
CHAPTER 3

Propositional Semantics: Classical and Many
Valued

1 Formal Propositional Languages

We define here a general notion of a propositional language. We obtain, as spe-
cific cases, various languages for propositional classical logic as well as languages
for many non-classical logics.

We assume that any propositional language contains a countably infinite set
V AR of propositional variables. What distinguishes one propositional language
from the other is the choice of its set CON of propositional connectives. We
adopt a notation LCON for a propositional language with the set CON of logical
connectives. For example, the language L{¬} denotes a propositional language
with only one connective ¬. The language L{¬,⇒} denotes that the language
has only two connectives ¬ and ⇒ adopted as propositional connectives. All
propositional languages share the general way their sets of formulas are formed.

Theoretically one can use any symbols to denote propositional connectives. But
there are some preferences, as connectives have a long history and intuitive
meaning. The formal meaning, i.e. a semantics for a given language is discussed
and defined in the next section.

Different semantics can share the same language. For example, the language
L{¬,∩,∪,⇒} is used as a propositional language for classical logic semantics, in-
tuitionistic logic semantics, and some many valued logics semantics. It is also
possible for several languages to share the same semantics. The classical propo-
sitional logic is the best example of such situation. We will prove in the section
?? that the languages:

L{¬⇒},L{¬∩},L{¬∪},L{¬,∩,∪,⇒},L{¬,∩,∪,⇒,⇔},

and even two languages with only one binary propositional connectives, denoted
usually by ↑ and ↓, respectively, i.e languages L{↑},L{↓} all share the same
semantics characteristic for the classical propositional logic.

The connectives have well established symbols and names, even if their semantics
can differ. We use names negation, conjunction, disjunction, implication and
equivalence (biconditional) for ¬,∩,∪,⇒,⇔, respectively. The connective ↑ is

1

called alternative negation and A ↑ B reads: not both A and B. The connective
↓ is called joint negation and A ↓ B reads: neither A nor B.

Other most common propositional connectives are probably modal connectives
of possibility and necessity. Standard modal symbols are � for necessity and
♦ for possibility. We will also use symbols C and I for modal connectives of
possibility and necessity, respectively.

A formula CA, or ♦A reads: it is possible that A , A is possible, and a formula
IA, or �A reads: it is necessary that A, A is necessary.

A motivation for notation C and I arises from topological semantics for modal
S4 and S5 logics. C becomes equivalent to a set closure operation, and I becomes
equivalent to a set interior operation.

The symbols ♦, C and �, I are not the only symbols used for modal connectives.
Other symbols include N for necessity and P for possibility. There is also
a variety of modal logics created by computer scientists, all with their set of
symbols and motivations for their use and their semantics. The modal logics
extend the classical logic and hence their language is for example L{�,♦,¬,∩,∪,⇒}.

Knowledge logics also extend the classical logic. Their languages add to the
classical connectives a new knowledge connective, often denoted denoted by K.
The formula KA reads: it is known that A , A is known. The language of a
knowledge logic is for example L{K, ¬,∩,∪,⇒}.

Autoepistemic logics use a believe connective, often denoted by B. The formula
BA reads: it is believed that A. They also extend the classical logic and hence
their language is L{B, ¬,∩,∪,⇒}.

Temporal logics add temporal connectives to the set of classical propositional
connectives. For example some of them use connectives (operators, as they are
often called) F, P,G, and H to denote the following intuitive readings. FA reads
A is true at some future time, PA reads A was true at some past time, GA
reads A will be true at all future times, and HA reads A has always been true
in the past. In order to take account of this variation of truth-values over time,
some formal semantics were created, and many more will be created.

It is possible to create connectives with more then one or two arguments, but
we allow here only one and two argument connectives, as logics which will be
discussed here use only those two kind of connectives.

We adopt the following definition, common to all propositional languages con-
sidered in our propositional logics investigations.

Definition 1 (Propositional Language)

By a propositional language with a set CON of propositional connectives
we understand a pair

LCON = (A,F). (1)

2

A is a called propositional alphabet and F is called a set of propositional
formulas of the language LCON . The alphabet A, the set CON of propositional
connectives, and the set F of propositional formulas are defined as follows.

1. Alphabet A

The alphabet A = V AR∪CON ∪PAR, where VAR, CON, PAR are all disjoint
sets and VAR, CON are non-empty sets. VAR is countably infinite and is called
a set of propositional variables; we denote elements of VAR by a, b, c, ... etc,
(with indices if necessary).

CON is a finite set of propositional connectives, PAR is a set of auxil-
iary symbols. We assume that PAR 6= ∅ and contains two elements (,) called
parentheses, i.e. PAR = {(,)}. The set PAR may be empty, for example of a
case of Polish notation, but we assume that it contains two parenthesis as to
make the reading of formulas more natural and uniform.

2. Propositional connectives CON

We assume that the set CON is non empty and finite. We specify it for specific
cases (specific logics). It is possible to consider languages with connectives
which have more then one or two arguments, nevertheless we restrict ourselves
to languages with one or two argument connectives only.
We assume that

CON = C1 ∪ C2

where C1 is a finite set (possibly empty) of unary connectives, C2 is a finite
set (possibly empty) of binary connectives of the language LCON .

2. Set F of formulas

The set F is built recursively from the elements of the alphabet A, i.e. F ⊆ A∗,
where A∗ is the set of all finite sequences (strings) form from elements of A and
is defined as follows.

The set F of all formulas of a propositional language LCON is the smallest
set, such that the following conditions hold:

(1) V AR ⊆ F ;

(2) if A ∈ F , 5 ∈ C1 i.e 5 is an one argument connective, then 5A ∈ F ;

(3) if A,B ∈ F , ◦ ∈ C2 i.e ◦ is a two argument connective, then
(A ◦B) ∈ F .

The elements of the set V AR ⊆ F are called atomic formulas. The set F is
also called a set of all well formed formulas (wff) of the language LCON .

3

The alphabet A is countably infinite and consequently the set A∗ of all finite
sequences of elements of A is also countably infinite. By definition, F ⊆ A∗,
hence the set F is also countably infinite. We state as separate fact.

