-axiom leaf. It proves that

Fer((a=0b) = (-b=a)).

Exercise 16

Does the tree below constitute a proof in GL?

43

T%A
— = ((ma = b) = (b= a))

| (=)
—((ma=0b) = (-b=a)) —
| (= =)
— ((ma = b) = (=b=a))
| (==)
(ma=b) — (-b=a)
| (—==)
(ma=0b),-b—a
| (= =)
(—ma=b) — b,a

/\(:>—>)

— —a,b,a b—b,a
| (—) aziom
a— b,a
artom

Solution
The tree above is not a proof in GL because a decomposition rule used in the

decomposition step below does not exists in GL
(ma =b),7b—a

(= =)

(ma = b) — b,a.

It is a proof is some system GL1 that has all the rules of GL except its rule

(=—) , /
I'T — A, A A

C=) VAT S A

This rule has to be replaced in by the rule:

o) LT — A, A, A
CTAT CA T — AN

44

5 GL Soundness and Completeness

The system GL admits a constructive proof of the Completeness Theorem,
similar to completeness proofs for RS type proof systems (Theorems 11, 6, 7).
It also relays on strong soundness property of its inference rules. We are going
to prove that the following holds.

Theorem 8 (GL Strong Soundness)

The proof system GL is strongly sound.

Proof We have already proved (Fact 4) that logical axioms of GL are tau-
tologies, so we have to prove now that its rules of inference are strongly sound
(definition 4). Proofs of strong soundness of rules of inference of GL are more
involved then the proofs for the RS type rules. We prove as an example the
strong soundness of four of inference rules. Proofs for all other rules follows the
same patterns and is left as an exercise.

By definition 4 of strong soundness we have to show the condition (15). Written
formally it says that we have to show that that if P;, P, are premisses of a given
rule and C is its conclusion, then for all truth assignments v : VAR — {T, F'},

v*(P1) =v*(C) in case of one premiss rule, and

v*(P1) Nv*(Py) = v*(C),in case of a two premisses rule.

In order to prove it we need additional classical equivalencies listed below. You
can fond a list of most basic classical equivalences in Chapter 3.

(A=B)Nn(A=0)=(A= (BNn(O))
(A=C)Nn(B=C))=((AuB)=(C)
(AnB)=C)= (A= (-BUCQO))

(1) I' A, B,T — A
I',(AnB),I — A’

’

(I)No* (A)ne* (B)Ne*(L)) = v*(A") = (v*(I')N

v*(0',A,B,T — A') = Mol
(L (mB),F — A

(*
v (AN B) Nw*(D)) = v (A")

I — AAA T — ABA
I — A, (AnB),A

(=)

’

(0 — A,B,A)

(T — AAAN)Nw ,
= YU v*(A) Uv*(A)) N (v*(T) = v*(A) Uv*(B) Uv*(A"))

(v*(T) = v*(

45

[we use : (A= B)N(A=C))=(A= (BNC))] /
= v*(I) = ((v*(A) Vv (A) Uv*(A)) N (v (8) Uv*(B) Uv*(A)))
[we use commutativity and dlbtrlbuthlt},/]

=v"(l) = (v (A) U (0" (AN B)) Uv™(A))

=v*(— A, (ANB),A")

U) I' AT — A" ;T'",B,T — A’
I',(AUB),IT — A’

AT — A)ne'(I',B,T — A
(N (A)ﬂv(F)):&v*(A’))ﬁ(v*(F')ﬂv*(B)ﬂv*(F)):W*(A’))
use: ((A:»C) (B=C))=((AUB) = C))

“(
(
E “(I') not(A) Nt (D) U (v (I) no™(B) No*(L)) = v*(A)
= (

=1l s

(0" (I") No*(I) N0 (A) U ((o*(I) No*(D)) No*(B)) = v*(A)
[we use commutat1v1ty and distributivity]

(v*(I") Nv* (D) N (v* (AU B)) = v*(A)
=v*(T (AUB)F — A

) I')AT — AN
VTT — A AN

(I AT — AA) =0 (T) Nt (A) Not(T) = o*(A) Uvt(A)

= (v*(I") Nw*(1)) N*(A) = v*(A) Uv*(A)

[we use: ((AﬂB):>C)E(A:>(ﬂBUC))] / /

= (v*(T)ﬂv gl“)) = —w*(A) Uv*(A)Uv*(A) = (o) nov*(I)) = v*(A) U
v*(mA)Uv*(A) /

= (F I — A-AA)

The above shows the premises and conclusions are logically equivalent, therefore
the rules of inference are strongly sound. It ends the proof.

Observe that the strong soundness implies soundness (not only by name!), hence
we have also proved the following
Theorem 9 (Soundness for GL)

For any sequent ' — A € SQ,
if Fer T — A, then E T — A. In particular, for any A€ F,
Zf FGL A, then ': A.

We know by theorem 8 that all the rules of inference of GL of are strongly
sound. The strong soundness of the rules means that if at least one of premisses
of a rule is false, so is its conclusion. Hence given a sequent I' — A € S@Q), such

46

GL-cmodel

that its decomposition tree Tr__, A has a branch ending with a non-axiom leaf.
It means that any truth assignment v that make this non-axiom leaf false also
falsifies all sequences on that branch, and hence falsifies the sequent I' — A. In
particular, given a sequent —> A and its tree T __, 4, any v, such that falsifies its
a non-axiom leaf is a counter-model for A. We have hence proved the following.