Fact 1 For any propositional language LCON = (A,F), the set F of formu-
las is countably infinite. We hence consider here only infinitely countable
languages.

Observation 1

When defining a language LCON we choose not only the propositional connec-
tives but also the symbols denoting them.

For example, L1 = L{¬} and L2 = L{∼} are two different propositional lan-
guages both with negation as the only connective.

The choice of appropriate well established symbols for logical connectives de-
pends on a personal preferences of books’ authors and creators of different logics.
One can find a variety of them in the literature. We presented some historical
choices in the chapter 2.

Example 1

Let L1 = L{¬} and L2 = L{∼}. The formulas of both languages L1, L2 are
propositional variables or multiple negations of of a propositional variable.

The strings a,¬b,¬¬b,¬¬¬a are well formed formulas of L1. The corresponding
formulas of L2 are a,∼ b,∼∼ b,∼∼∼ a.

Observe that the strings (¬a),¬,¬(¬a),¬(a), (∼ a),¬,∼ (∼ a) ∼ (a) are not
well formed formulas of neither of the languages L1,L2.

We adopt the general definition of the set F of formulas of LCON to for example
the language L{∼} as follows.

Example 2

The set F of all formulas of a propositional language L{∼} is the smallest
set, such that the following conditions hold:

(1) V AR ⊆ F (atomic formulas);

(2) if A ∈ F , then ∼ A ∈ F .

Example 3

Consider now LCON for the set of connectives CON = {¬}∪{⇒}, where ¬ ∈ C1

and ⇒ ∈ C2. It means that we defined a language L = L{¬,⇒}.

4

By the initial recursive step we get for any a ∈ V AR, a ∈ F . By the recursive
step and its repetition we get for example that ¬a ∈ F , ¬¬a ∈ F , ¬¬¬a ∈ F ,
... etc., i.e. get all formulas from the the example 1 language L1. But also we
also get that (a ⇒ a), (a ⇒ b),¬(a ⇒ b), (¬a ⇒ b),¬((a ⇒ a) ⇒ ¬(a ⇒ b))....
etc. are all in F and infinitely many others.

Observe that (¬(a⇒ b))), a⇒ b, (a⇒) are not in F .

Example 4

Consider L = LCON for C1 = {¬, P,N}, C2 = {⇒}. If we understand P , N
as a possibility and necessity connectives, the obtained language is called a
modal language with only negation as non-modal connective.

The set of formulas F of L contains all formulas from example 3, but also for-
mulas Na,¬Pa, P¬a, (N¬b⇒ Pa),¬P¬a, ((N¬b⇒ Pa)⇒ b), etc.

We adopt the general definition of the set F of formulas of LCON to for example
the modal language L{¬,P,N,⇒} as follows.

Example 5

The set F of all formulas of a propositional language L{¬,P,N,⇒} is the
smallest set, such that the following conditions hold:

(1) V AR ⊆ F (atomic formulas);

(2) if A ∈ F , then ¬A, PA, NA ∈ F ;

(3) if A,B ∈ F , then (A⇒ B) ∈ F .

We introduce now formal definitions of basic syntactical notions of a main con-
nective, a sub-formula of a given formula, and of a degree of a given formula.

Definition 2 (Main Connective)

Given a language LCON = (A,F).

For any connectives 5 ∈ C1 and ◦ ∈ C2,

5 is called a main connective of 5A ∈ F and

◦ is a main connective of (B ◦ C) ∈ F .

Observe that it follows directly from the definition of the set of formulas that
for any formula C ∈ F , exactly one of the following holds: C is atomic, or there
is a unique formula A and a unique unary connective 5 ∈ C1, such that C
is of the form 5A, or here are unique formulas A and B and a unique binary
connective ◦ ∈ C2, such that C is (A ◦B). We have hence proved the following.

5

Observation 2

For any formula A ∈ F , A is atomic or has a unique main connective.

Example 6

The main connective of (a ⇒ ¬Nb) is ⇒. The main connective of N(a ⇒
¬b) is N . The main connective of ¬(a ⇒ ¬b) is ¬ The main connective of
(¬a ∪ ¬(a⇒ b)) is ∪.

Definition 3

We define a notion of direct a direct sub-formula as follows: 1. Atomic
formulas have no direct sub-formulas. 2. A is a direct sub-formula of a formula
5A, where 5 is any unary connective. 3. A,B are direct sub-formulas of a
formula (A ◦B) where ◦ is any binary connective.

Directly from the definition 3 we get the following.

Observation 3

For any formula A, A is atomic or has exactly one or two direct sub-formulas
depending on its main connective being unary or binary, respectively.

Example 7

The formula (¬a ∪ ¬(a ⇒ b)) has exactly ¬a and ¬(a ⇒ b) as direct sub-
formulas.

Definition 4

We define a notion of a sub-formula of a given formula in two steps. 1. For
any formulas A and B, A is a proper sub-formula of B if there is sequence of
formulas, beginning with A, ending with B, and in which each term is a direct
sub-formula of the next. 2. A sub-formula of a given formula A is any proper
sub-formula of A, or A itself.

The formula (¬a ∪ ¬(a⇒ b)) has ¬a and ¬(a⇒ b) as direct sub-formula. The
formulas ¬a and ¬(a ⇒ b) have a and (a ⇒ b) as their direct sub-formulas,
respectively. The formulas ¬a, ¬(a ⇒ b), a and (a ⇒ b) are all proper sub-
formulas of the formula (¬a ∪ ¬(a ⇒ b)) itself. Atomic formulas a and b are
direct sub-formulas of (a⇒ b). Atomic formula b is a proper sub-formula of ¬b.

Example 8

The set of all sub-formulas of

(¬a ∪ ¬(a⇒ b))

consists of (¬a ∪ ¬(a⇒ b)), ¬a, ¬(a⇒ b), (a⇒ b), a and b.

6

Definition 5 (Degree of a formula)

By a degree of a formula we mean the number of occurrences of logical connec-
tives in the formula.

The degree of (¬a ∪ ¬(a ⇒ b)) is 4. The degree of ¬(a ⇒ b)) is 2. The degree
of ¬a is 1. The degree of a is 0.