Theorem 10 (GL Counter Model)

Given a sequent I' — A, such that its decomposition tree Tr__, A contains a
non- azxiom leaf La. Any truth assignment v that falsifies the non-axiom leaf
L4 is a counter model for T — A. In particular, given a formula A € F,
and its decomposition tree T o with a non-axiom leaf, this leaf let us define a
counter-model for A determined by the decomposition tree T 4.

Here is a simple exercise explaining how the construction of a counter-model
determined by the decomposition tree of a works.
Exercise 17

Prove, by constructing a counter-model determined by decomposition tree that

E ((b=a) = (-b=a)).

Solution
We construct the decomposition tree for the formula A : ((b = a) = (b = a))
as follows.

T_ 4
— ((b=a) = (b= a))
| (==)
(b=a) — (b= a)

| (==)

-b,(b=a) — a
[(= =)

(b=a) — b,a

/\(:>—>)

— b,b,a a— b,a

non — ariom axriom

47

The non-axiom leaf L4 we want to falsify is — b,b,a. Let v : VAR —
{T, F'} be a truth assignment. By definition 7 of semantic for GL we have that
v*(La) = v*(— b,b,a) = (T = v(b) Uv(b) Uv(a)). Hence v*(—> b,b,a) = F
if and only if (T = v(b) Uv(b) Uwv(a)) = F if and only if v(b) = v(a) = F.
The Theorem 10, says that the logical value F determined by the evaluation a
non-axiom leaf L4 ”climbs” the decomposition tree. We picture it as follows.

T%A
— ((b=a)=(-b=a)) F
| (==)
(b=a) — (-b=a) F
| (==)
-b,(b=a) — a F
| (= =)

(b=a) — ba F

/\(:»—>)

— b,b,a F a—b,a

non — ariom axriom

So, by theorem 10, any truth assignment v : VAR — {T,F}, such that
v(b) = v(a) = F falsifies the sequence — A, i.e. v*(— A) =T = v*(A) = F.
This is possible only if v*(A) = F. This proves that v is a counter model for A
and we proved that = A.

Our main goal is to prove the Completeness Theorem for RS. We prove first
the Completeness Theorem for formulas A € F and then we generalize it to any
sequences I' € F*.

Theorem 11 (Completeness Theorem)
For any formula A € F,

FeL A if and only if E A.
For any sequent T' — A € SQ,

Fe T — A ifand only if = I' — A.

48

Proof
We have already proved the Soundness Theorem 9, so we need to prove only
the completeness part of it, namely to prove the implication:

if E A, then Fqgr A. (25)
We prove instead of the logically equivalent opposite implication:
if Fagr A then bé A. (26)

Assume fqr A. By (24) it means that fgr, — A. Let T4 be a set of all
decomposition trees of — A. As fgL — A, each tree T_, 4 in the set T4 has
a non-axiom leaf. We choose an arbitrary T _, 4 from T4. Let L = r — Al,
be a non-axiom leaf of T_, 4. We define a truth assignment v : VAR — {T, F'}
which falsifies T" —s A’ as follows.

T if a appears in I"
via) =4 F if a appears in A’
any value if a does not appear in IV — A’

By the strong soundness of the rules of inference of GL and Theorem 10 it
proves that v*(— A) = F, i.e. that £ — A and hence (£ A.

Assume that I' — A is any sequence such that g, ' — A. But kg I' —
A if and only if Fgr (o7 = da). So fgr I' — A if and only if Fgr or =
0a). By already proven Case 1, £ or = da), what is obviously equivalent to
K~ T' — A. This ends the proof of Case 2 and Completeness Theorem.

Gentzen Sequent Proof System G (27)
The proof system G is in its structure the most similar to the proof system RS2
defined by (19).

It is obtained from in the same way is a proof system obtained from GL by
changing the indecomposable sequences I' ; A into any sequences %, A € F*
in all of the rules of inference of GL.

The logical axioms LA remain the same; i.e. the components of G are as
follows.

Axioms of G

As the axioms of GL we adopt any indecomposable sequent which contains a
positive literal a (variable) that appears on both sides of the sequent arrow —,
i.e any sequent of the form

1-\/17 a, Flg — All, a, A’g, (28)

for any a € VAR and any sequences I'V1,T75, A’1, A’y € VAR™.

49

gax

Inference Rules of G (29)

We adopt the following rules of inference.

Conjunction rules
¥, AB, T — A
Y (ANB), I — A’

(N —)

(= n) r — AJAA; T — A/BA
r — A/ (ANB),A ’

Disjunction rules

I — AABA
I — A, (AUB)A°

(=)

S, AT — A; X, B,T — A

(V=) S(AUB),T — A

Implication rules

S, AT — A,B,A

=) ST S AGoB A

> ' — AJAA; ¥, B, T — AA
5, (A= B),I' — AA ’

(=—)

Negation rules

5,0 — AAA) S, AT — AA
¥, -AT — AN’ VST — A AN

where I', A, X. A € F*.

(= =)

Exercise 18 Follow the example of the GL system and adopt all needed defi-
nitions and proofs to prove the completeness of the system G.