Note that the degree of any proper sub-formula of A must be one less than the
degree of A. This is the central fact upon mathematical induction arguments
are based. Proofs of properties formulas are usually carried by mathematical
induction on their degrees.

Example 9

Given a formula A : (¬I¬a⇒ (¬Ca ∪ (Ia⇒ ¬Ib))).
1. The language to which A belongs is a modal language L{¬,C,C,∪,∩,⇒} with
the possibility connective C and necessity connective C. Both of them are one
argument connectives.
2. The main connective of A is ⇒, the degree of A is 11.
3. All sub-formulas of A of the degree 0 are the atomic formulas a, b. All
sub-formulas of A of the degree 1 are: ¬a, Ca, Ia, Ib.

Languages with Propositional Constants

A propositional language LCON = (A,F) is called a language with propositional
constants, when we distinguish certain constants, like symbol of truth T or
falsehood F, or other symbols as elements of the alphabet. The propositional
constants are zero-argument connectives. In this case the set CON of logical
connectives contains a a finite, non empty set of zero argument connectives C0,
called propositional constants, i.e. we put

CON = C0 ∪ C1 ∪ C2.

The definition of the set F of all formulas of the language LCON contains now
an additional recursive step and goes as follows.

The set F of all formulas of the language LCON with propositional constants is
the smallest set built from the signs of the alphabet A, i.e. F ⊆ A∗, such that
the following conditions hold:

(1) V AR ⊆ F (atomic formulas),

(2) C0 ⊆ F (atomic formulas),

(3) if A ∈ F , 5 ∈ C1 i.e 5 is an one argument connective, then 5A ∈ F ,

7

(4) if A,B ∈ F , ◦ ∈ C2 i.e ◦ is a two argument connective, then
(A ◦B) ∈ F .

Example 10

Let L = L{T,¬,∩}, i.e. C0 = {V }. Atomic formulas of L are all variables and
the symbol T .

The language admits formulas that involve the symbol T like T,¬T , (T ∩ a),
(¬a∩¬T),¬(b∩T), etc... We might interpret the symbol T as a symbol of truth
(statement that is always true).

Here are some exercises and examples dealing with the formal definition of
propositional languages, syntactical correctness, and their expressiveness.

Exercise 1

Given a language L = L{¬, C,I,∪,∩,⇒} and the following set S.

S = {C¬a⇒ (a ∪ b), (C(¬a⇒ (a ∪ b))), C¬(a⇒ (a ∪ b))}

Determine which of the elements of S are, and which are not well formed for-
mulas of L. If A ∈ S is not a correct formula write its corrected version. For
each correct or corrected formula determine its main connective, its degree and
write what it says in the natural language.

Solution
A1 : C¬a ⇒ (a ∪ b) is not a well formed formula. The corrected formula is
(C¬a ⇒ (a ∪ b)). Its main connective is ⇒ and the degree is 4. The corrected
formula says: If negation of a is possible, then we have a or b.

Another corrected formula is C(¬a ⇒ (a ∪ b)). Its main connective is C, the
degree is 4. The corrected formula says: It is possible that not a implies a or b.

A2 : (C(¬a ⇒ (a ∪ b))) is not a well formed formula. The correct formula
is C(¬a ⇒ (a ∪ b)). The main connective is C, the degree is 4. The formula
C(¬a⇒ (a ∪ b)) says: It is possible that not a implies a or b .

3. The formula C¬(a ⇒ (a ∪ b)) is a correct formula. The main connective is
C, the degree is 4. The formula says: the negation of the fact that a implies a
or b is possible.

Exercise 2

Given a set S of formulas:

8

S = {((a⇒ ¬b)⇒ ¬a),�(¬♦a⇒ ¬a), (a ∪ ¬(a⇒ b))}.

Define a formal language LCON to which to which all formulas in S belong, i.e.
a language determined by the set S.

Solution
Any propositional language LCON is determined by its set of connectives. The
connectives appearing in the formulas of the set S are: ⇒,¬b,�,♦ and ∪. Hence
the required language is L{¬,�,♦,∪,⇒}.

Exercise 3

Write down a set S1 all sub-formulas of the ♦((a∪¬a)∩ b), a set S2 all proper
sub-formulas of ¬(a⇒ (b⇒)).

Solution
The set S1 of all sub-formulas of ♦((a ∪ ¬a) ∩ b) is

S1 = {♦((a ∪ ¬a) ∩ b), ((a ∪ ¬a) ∩ b), (a ∪ ¬a), ¬a, b, a}

a, b are atomic sub-formulas, and ♦((a ∪ ¬a) ∩ b) is not a proper sub-formula.

The set S2 of all proper sub-formulas of ¬(a⇒ (b⇒ c)) is

S2 = {(a⇒ (b⇒ c)), (b⇒ c), a, b, c}.

Exercise 4

Write the following natural language statement S:

”From the fact that it is possible that Anne is not a boy we deduce that it is not
possible that Anne is not a boy or, if it is possible that Anne is not a boy, then
it is not necessary that Anne is pretty.”

in the following two ways.

1. As a formula A1 ∈ F1 of a language L{¬, �, ♦, ∩, ∪, ⇒}.

2. As a formula A2 ∈ F2 of a language L{¬, ∩, ∪, ⇒}.

Solution
1. We translate the statement S into a formula A1 of the modal language
L{¬, �, ♦, ∩, ∪, ⇒} as follows.

Propositional variables are: a, b. The variable a denotes statement Anne is a
boy and b denotes a statement Anne is pretty.

Propositional modal connectives are: �, ♦. The connective ♦ reads it is
possible that, and � reads it is necessary that.

9

Translation: the formula A1 is (♦¬a ⇒ (¬♦¬a ∪ (♦¬a⇒ ¬�b))).

2. We translate our statement into a formula A2 of the language L{¬, ∩, ∪, ⇒}
as follows.

Propositional variables are: a, b. The variable a denotes statement it is possible
that Anne is not a boy and b denotes a statement it is necessary that Anne is
pretty. Translation: the formula A2 is (a⇒ (¬a ∪ (a⇒ ¬b))).