Solution
We leave it to the reader to fill in details .In particular, one has to accomplish
the steps below.

1. Explain why the system G is strongly sound. You can use the strong
soundness of the system GL .

2. Prove, as an example, a strong soundness of 4 rules of G.

3. Prove the the following Strong Soundness Theorem for G.

50

Theorem 12

The proof system G is strongly sound.

4. Define shortly, in your own words, for any formula A € F, its decomposition
tree T, 4 in G.

5. Extend your definition to a decomposition tree Tp_ .
6. Prove that for any I' - A € S@Q, the decomposition tree Tr_, A are finite.

7. Give an example of formulas A, B € F such that that T_, 4 is unigue and
T_, g is not.

8. Prove the following Counter Model Theorem for G.

Theorem 13

Given a sequent I' — A, such that its decomposition treec Tr_. A contains a
non- axiom leaf L. Any truth assignment v that falsifies the non-axiom leaf
L4 is a counter model for T' — A.

10. Prove the following Completeness Theorem for G.

Theorem 14 For any formula A € F,

1. Fe A ifandonly if E A,

and for any sequent I' — A € SQ,

2. Fg T — A ifandonlyif | I'— A.

6 Original Gentzen Systems LK, LI
Completeness and Hauptzatz Theorems

The original systems LK and LI were created by Gentzen in 1935 for clas-
sical and intuitionistic predicate logics, respectively. The proof system LI for
intuitionistic propositional logic is a particular case of the proof system LK.

Both systems LK and LI have two groups of inference rules and a special rule
called a cut rule. One group consists of a set of rules similar to the rules of
systems GL and G. We call them Logical Rules. The other group contains a
new type of rules, called Structural Rules. The cut rule in Gentzen sequent
systems corresponds to the Modus Ponens rule in Hilbert proof systems as
Modus Ponens is a particular case of the cut rule. The cut rule is needed to
carry the original Gentzen proof of the completeness of the system LK and
proving the adequacy of LI system for intituitionistic logic. Gentzen proof of
completeness of LK was not direct. He used the completeness of already known
Hilbert proof systems H and proved that any formula provable in the systems
H is also provable in LK, respectively. Hence the need of the cut rule.

o1

For the system LI he proved only the adequacy of LI system for intituitionistic
logic since the semantics for the intuitionistic logic didn’t yet exist. He used
the acceptance of the Heying intuitionistic axiom system as the definition of the
intuitionistic logic and proved that any formula provable in the Heyting system
is also provable in LI.

Observe that by presence of the cut rule, Gentzen LK, LI systems are also
a Hilbert system. What distinguishes it from all other known Hilbert proof
systems is the fact that the cut rule could be eliminated from it.

This is Gentzen famous Hauptzatz Theorem, also called Cut Elimination The-
orem. The elimination of the cut rule and the structure of other rules makes
it possible to define effective automatic procedures for proof search, what is
impossible in a case of the Hilbert style systems.

Gentzen, in his proof of Hauptzatz Theorem, developed a powerful technique
adaptable to other logics. We present it here in classical propositional case and
show how to adapt it to the intuitionistic case.

Gentzen proof is purely syntactical. It defines a constructive method of trans-
formation of any formal proof (derivation) of a sequent I' — A that uses a
cut rule (and other rules) into its proof without use of the cut rule. Hence the
English name Cut Elimination Theorem.

The completeness (with respect to algebraic semantics defined in chapter ?77?) of
the cut free system LI follows directly from LI Hauptzatz Theorem 22 and the
intuitionistic completeness theorem (chapter ??). The proof is a straightforward
adaptation of the proof of cut free LK Completeness Theorem 23 and is left as
a homework exercise in chapter ?7.

Rasiowa and Sikorski method of proving completeness theorem by constructing
counter-models on the decomposition trees is a semantical equivalence to purely
syntactical Gentzen proof of cut elimination. It is relatively simple, powerful
and easy to understand. It was the reason it was first to be presented here. But
it is more difficult and sometimes impossible to apply (generalize) to many non-
classical logics then Gentzen cut elimination method. Moreover the Gentzen
method is more flexible and in this sense more general and powerful. This is
why we preset it here.

Components of LK, LI (30)

Language £
The language is the same as the in case of GL, namely

E = E{—‘,Q,U,i}’

Expressions

92

The set of all expressions £ is, as before, the set
SQ={—A: T)AcF*}

of all sequents.

Logical Axioms
There is only one logical axiom, namely

A — A,

where A is any formula of L.

Rules of Inference

(31)

There are two groups of rules of inference and they are defined are as follows.

GROUP ONE: STRUCTURAL RULES.

Weakening in the antecedent

(weak —) r — A
wed AT — A
Weakening in the succedent
r — A
L N

Contraction in the antecedent

A, AT — A
AT — A7

(contr —)

Contraction in the succedent

I — A, A A
r — A A’

(— contr)

Exchange in the antecedent

Fl, A, B7 FQ — A

(exch —)

Exchange in the succedent

A—)Fl, 147 B7 I

Fl,B,A,F2—>A7

(— exch)

Cut Rule

93

A—)Fl, B, A,].—‘2,

I 5 AA: AY 0
Yy — A6 '

The formula A is called a cut formula.

(cut)

GROUP TWO: LOGICAL RULES

Conjunction
A T — A

(ANB), T — A’

B, T — A
(ANB), T — A’

r —-A,A ; I' A B

(ﬂ —))1

(ﬂ —))2

Disjunction

Implication

Negation
r — A A

A, T — A’
AT — A
I — A, A

(= =)

(=)

Definition 9 (Classical System LK)

We define the classical Gentzen system LK as
LK = (L, SQ, AL, Structural Rules, Cut Rule, Logical Rules),

where all the components are defined by (30) above.

o4

Definition 10 (Intuitionistic System LI)

We define the intuitionistic Gentzen system LI as
LK = (L, ISQ, AL, I-Structural Rules, I- Cut Rule, I- Logical Rules),
where 1SQ is the following subset of the set SQ of all sequents (31)
ISQ={I' — A: A consists of at most one formula }. (32) |1sq
The set I5Q) is called the set of all intuitionistic sequents.
The I-Structural Rules, I- Cut Rule, I- Logical Rules are the LK rules restricted
to the set ISQ (32) of the intuitionistic sequents.

We will study the intuitionistic system LI in chapter 7?. We concentrate now
on then classical LK.

Classical System LK

We say that a formula A € F, has a proof in LK and denote it by Frk A if the
sequent — A has a proof in GL, i.e. we define:

FLk A if and OIlly if Fok — A. (33)
Proof Trees

We write formal proofs in LK, as we did for other Gentzen style proof systems
in a form of trees in an ”upside -down” form.

By a proof tree of a sequent I' — A in LK we understand a tree
Dr—a

satisfying the following conditions:

1. The topmost sequent, i.e the root of Dpr_,a isI' — A.

2. All leaves are axioms.

3. The nodes are sequents such that each sequent on the tree follows from the
ones immediately preceding it by one of the rules.

The proofs are often called derivations. In particular, Gentzen, in his work
used the term derivation we will use this notion as well. This is why we denote
the proof trees by D (for derivation).

Finding derivations D in LK are is a more complex process, as the logical rules
are different, then in GL and G. Proofs rely strongly on use of the Structural
Rules. Even if we find a derivation that does not involve the Cut rule, the
Structural rules are usually present. For example, a derivation of Excluded
Middle (AU —A) formula B in LK is as follows.

99

D
— (AU—\A)
| (= contr)
— (AU=4), (AU-A)
[(= Uh
— (AU-A), A
| (— exch)
— A, (AU=A)
[(= Uh
— A, -A
| (=)
A— A

axiom

Here is as yet another example a proof P (also cut free) of the de Morgan Law
(—\(A N B) = (—\A U ﬂB))

P
— (=(ANB) = (-AU-B))
| (==)
(-(ANnB) — (mAU-B))
| (=)

— (mAU-B), (ANB)
/\(:\H)

. (~AU-B), A 5 (~AU-B), B

| (— exch) | (— exch)
— A, (mAU-B) — B,(mAU-B)
[(= Uh [(= Uh
— A, -A — B,-B
| (=) B— B
A— A azxiom

axiom

96

Observe that the Logical Rules are similar in their structure to the rules of the
system G and hence admit the same proof of their soundness.

The rules (— U)1, (— U)2 and (— U);, (— U)z are not strongly sound as
A#(ANB),B#(AnB)and A# (ANDB),B# (AN B).

All other Logical Rules are strongly sound.

The Contraction and Exchange structural are also strongly sound as for any
formulas A, B € F, A= (ANA), A= (AUA) and (ANB) = (BNA), (ANB) =
(BN A). The Weakening rule is sound because (we use shorthand notation) if
a formula (I' = A) = T then also (ANT) = A)) =T for any logical value of
the formula A. But obviously (I' = A) # ((ANT) = A)), i.e. the Weakening
rule is not strongly sound.

The Cut rule is sound as the fact (I' = (AU A)) =T and (ANXE)=A)=T
implies that I', > — A, A. It is not strongly sound. Any truth assignment
suchthat T =T, A=Y =A= A= F proves that (' — A, A)N(4, ¥ —
A # ([T, — A/A). Obviously, FA — A

We have proved that LK is sound and hence the following theorem holds.

Theorem 15 (Soundness for LK)

For any sequent I' — A,

if Frg I — A, then ': I — A.
In particular, for any A € F,
Zf }_LK A, then): A.

We follow now Gentzen way of proving completeness of LK. We choose any
complete Hilbert proof system for the LK language £ = £{- » -} and prove
its equivalency with LK.

Gentzen referred to the Hilbert-Ackerman (1920) system (axiomatization) in-
cluded in chapter ??. We choose here the Rasiowa-Sikorski (1952) formalization
R also included in chapter ?7.

We do it for two reasons. First, it reflexes a connection between classical and
intuitionistic logics very much in a spirit Gentzen relationship between LK and
LI

We obtain a complete proof system I (chapter ??) from R by just removing
the last axiom A10. Second, both sets of axioms reflect the best what set of
provable formulas is needed to conduct algebraic proofs of completeness of R
and I, respectively.

o7

Axioms of R (34)

The set of logical axioms of the Hilbert style proof system RS for classical
propositional logic all formulas of the forms

Al (A=B)=(B=0)=(A=0)),

A2 (A= (AUB)),

A3 (B= (AUB)),

A4 (A=0C)=(B=0C)=((AUB)=10))),
A5 ((ANnB)= A),

A6 ((ANnB)= B),

A7 (C=A)= ((C=B)=(C=(ANB))),
A8 (A= (B=0C)=(AnB)=0)),

A9 ((ANnB)=0C)= (A= (B=0)),

A10 (An=-A4)= B),

A1l (A= (AN-A)) = -A4),

A12 (Au-A),

where A, B,C' € F are any formulas in £ = L{_ y,—}-
We adopt a Modus Ponens

A; (A= B)

(mp) 2

as the only inference rule.