Exercise 5

Write the following natural language statement S:

”For all natural numbers n ∈ N the following implication holds: if n < 0, then
there is a natural number m, such that it is possible that n + m < 0, or it is
not possible that there is a natural number m, such that m > 0”

in the following two ways.

1. As a formula A1 of a language L{¬, ∩, ∪, ⇒}.

2. As a formula A2 of a language L{¬, �, ♦, ∩, ∪, ⇒}.

Solution
1. We translate the statement S into a formula A1 of the language L{¬, ∩, ∪, ⇒}
as follows.

Propositional variables are: a, b. The variable a denotes statement For all
natural numbers n ∈ N the following implication holds: if n < 0, then there is
a natural number m, such that it is possible that n + m < 0. The variable b
denotes statement it is not possible that there is a natural number m, such that
m > 0. Translation: the formula A1 is (a ∪ ¬b).

2. We translate the statement S into a formula A2 of a language L{¬, �, ♦, ∩, ∪, ⇒}
as follows. Propositional variables are: a, b. The variable a denotes statement
For all natural numbers n ∈ N the following implication holds: if n < 0, then
there is a natural number m, such that it is possible that n + m < 0. The
variable b denotes statement there is a natural number m, such that m > 0.
Translation: the formula A2 is (a ∪ ¬♦b).

2 Extensional Semantics M

Given a propositional language LCON , the symbols for its connectives always
have some intuitive meaning. A formal definition of the meaning of these sym-
bols is called a semantics for the language LCON . A given language can have
different semantics but we always define them in order to single out special for-
mulas of the language, called tautologies, i.e. formulas of the language that is
always true under the given semantics.

10

We introduced in Chapter 2 a notion of a classical propositional semantics, dis-
cussed its motivation and underlying assumptions. The fist assumption was that
we consider only two logical values. The other one was that all classical propo-
sitional connectives are extensional. We have also observed that in everyday
language there are expressions such as ”I believe that”, ”it is possible that”,
” certainly”, etc.... and they are represented by some propositional connectives
which are not extensional. Non-extensional connectives do not play any role
in mathematics and so are not discussed in classical logic and will be studied
separately. The extensional connectives are defined intuitively as such that the
logical value of the formulas form by means of these connectives and certain
given formulas depends only on the logical value(s) of the given formulas.

We adopt a following formal definition of extensional connectives for a proposi-
tional language LCON under a semantics M with the set LV of logical values.

Definition 6 (Extensional Connectives)

Let LCON be such that CON = C1∪C2, where C1, C2 are the sets of unary and
binary connectives, respectively. Let LV be a non-empty set of logical values. A
connective 5 ∈ C1 or ◦ ∈ C2 is called extensional if it is defined by a respective
function

5 : LV −→ LV or ◦ : LV × LV −→ LV.

A semantics M for a language LCON is called extensional provided all con-
nectives in CON are extensional.

A semantics with a set of m-logical values is called a m-valued semantics. The
classical semantics is a special case of a 2-valued extensional semantics. Given a
language, its different semantics define corresponding different logics. Classical
semantics defines classical propositional logic with its set of classical proposi-
tional tautologies. Many of m- valued logics are defined by various extensional
semantics with sets of logical values LV with more then 2 elements. The lan-
guages of many important logics like modal, multi-modal, knowledge, believe,
temporal logics, contain connectives that are not extensional. Consequently
they are defined by the non-extensional semantics. The intuitionistic logic is
based on the same language as the classical one, its Kripke Models semantics is
not extensional. Defining a semantics for a given propositional language means
more then defining its propositional connectives. The ultimate goal of any se-
mantics is to define the notion of its own tautology. In order to define which
formulas of LCON we want to to be tautologies under a given semantics M we
assume that the set LV of logical values of M always has a distinguished logical
value, often denoted by T (for truth). We also can distinguish, and often we do,
another special value F representing ”absolute” falsehood. We will use these
symbols T, F. We may also use other symbols like 1,0 or others. The value T
serves to define a notion of a tautology (as a formula always ”true”). Exten-
sional semantics share not only the similar pattern of defining their connectives
(definition 6), but also the method of defining the notion of a tautology.

11

We hence define a general notion of an extensional semantics (definition 7) as
sequence of steps leading to the definition of a tautology. Here are the steps.

Step1: we define all connectives of M as specified by definition 6.

Step 2: we define the main component of the definition of a tautology, namely
a function v that assigns to any formula A ∈ F its logical value form VL. It is
often called a truth assignment and we will use this name.

Step 3: given a truth assignment v and a formula A ∈ F , we define what does
it mean that v satisfies A, i.e. that v is a model for A under semantics M.

Step 4: we define a notion of tautology as follows: A is a tautology under seman-
tics M if and only if all truth assignments v satisfy A, i.e. all truth assignments
v are models for A.

We use a notion of a model because it is an important, if not the most important
notion of modern logic. It is usually defined in terms of the notion of satisfac-
tion. In classical propositional logic these two notions are the same. The use of
expressions ” v satisfies A” and ”v is a model for A” is interchangeable. This
is also a case for the extensional semantics; in particular for some non-classical
semantics, like m-valued semantics discussed in this chapter. The notions of
satisfaction and model are not interchangeable for predicate languages seman-
tics. We already discussed these notions in Chapter 2 and will define them in
full formality in Chapter (predicate Logic) The use of the notion of a model
also allows us to adopt and discuss the standard predicate logic definitions of
consistency and independence for propositional case.

Given a language LCON and non-empty set LV of logical values. We assume
that the set LV has a special, distinguished logical value which serves to define a
notion of tautology under the semantics M. We denote this distinguished value
as T. We define formally a general notion of an extensional semantics M for
LCON as follows.

Definition 7 (Extensional Semantics)

A formal definition of an extensional semantics M for a given language LCON

consists of specifying the following steps defining its main components.

Step 1: we define a set LV of logical values and its distinguish value T, and
define all connectives of LCON to be extensional;
Step 2: we define notions of a truth assignment and its extension;
Step 3: we define notions of satisfaction, model, counter model;
Step 4: we define notions tautology under the semantics M.

What differs one semantics from the other is the choice of the set LV of logical
values and definition of the the connectives of LCON , i.e. the components

12

defined in the Step1. The definitions for the Steps 2 and 3, 4 are modification
of the definitions established for the classical case and they are as follows.

Step 1: we follow the definition 6 to define the connectives of M.

Step 2 : we define a function called truth assignment and its extension in terms
of the propositional connectives as defined in the Step 1. We us the term M
truth assignment and M truth extention to stress that it is defined relatively to
a given semantics M.

Definition 8 (M Truth Assignment)

Let LV be the set of logical values of M and VAR the set of propositional variables
of the language LCON . Any function v : V AR −→ LV , is called a truth
assignment under semantics M, for short M truth assignment.

Definition 9 (M Truth Extension)

Given M truth assignment
v : V AR −→ LV . We define its extension v∗ to the set F of all formulas of
LCON as any function

v∗ : F −→ LV,

such that the following conditions are satisfied.

(i) for any a ∈ V AR,
v∗(a) = v(a);

(ii) For any connectives 5 ∈ C1, ◦ ∈ C2, and for any formulas A, B ∈ F ,

v∗(5A) = 5v∗(A), v∗((A ◦B)) = ◦(v∗(A), v∗(B)).

We call the v∗ the M truth extension.

The symbols on the left-hand side of the equations represent connectives in
their natural language meaning and the symbols on the right-hand side repre-
sent connectives in their semantical meaning as defined in the Step1.
We use names ”M truth assignment”, ”M truth extension” to stress that we
define them for the set of logical values of M and moreover, that the extension
of v connects the formulas of the language with the connectives as defined by
the semantics M.

Notation Remark For a given function f, we use a symbol f∗ to denote its
extension to a larger domain. Mathematician often use the same symbol f for
both a function and its extension f∗.

Step 3: the notions of satisfaction and model are interchangeable in extensional
semantics. They are not interchangeable in other propositional semantics and
in semantics for predicate languages.We define them as follows.

13

Definition 10 (M Satisfaction, Model)

Given an M truth assignment

v : V AR −→ LV and its M truth extension v∗. Let T ∈ LV be the distin-
guished logical value. We say that
the truth assignment v M satisfies a formula A if and only if v∗(A) = T .
We write symbolically

v |=M A.

Any truth assignment v, such that v |=M A is called M model for A.

Definition 11 (M Counter Model)

Given an M truth assignment

v : V AR −→ LV . Let T ∈ LV be the distinguished logical value. We say that
v does not satisfy a formula A ∈ F if and only if v∗(A) 6= T .

We denote it by
v 6 |=M A.

A any v, such that v 6 |=M A is called M counter model for A.

Step 4: we define the notion of a tautology under semantics M, called M
tautology as follows.

Definition 12 (M Tautology)

For any formula A ∈ F ,

A is M tautology if and only if v |=M A, for all truth assignments v,
v : V AR −→ LV . We denote it as

|=M A.

We also say that A is M tautology if and only if all truth assignments v are
M models for A.

Observe that immediately from definition 11 we get the following equivalent
form of the definition 12.

Definition 13

For any formula A ∈ F ,

A is a M tautology if and only if v∗(A) = T , for all truth assignments v,
v : V AR −→ LV .

14

We denote by MT the set of all tautologies under the semantic M, i.e.

MT = {A ∈ F : |=M A.} (2)

Obviously, when we develop a logic by defining its semantics we want the se-
mantics to be such that the logic has a non empty set of its tautologies. We
stress that fact by putting it in a form of the following definition.

Definition 14

Given a language LCON and its extensional semantics M (definition 7), we say
that the semantics M is well defined if and only if its set MT of all tautologies
(2) is non empty, i.e. when

MT 6= ∅ (3)

We follow the definitions and pattens established here first in section 3. We use
them to define and discuss in details the classical propositional semantics. Def-
initions and short discussions of some of the many-valued semantics follow next
in section 5. Many valued logics had their beginning in the work of Lukasiewicz
(1920). He was the first to define a 3- valued extensional semantics for a lan-
guage L{¬,∩,∪,⇒} of classical logic, and called it a three valued logic for short.
The other logics, now of historical value followed and we will discuss some of
them. In particular we present a Heyting 3-valued semantics as an introduction
to the definition and discussion of first ever semantics for the intuitionistic logic
and some modal logics. It was proposed by J.C.C McKinsey and A. Tarski in
1946-48 in a form of cylindrical algebras, now called pseudo-boolean algebras,
or Heyting algebras. The semantics in a form of abstract algebras are called
algebraic models for logics. It became a separate field of modern logic. The
algebraic models are generalization of the extensional semantics, hence the im-
portance of this section. It can me treated as an introduction to algebraic models
for logics. It will be discussed again in chapter??.

3 Classical Semantics

We follow now Steps 1- 4 of the definition 7 of extensional semantics adopted
to the case of the classical propositional logic.

The language is L{¬, ∪, ∩, ⇒, ⇔}. The set LV of logical values is {T, F}. The
letters T, F stand as symbols of truth and falsehood, respectively. We adopt
T as the distinguished value. There are other notations for logical values, for
example 0,1, but we will use T, F.

Step 1: Definition of connectives

15

Negation is a function ¬ : {T, F} −→ {T, F}, such that
¬(T) = F, ¬(F) = T. We write it as ¬T = F, ¬F = T .

Notation: we write the name of a function (our connective) between the ar-
guments, not in front as in function notation, i.e. we write for any binary
connective ◦, T ◦ T = T instead of ◦(T, T) = T .

Conjunction is a function ∩ : {T, F} × {T, F} −→ {T, F}, such that
∩(T, T) = T, ∩(T, F) = F, ∩(F, T) = F, ∩(F, F) = F . We write it as
T ∩ T = T, T ∩ F = F, F ∩ T = F, F ∩ F = F .

Disjunction is a function ∪ : {T, F} × {T, F} −→ {T, F}, such that
∪(T, T) = T, ∪(T, F) = T, ∪(F, T) = T, ∪(F, F) = F . We write it as
T ∪ T = T, T ∪ F = T, F ∪ T = T, F ∪ F = F .