We define Hilbert System R as

R=(Loy, Fo Al- Al2, (MP)), (35)
where Al - A12 are defined by (34).

The system R is complete, i.e. we have the following.

Theorem 16

For any formula A € F,

A if and only if E A.

We leave it as an exercise for the reader to show that all axioms Al - A12 of the
system R are provable in LK. Moreover, the Modus Ponens is a particular case

98

mixes

of the cut rule, for I, A, ¥ empty sequences and © containing only one element,
a formula B. We call it also MP rule.

— A ; A — B

(MP) — B

This proves the following.

Theorem 17

For any formula A € F,

Zf I—R A, then l_LK A

Directly from the above theorem 17, soundness of LK (theorem 15) and com-
pleteness of R (theorem 16) we get the completeness of LK.

Theorem 18 (LK Completeness)

For any formula A € F,

Fox A if and only if E A.

Here is Gentzen original formulation of the Hauptzatz Theorems, which we call
also the Cut Elimination Theorem.

Theorem 19 (Hauptzatz) (Classical LK)

Every derivation in LK can be transformed into another LK derivation of the
same sequent, in which no cuts occur.

Theorem 20 (Hauptzatz) (Intuitionistic LI)

Every deriwation in LI can be transformed into another LI derivation of the
same sequent, in which no cuts occur.

The proof is quite long and involved. We present here its main and most im-
portant steps. To facilitate the proof we introduce a more general form of the
cut rule, called a mix rule defined as follows.

r —-A ; ¥ — 0
Y — A*0 ’

(36)

(mix)

where ¥*, A* are obtained from ¥, A by removing all occurrences of a common
formula A. The formula A is now called a mix formula.

Example 3

99

Here are some examples of an applications of the mix rule. Observe that the
mix rule applies, as the cut does, to only one miz formula at the time.
a — b —a ; (bUc), b, b,D,b —

a, (bUc), D — -a

(mix)

b is the mix formula.

A — B, B,-A ; (bUc), B, B,D,B — —-B
A, (bUC), D — -A-B

(mix)

B is the miz formula.

A — B,—\A7 —-A ; ﬂA, B, B,ﬂA,B — B
A, B, B — B,-B

(mizx)
—A is the mixz formula.

Notice, that every derivation with cut may be transformed into a derivation with
mix by means of a number of weakenings (multiple application of the weakening
rules) and interchanges (multiple application of the exchange rules). Conversely,
every mix may be transformed into a cut derivation by means of a certain num-
ber of preceding exchanges and contractions, though we do not use this fact in
the proof. Observe that cut is a particular case of mix.

Proof of Hauptzatz Theorems

The proof for LI is the same as for LK. We must just be careful to add, at
each step, the restriction to the ISQ sequences and the form of the rules. These
restrictions do not alter the flow and validity of the LKproof. We leave it as
homework exercise to the reader to re-write the proof below step by step for LI.

We conduct the proof in three main steps.

Step 1: we consider only derivations in which only mix rule is used.

Step 2: we consider first derivation with a certain Property H (definition 11)
and prove lemma 2 for them. This lemma is the most crucial for the proof of
the Hauptzatz.

Definition 11

We say that a derivation Dr__,a of a sequent ' — A has a Property H if
it satisfies the the following conditions.

1. The root T — A of the derivation Dr__ A is obtained by direct use of

the mix rule, i.e. the miz rule is the last rule of inference used in the proof
(derivation) of T — A.

2. The derivation Dr__, A does not contain any other application of the mix rule,
i.e. the proof (derivation) of T — A does not contain any other application of
the mix rule.

60

Lemma 2 (H lemma)

Any derivation that fulfills the Property H (definition 11) may be transformed
into a derivation of the same sequent) in which no miz occurs.

Step 3: we use the H lemma 2 and to prove the the Hauptzatz as follows.
Hauptzatz proof from H lemma

Let D be any derivation (tree proof). Let ' — A be any node on D such that
its sub-tree Dr__, A has the PropertyH (definition 11). By H lemma 2 the sub-
tree Dr__, A can be replaced by a tree D*r__,A in which no mix occurs. The
rest of D remains unchanged. We repeat this procedure for each node N, such
that the sub-tree Dy has the Property H until every application of mix rule has
systematically been eliminated. This ends the proof of Hauptzatz provided the
H lemma 2 has already been proved.

Step 2: proof of H lemma.

We now consider derivation tree D with the Property H, i.e. such that the
mix rule is the last rule of inference used, and D does not contain any other
application of the mix rule.

We define now two important notions: degree n and rank r of the derivation
D. Observe that D contains only one application of mix rule, and the mix rule,
contains only one mix formula A. Mix rule used may contain many copies of
A, but there always is only one mix formula. We call is a miz formula of D.

Definition 12

Given a derivation tree D with the Property H.
Let A € F be the mix formula of D. The degree n > 0 of A is called the degree
of the derivation D. We write it as degD = degA = n.

Definition 13

Given a derivation tree D with the Property H. We define the rank r of D as a
sum of its left rank Lr and right rank Rr of D, i.e.

r=1Lr + Rr,
where:

1. the left rank Lr of D in the largest number of consecutive nodes on the branch
of D staring with the node containing the left premiss of the mix rule, such that
each sequent on these nodes contains the mix formula in the succedent;

2. the right rank Rr of D in the largest number of consecutive nodes on the
branch of D staring with the node containing the right premiss of the mix

61

rule, such that each sequent on these modes contains the mix formula in the
antecedent.

The lowest possible rank is evidently 2.
To prove the lemma we carry out two complete inductions, one on the degree n,
the other on the rank r, of the derivation D.

It means we prove the lemma for a derivation of the degree n, assuming it to
hold for derivations of a lower degree (in so far as there are such derivations,
i.e., as long as n # 0), supposing, therefore, that derivations of lower degree can
be already transformed into derivations without mix.

Furthermore, we shall begin by considering the case 1when the rank r = 2, and
after that the case 2 when the rank r» > 2, where we assume that the lemma
already holds for derivations of the same degree, but a lower rank.

Case 1. Rank of r =2.

We present some cases and leave similar others to the reader as an exercise.
Observe that first group contains cases that are especially simple in that they
allow the mix to be immediately eliminated. The second group contains the
most important cases since their consideration brings out the basic idea behind
the whole proof, Here we use the induction hypothesis with respect do the degree
of the derivation. We reduce each one of the cases to transformed derivations
of a lower degree.

GROUP 1. Axioms and Structural Rules.

1. The left premiss of the mix rule is an axiom A — A.
Then the sub-tree of D containing mix is as follows.

A Y — A
/\(mzx)

A— A Y — A

We transform it, and replace it in D by

A X — A

62

possibly several exchanges and contractions

Y—A

Such obtained D* proves the same sequent and contains no mix.

2 . The right premiss of the mix rule is an axiom A — A.
This is a case dual to 1. We show here the dial transformation, but will leave
the dual cases to the reader in the future.

Then the sub-tree of D containing mix is as follows.

Y — AT A
/\(mzx)
¥—A A— A

We transform it, and replace it in D by

Y — AT A

possibly several exchanges and contractions
¥ — A

Such obtained D* proves the same sequent and contains no mix.

Suppose that neither of premisses of mix is an axiom. As the rank r=2 , the
right and left ranks are equal one. This means that in the sequents on the nodes
directly below left premiss of the mix, the mix formula A does not occur in the
succedent; in the sequents on the nodes directly below right premiss of the mix,
the mix formula A does not occur in the antecedent.

In general, if a formula occurs in the antecedent (succedent) of a conclusion of

a rule of inference, it is either obtained by a logical rule or by a contraction rule.

3. The left premiss of the mix rule is the conclusion of a contraction rule
(— contr). The sub-tree of D containing mix is:

r,x — A, ©

63

/\(mzm)

r — A A ¥ —0
| (— contr)
r— A

We transform it, and replace it in D by

r, — A, 0
possibly several weakenings and exchanges

I —A

Observe that the whole branch of D that starts with the node ¥ — © disap-
pears. Such obtained D* proves the same sequent and contains no mix.

4. The right premiss of the mix rule is the conclusion of a contraction rule
(— contr). It is a dual case to 3. and is left to the reader.

GROUP 2. Logical Rules.

1. The main connective of the mix formula is N, i.e. the mix formula is (AN B).
The left premiss of the mix rule is the conclusion of a rule (— N). The right
premiss of the mix rule is the conclusion of a rule (N —);.

The sub-tree T of D containing mix is:

Y — A 0

/\(mzx)

I — A, (AnB) (AnB), ¥ —©
A=) | (N =)
AY — 0O

r— AA I — AB

We transform T into T* as follows.

64

Y — A 0

possibly several weakenings and exchanges
rx — A" ©

/\(mzx)
r— AA AY 0O

We replace T by T* in D and obtain D*. Now we can apply induction hypothe-
sis with respect to the degree of the mix formula. The mix formula A in D* has
a lower degree then the mix formula (A N B) and by the inductive assumption
the derivation D*, and hence D may be transformed into one without mix.

2. The case when the left premiss of the mix rule is the conclusion of a rule
(— N) and right premiss of the mix rule is the conclusion of a rule (N —)2

3. The main connective of the mix formula is U, i.e. the mix formula is (AU B).
The left premiss of the mix rule is the conclusion of a rule (— U); or (— U)s.
The right premiss of the mix rule is the conclusion of a rule (U —);. This is to
be dealt with symmetrically to the N cases.

4. The main connective of the mix formula is —, i.e. the mix formula is —A.

The left premiss of the mix rule is the conclusion of a rule (— —). The right
premiss of the mix rule is the conclusion of a rule (= —).

Here is the sub-tree T of D containing the application of the mix rule.

Y — A 0

/\(mm)

I'— A, -A —AY — O
[(=) | (= =)
AT — A >— 06,A

We transform T into T* as follows.