Implication is a function ⇒: {T, F} × {T, F} −→ {T, F}, such that
⇒ (T, T) = T, ⇒ (T, F) = F, ⇒ (F, T) = T, ⇒ (F, F) = T . We write it as
T ⇒ T = T, T ⇒ F = F, F ⇒ T = T, F ⇒ F = T .

Equivalence is a function ⇔: {T, F} × {T, F} −→ {T, F}, such that
⇔ (T, T) = T, ⇔ (T, F) = F, ⇔ (F, T) = F, ⇔ (T, T) = T . We write it as
T ⇔ T = T, T ⇔ F = F, F ⇔ T = F, T ⇔ T = T .

We write function defining the connectives in a standard form of tables defining
operations in finite sets. We call these tables truth tables definition of proposi-
tional connectives, or classical connectives truth tables for short.

Classical Connectives Truth Tables

¬ T F
F T

∩ T F
T T F
F F F

∪ T F
T T T
F T F

⇒ T F
T T F
F T T

⇔ T F
T T F
F F T

As ultimate goal of our semantics is to define the notion of tautology, a formula
that is always true, we assume that the set {T, F} of our logical values is ordered
and F < T , This makes the symbol T (for truth) the ”greatest” logical value,
what truth supposed to be. We now can write simple formulas defining the
connectives (respective function) as follows.

Classical Connectives Formulas

¬ : {F, T} −→ {F, T}, such that ¬F = T, ¬T = F.

∩ : {F, T} × {F, T} −→ {F, T}, such that for any x, y ∈ {F, T},
∩(x, y) = min{x, y}. We write it as x ∪ y = min{x, y}.

16

∪ : {F, T} × {F, T} −→ {F, T}, such that for any x, y ∈ {F, T},
∪(x, y) = max{x, y}. We write it as x ∪ y = max{x, y}.

⇒: {F, T} × {F, T} −→ {F, T}, such that for any x, y ∈ {F, T},
⇒ (x, y) = ∪(¬x, y). We write it as x⇒ y = ¬x ∪ y.

⇔: {F, T} × {F, T} −→ {F, T}, such that for any x, y ∈ {F, T},
⇔ (x, y) = ∪(⇒ (x, y),⇒ (y, x)).
We write it as x⇔ y = (x⇒ y) ∩ (y ⇒ x).

Exercise 6

Prove that the above connectives formulas are correct, i.e. that they define the
same classical connectives as defined in Step 1..

Solution
This is a problem of proving equality of functions that are given the same names.
We have to show that the use of the same names: ¬, ∪, ∩, ⇒, ⇔ for them is
justified. The equality of functions is defined as follows.

Definition 15

Given two sets A, B and functions f, g, such that f : A −→ B and g : A −→ B.
We say that the functions f, g are equal and write it f = g if and only if f(x)
= g(x) for all elements x ∈ A.

The negation definition is the same in both cases. We prove that the two con-
junctions and two disjunctions functions are the equal by comparing he Truth
Tables build for both definitions. We verify now the correctness of the implica-
tion function formula. Consider two functions ⇒: {T, F}× {T, F} −→ {T, F}
and h : {T, F}×{T, F} −→ {T, F}, where⇒ is the classical implication defined
by Definition ?? and h is defined by the formula h(x, y) = ∪(¬x, y). Observe
that we have already proved that functions ∪ and ¬ are equal in both cases.
We prove that ⇒ = h by evaluating that ⇒ (x, y) = h(x, y) = ∪(¬x, y), for
all (x, y) ∈ {T, F} × {T, F} as as follows.
T ⇒ T = T and h(T, T) = ¬T ∪ T = F ∪ T = T yes.
T ⇒ F = F and h(T, F) = ¬T ∪ F = F ∪ F = F yes.
F ⇒ F = T and h(F, F) = ¬F ∪ F = T ∪ F = T yes.
F ⇒ T = T and h(F, T) = ¬F ∪ T = T ∪ T = T yes.
This proves the correctness of the implication formula ⇒ (x, y) = ∪(¬x, y). We
write it as x ⇒ y = ¬x ∪ y and call it a formula defining implication in
terms of disjunction and negation. We verify the correctness of the equivalence
formula ⇔ (x, y) = ∪(⇒ (x, y),⇒ (y, x)) in a similar way.

Special Properties of Connectives

17

Observe that the formulas defining connectives of implication and equivalence
are certain compositions of previously defined connectives. Classical semantics
is a special one, its connectives have strong properties that often do not hold
under other semantics, extensional or not. One of them is a property of defin-
ability of connectives, the other one is a functional dependency. These are basic
properties one asks about any new semantics, and hence a logic, being created.
We generalize these the notion of functional dependency of connectives under a
given extensional semantics M.

Definition 16 (Definability of Connectives)

Given a propositional language LCON and its extensional semantics M. A
connective ◦ ∈ CON is definable in terms of some connectives ◦1, ◦2, ...◦n ∈
CON if and only if ◦ is a certain function composition of functions ◦1, ◦2, ...◦n,
as they are defined by the semantics M.

We have just proved in Exercise 6 that the implication ⇒ is definable in terms
of ∪ and ¬ under classical semantics as it is a composition of ∪ and ¬ defined
by the formula ⇒ (x, y) = ∪(¬x, y). The classical equivalence is definable in
terms of ⇒ and ∩ by the formula ⇔ (x, y) = ∪(⇒ (x, y),⇒ (y, x)).

Definition 17 (Functional Dependency)

Given a propositional language LCON and its extensional semantics M. A
property of defining the set of connectives CON in terms of its proper subset is
called a functional dependency of connectives under the semantics M.

Proving the property of functional dependency under a given semantics M con-
sists of identifying a proper subset CON0 of the set CON of connectives, such
that each connective ◦ ∈ CON − CON0 is definable (definition 16) in terms of
connectives from CON0. This is usually a difficult, and often impossible task
for many semantic. We prove now that it holds in the classical case.

Theorem 1

The set of connectives of the language L{¬, ∪, ∩, ⇒, ⇔} is functionally depen-
dent under the classical semantics.

Proof
Let’s take a set {¬, ∪}. We have already proved in Exercise 6 that the impli-
cation ⇒ and is definable in terms of ∪ and ¬ by the formula x⇒ y = ¬x∪ y.
The conjunction is defined by easy verification, similar to the one in Exercise
6, by a formula x ∩ y = ¬(¬x ∪ ¬y). By Exercise 6, the equivalence formula is
definable in terms of ⇒ and ∩ by the formula x⇔ y = (x⇒ y) ∩ (y ⇒ x). The
final formula for for the equivalence is x⇔ y = (¬x ∪ y) ∩ (¬y ∪ x).

18

There are many ways to prove this theorem, it means there are many ways to
choose a proper subset CON0 of the set {¬, ∪, ∩, ⇒, ⇔} that defines all other
connectives. Here are the choices.

Theorem 2 (Definability of Connectives)

All connectives of the language L{¬, ∪, ∩, ⇒, ⇔} are definable in terms of ¬
and ◦, for any ◦ ∈ {∪, ∩, ⇒}.

Proof
We list all required definability formulas, including the formulas developed in
the proof of Theorem 1. An easy verification of their correctness is left as an
exercise.
1. Definability in terms of ⇒ and ¬.
x ∩ y = ¬(x⇒ ¬y), x ∪ y = ¬x⇒ y, x⇔ y = ¬((x⇒ y)⇒ ¬(y ⇒ x)).
2. Definability in terms of ∩ and ¬.
x ∪ y = ¬(¬x ∩ ¬y), x⇒ y = ¬(x ∩ ¬y), x⇔ y = ¬(x ∩ ¬y) ∩ ¬(y ∩ ¬x).
3. Definability in terms of ∪ and ¬.
x⇒ y = ¬x ∪ y, x ∩ y = ¬(¬x ∪ ¬y) x⇔ y = (¬x ∪ y) ∩ (¬y ∪ x).

There are two other important classical binary connectives denoted by ↑ and
↓. The connective ↑ was discovered in 1913 by H.M. Sheffer, who called it
alternative negation. Now it is often called a Sheffer’s connective. A formula
(A ↑ B) reads: not both A and B. The connective ↓ was discovered in 1920 by
J. Lukasiewicz and named joint negation. The formula (A ↓ B) reads: neither
A nor B. They are defined as follows.

Alternative Negation is a function ↑: {T, F} × {T, F} −→ {T, F} such that
T ↑ T = F, T ↑ F = T, F ↑ T = T, F ↑ F = T .

Joint Negation is a function ↓: {T, F} × {T, F} −→ {T, F} such that
T ↓ T = F, T ↓ F = F, F ↓ T = F, F ↓ F = T .

Truth Tables for ↑ and ↓

↑ T F
T F T
F T T

↓ T F
T F F
F F T

We extend our language L{¬, ∪, ∩, ⇒, ⇔} by adding Sheffer and Lukasiewicz
connectives to it. We obtain the language L{¬, ∪, ∩, ⇒, ⇔, ↑, ↓} that contains
now all possible classical connectives.

Theorem 3

All connectives of a language L{¬, ∪, ∩, ⇒, ⇔, ↑, ↓} are definable in terms of ↑,
and also separately in terms of ↓.

19

Proof
Definability formulas of ¬ and ∩ in terms of ↑ are the following.

¬x = x ↑ x, x ∩ y = (x ↑ y) ↑ (x ↑ y) (4)

Definability formulas for of the connectives {∪, ⇒, ⇔} in terms of ↑ follow
directly from the formulas in the proof of Theorem 2 and the formulas (4).
Observe that the x ↑ y = ¬(x ∪ y). The definability of x ↓ y in terms of x ↑ y
follows from (4) and definability of ∪ in terms ↑.
Definability formulas of ¬ and ∪ in terms of ↓ are, by simple verification, the
following.

¬x = x ↓ x, x ∪ y = (x ↓ y) ↓ (x ↓ y) (5)

Definability formulas for of the connectives {∩, ⇒, ⇔, ↑} in terms of ↓ follow
directly, as in the previous case, from the Theorem 2 and the formulas (5).

Functional dependency and definability of connectives as expressed in Theo-
rems 2, 3 are very strong and characteristic properties of the classical semantics.
They hold, for some connectives for some non-classical logics, never in others.
For example, the necessity connective � is definable in terms of the possibility
connectives ♦ and negation ¬ in Modal S4 and S5 logics, but not in majority of
others. The classical implication is definable in terms of negation and disjunc-
tion, but the intuitionistic implication is not. We defined and discussed these
classical properties here as they have to be addressed and examined when one
is building semantics for any of a non-classical logic.

Step 2: Truth Assignment, Truth Extension

We define now and examine the components in Step 2 of the definition 7. We
start with the basic notion of the truth assignment. We adopt the extensional
semantics M definition 8 to the classical case as follows.

Definition 18 (Truth Assignment)

Let VAR be the set of all propositional variables of the language L{¬, ∪, ∩, ⇒, ⇔}.
A truth assignment is any function v : V AR −→ {T, F}.

The function v defined above is called the truth assignment because it can be
thought as an assignment to each variable (which represents a logical sentence)
its logical value of T(ruth) of F(alse). Observe that the domain of the truth
assignment is the set of propositional variables, i.e. the truth assignment is
defined only for atomic formulas.

We now extend the truth assignment v from the set of atomic formulas to the
set of all formulas F in order define formally the assignment of a logical value
to any formula A ∈ F .

20

The definition of the truth extension of the truth assignment v to the set F
follows the definition 8 for the extensional semantics M .

Definition 19 (Truth Extension) Given the truth assignment v : V AR −→
{T, F}. We define its extension v∗ to the set F of all formulas as any function
v∗ : F −→ {T, F}, such that the following conditions are satisfied.

(1) for any a ∈ V AR, v∗(a) = v(a);

(2) for any A,B ∈ F ,
v∗(¬A) = ¬v∗(A);

v∗((A ∩B)) = ∩(v∗(A), v∗(B));

v∗((A ∪B)) = ∪(v∗(A), v∗(B));

v∗((A⇒ B)) =⇒ (v∗(A), v∗(B));

v∗((A⇔ B)) =⇔ (v∗(A), v∗(B)).