> — A, ©

possibly several weakenings and exchanges

65

> I — 0F A
/\(mzx)
¥>— 06,A AT — A

We replace T by T* in D and obtain D*. The new mix in D* may be eliminated
by virtue of inductive assumption, and so from the derivation D.

5. The main connective of the mix formula is =, i.e. the mix formula is
(A = B). The left premiss of the mix rule is the conclusion of a rule ((—=).
The right premiss of the mix rule is the conclusion of a rule (=—).

Here is the sub-tree T of D containing the application of the mix rule.

s — A 6
/\(mzx)

I — A, (A= B) (A=B), ¥ — ©

| (—=) A=)
AT — A, B

¥Y—5©, 4 B Y¥-—0,

We transform Tinto T* as follows.

Ly — A 06
possibly several weakenings and exchanges
¥, Iy — 0°,A,0
/\(mm)
Y—0, A AT, Y — A", O

/\(mm)

AT —A B B, YX— 0,

66

The asteriks are, of course, intended as follows: X*, A* results from X, A by
the omission of all formulas B; T'*, ¥**, ©* results from I', ¥* © by the omission
of all formulas A.

We replace T by T* in D and obtain D*. Now we have two mixes, but both
mix formulas are of a lower degree then n. We first apply the inductive to the
assumption to the lower mix. Thus it can be eliminated. We can then also
eliminate the upper mix. This ends the proof of the case of rank r=2.

Case r > 2.

In the case r = 2, we generally reduced the derivation to one of lower degree.
Now we shall proceed to reduce the derivation to one of the same degree, but
of a lower rank. This allows us to to be able to carry the induction with respect
to the rank r of the derivation.

We use the inductive assuption in all cases except, as before, a case of an aziom
or structural rules. In these cases the mix can be eliminated immediately, as it
was eliminated in the previous case of rank r = 2.

In a case of logical rules we obtain the reduction of the mix of the lemma to
derivations with mix of a lower ranks which consequently can be eleminated by
the inductive assumption. We carry now proofs for two logical rules: (— N)
and (U —. The proof for all other rules is similar and is left to the reader.
Also, we consider a case of left rank Lr= 1 and the right rank Rr = r ;1. The
symmetrical case left rank Lr = r ;1 1 and the right rank Rr = 1 is left to the
reader as an exercise.

Case: Lr = 1, Rr = r > 1. The right premiss of the mix is a conclusion of the
rule (— N), i.e. itisofaform ' — A, (ANB) and I contains the mix formula
M. The left premiss of the mix is a sequent © — 3 and © contains the mix
formula M. The end of the derivation D, .i.e. the sub-tree T of D containing
mix is:

0, " — 2*,A, (AN B)
/\(mzx)

0 —X r — A, (AnB)

/\(—>ﬂ)
I'— AA I'— AB

We transform T into T™* as follows.

67

0 —X Ir— AA 0 — X Ir— AA

We replace T by T* in D and obtain D*. Now we have two mixes, but both
have the right rank Rr = r-1 and both of them can be eliminated by the induc-
tive assumption.

Case: Lr = 1,Rr = r > 1. The right premiss of the mix is a conclusion of the
rule (U —, i.e. it is of a form (AU B),T’ — A and I contains the mix formula
M. The left premiss of the mix is a sequent © — ¥ and © contains the mix
formula M. The end of the derivation D, .i.e. the sub-tree T of D containing
mix is:

0, (AuB)",T* — X" A, (ANB)
/\(mzx)

0-—% (AUB)T — A

/\(Ua)
AT — A B, T — A

(AU B)" stands either for or for nothing according as (A U B) is unequal or
equal to the mix formula M. The mix formula M certainly occurs in I'. For
otherwise M would been equal to (AU B) and the right rank Rr would be equal
to 1 contrary to the assumption.

We transform T into T* as follows.

O, (AUB),I" — X", A,(ANB)
/\(U —)

68

LK-H

LKc-compl

A0, T — YA B,O, I'" — ¥ A
some weakenings, exchanges some weakenings, exchanges
0,A" T — ¥ A 6,B",T" — ¥ A

/\(mzx) /\(mzm)
0 —X AT — A 0 —X B, T — A

Now we have two mixes, but both have the right rank Rr = r-1 and both of
them can be eliminated by the inductive assumption. We replace T by T* in
D and obtain D*. This ends the proof of the Hauptzatz lemma and hence the
proof of the Hauptzatz Theorem 19 and Hauptzatz Theorem 20.

Let’s denote by LK - ¢ and LI - c the systems LK, LI without the cut rule,
i.e. we put
LK — ¢ =LK — {(cut)}. (37) |Lk-c

LI c=LI— {(cut)}. (38) [LI-c

We re-write the Hauptzatz Theorems as follows.

Theorem 21 (LK Hauptzatz)
For every LK sequent T' — A,

Frxk I'— A ifand only if bFrpx_.T — A

Theorem 22 (LI Hauptzatz)

For every LI sequent T' — A,

Feox T'— A dfand only if brx_.T — A.

This is why the cut-free Gentzen systems LK-c and LI -c are just called Gentzen
LK, LI, respectively.
Directly from the Completeness Theorem 18 and the Hauptzatz Theorem 19 we
get that the following.

Theorem 23 (LK-c Completeness)

For any sequent T' — A,

Fek—e T' — A ifand only if E T — A.

69

Let G be the Gentzen sequents proof system defined by (27). We replace the
logical axiom of G
F/17 a, F/2 — Alla a, A,27

where a € VAR is any propositional variable and I, TVy, A’y, A’y € VAR®
are any indecomposable sequences, by a new logical axiom

Fla A7 FQ — A17 A7 AQ (39)

for any A € F and any sequences I'1, 'y, Ay, As € SQ. We call a resulting proof
system GK, i.e. we have that

GK = (‘C{U,ﬂ,i,ﬁ}a SQa LA? R) (40)

where LA is the axiom (39) and R is the set (29) of rules of G.

Observe that the only difference between the systems GK and G is the form
of their logical axioms, both being tautologies. Hence hence get the proof com-
pleteness of GK in the same way as we proved it for G, i.e. we have the
following.

Theorem 24

For any formula A € F,
Fek A if and only if E A.
For any sequent T' — A € SQ,

Fex I' — A if and only if E T — A

By the GK the completeness theorem 24, LK-c completeness theorem 23 we
get the equivalency of GK and the cut free LK-c.

Theorem 25 (LK, GK Equivalency)

The proof systems GK and the cut freeLK are equivalent, i.e for any sequent
r — A,
Fok T'— A ifand only if Fex I' — A.

7 Homework Problems

1. Write all proofs in GL of (=(aNb) = (—a U -b))).
2. Find a formula which has a unique decomposition tree in GL.
3. Define shortly, in your own words, for any formula A € F, its decomposi-

tion tree T_, 4 in G.

70

10.

11.

12.
13.

14.

15.

16.

17.

Extend your definition T, 4 in G to a decomposition tree Tr_a.

Prove that for any I' = A € SQ, the decomposition tree Tr_ A in G are
finite.

Write all proofs in G of (—(aNb) = (—a U -b))).
Find a formula A which has a unique decomposition tree in G.

Prove strong soundness of rules (— U), (—=) in GL. List all logical equiv-
alences used in the proofs.

Prove strong soundness of rules (=—), (= —) in GL. List all logical equiv-
alences used in the proofs.

Prove strong soundness of rules (U —), (— =), (N —) in G. List all logical
equivalences used in the proofs.

Prove strong soundness of rules (=—), (— U), (=—) in G. List all logical
equivalences used in the proofs.

Explain why the system G is strongly sound.

Prove the following.

For any sequent I' — A € SQ,

it FgT'— A, then T — A.

Given a formula A = ((b= (aNc)) = (=(aUc) = (mbUa))).

(i) Find all counter models determined by the decomposition trees of A
in GL. Explain why the definition of a counter model determined by the
decomposition tree is correct.

(ii) Find all counter models determined by the decomposition trees of A
in G. Explain why the definition of a counter model determined by the
decomposition tree is correct.

Prove the following.

Given a sequent I' — A, such that its decomposition tree Tr__,a in G
contains a non- axiom leaf L 4. Any truth assignment v that falsifies the
non-axiom leaf L 4 is a counter model for I' — A.

Prove the following.

For any sequent I' — A € 5Q,

FeI' — A ifandonlyif E I'— A.

Let LK-¢c = LK — {(cut)} and GK be proof systems defined as defined
by (37) and (40), respectively

(i) We know that GK is strongly sound. Prove that LK-c is sound but
not strongly sound.

71

18.

19.

20.

21.
22.

(ii) Find proofs of axioms A3, A7, and A11 of the R system (34) in LK-c
and in GK, i.e. proofs of formulas (B = (AU B)), ((C = A) = ((C =
B) = (C = (AN B))), and ((A = (AN -A4)) = —-A). Compare your
results.

(iii) Find proofs of axioms A1, A8, and A9 of the R system (34) in LK-c
and in GK, i.e. proofs of formulas (A = B) = (B = C) = (A =
), (A= (B=0)=(AnB)=0)),and ((ANB)=0C)= (A=
(B = ()). Compare your results.

(iv) Find proofs of axioms A1, A5, and A12 of the R system (34) in LK-c
and in GK, i.e. proofs of formulas (A = B) = (B = C) = (A =
), (AN B) = A), and (AU-A) . Compare your results.

Re- write carefully the proof of the classical Hauptzatz Theorem 19 for
the case o the intuitionistic system LI (definition 10.

Define shortly, in your own words, for any formula A € F, its decomposi-
tion tree T 4 in LK-c. Is the tree T 4 always finite?

Given a formula A = (=(aNb) = (-a U -b))). Construct one infinite and
one infinite decomposition tree for A.

Describe major differences in the decomposition trees in LK-c and GK.

We have proved that LK-c and GK are equivalent, i.e. that for any
sequent I' — A,

Fixk—e I'— A ifand only if Fgx I' — A.

The proof was not constructive; it was obtained from that fact that both
systems are complete.

(ii) Describe a constructive procedure of transforming any proof in GK
into a proof in LK-c.

(i) Transform a proof of a formula (A = (AU B)) in GK into a proof in
LK-c.

(ii) Describe a constructive procedure of transforming any proof in GK
into a proof in LK-c.

(iii) Show that the procedure of elimination of structural rules of LK-c
leads to the rules inference of GK .

72