The symbols on the left-hand side of the equations represent the connectives in
their natural language meaning. The symbols on the right-hand side represent
connectives in their classical semantics meaning defined by the classical con-
nectives defined by the classical Truth Tables.

For binary connectives (two argument functions) we adopt a convention to write
the symbol of the connective (name of the 2 argument function) between its ar-
guments as we do in a case arithmetic operations. We use this standard notation
and re-write the definition 19 as follows.

Definition 20 (Standard Notation) Given the truth assignment v : V AR −→
{T, F}. We define its extension v∗ to the set F of all formulas as any function
v∗ : F −→ {T, F}, such that the following conditions are satisfied.

(1) for any a ∈ V AR, v∗(a) = v(a);

(2) for any A,B ∈ F ,
v∗(¬A) = ¬v∗(A);

v∗((A ∩B)) = v∗(A) ∩ v∗(B);

v∗((A ∪B)) = v∗(A) ∪ v∗(B);

v∗((A⇒ B)) = v∗(A)⇒ v∗(B);

v∗((A⇔ B)) = v∗(A)⇔ v∗(B).

21

Given a formula A: ((a ⇒ b) ∪ ¬a)) and a truth assignment v, such that
v(a) = T, v(b) = F . We evaluate the logical value of the formula A using the
standard notation definition 20 as follows.
v∗(A) = v∗(((a⇒ b)∪¬a))) = ∪(v∗((a⇒ b), v∗(¬a)) = ∪(⇒ (v∗(a), v∗(b)),¬v∗(a)))
= ∪(⇒ (v(a), v(b)),¬v(a))) = ∪(⇒ (T, F),¬T)) = ∪(F, F) = F .

Observe that we did not specify v(x) of any x ∈ V AR−{a, b}, as these values do
not influence the computation of the logical value of the formula A. We say: ”v
such that” as we consider its values for the variables a and b only. Nevertheless,
the domain of the truth assignment v is always is the set of all variables VAR
and we have to remember that.

Given a formula A: ((a ⇒ b) ∪ ¬a)) and a truth assignment v, such that
v(a) = F, v(b) = F . We use now the standard notation definition 20 to evalu-
ate the logical value of the formula A. We write is as follows. v∗(A) = v∗(((a⇒
b) ∪ ¬a))) = v∗((a⇒ b)) ∪ v∗(¬a) = (v(a)⇒ v(b)) ∪ ¬v(a) = (F ⇒ F) ∪ ¬F =
T ∪ T = T .

Step 3: Satisfaction, Model, Counter-Model

We define now and examine the components in Step 3 of the definition 7. We
adopt the extensional semantics M definitions 10, 11, and 12 to the classical
case as follows.

Definition 21 (Satisfaction)

Let v : V AR −→ {T, F}.
We say that v satisfies a formula A ∈ F if and only if v∗(A) = T . We denote
it by v |= A.

v does not satisfy a formula A ∈ F if and only if v∗(A) 6= T . We denote it
by v 6|= A.

The relation |= is often called a satisfaction relation. Observe, that in the
classical semantics we have that v∗(A) 6= T if and only if v∗(A) = F . In this
case we say that v falsifies a formula A.

Exercise 7

Let A be a formula ((a⇒ b) ∪ ¬a)) and v be a truth assignment
v : V AR −→ {T, F}, such that v(a) = T, v(b) = F , and v(x) = F for all
x ∈ V AR− {a, b}. Show that v 6|= ((a⇒ b) ∪ ¬a)).

Proof We evaluate the logical value of the formula A as follows: v∗(A) =

22

v∗((a ⇒ b) ∪ ¬a)) = (v∗(a ⇒ b) ∪ v∗(¬a)) = ((v(a) ⇒ v(b)) ∪ ¬v(a)) = ((T ⇒
F) ∪ ¬T) = (F ∪ F) = F . It proves tha v 6|= ((a⇒ b) ∪ ¬a)) and we say that v
falsifies the formula A.

As we remarked before, in practical cases we use a short-hand notation for while
evaluating the logical value of a given formula. Here is a short procedure for
any v and A. We use show it how it works for v and A from the exercise 7.

Short-hand Evaluation
Given any formula A ∈ F and any truth assignment v : V AR −→ {T, F}.
1. We write the value of v only for variables appearing in the formula in A.
In our case we write: a = T , b = F for v(a) = T, v(b) = F .
2. Replace all variabes in A by their respective logical values.
In our case we replace a by T and b by F in the formula A ((a⇒ b)∪¬a)). We
get an equation ((T ⇒ F) ∪ ¬T).
3. Use use the connectives definition, in this case the definitionTTables to
evaluate the logical value of the equation obtained in the step 2.
In our case we evaluate ((T ⇒ F) ∪ ¬T) = (F ∪ F) = F .
4 Write your answer in one of the forms: v |= A, v 6|= A or ”v satisfies A”, ” v
falsifies A”
In our case v falsifies A and write v 6|= ((a⇒ b) ∪ ¬a)).

Example 11

Let A be a formula ((a ∩ ¬b) ∪ ¬c) and v be a truth assignment v : V AR −→
{T, F}, such that v(a) = T, v(b) = F, v(c) = T , and v(x) = T for all
x ∈ V AR − {a, b, c}. Using the the short-hand notation we get ((T ∩ ¬F) ∪
¬T) = ((T ∩ T) ∪ F) = (T ∪ F) = T . It proves that v satisfies the formula A
and we write v |= ((a ∩ ¬b) ∪ ¬c).

Definition 22 (Model, Counter Model)

Given a formula A ∈ F .

Any v : V AR −→ {T, F}, such that v |= A is called a model for A .

Any v, such that v 6|= A is called a counter model for the formula A .

The truth assignment from the Example 11 is a model for the formula
((a∩¬b)∪¬c) and the truth assignment from the Exercise 7 is a counter-model
for the formula ((a⇒ b) ∪ ¬a)).

Step 4: Classical Tautology Definition

There are two equivalent ways to define the notion of classical tautology. We

23

will use them interchangeably. The first uses the notion of truth assignment
and states the following.

Definition 23 (Tautology 1) For any formula A ∈ F ,
A is tautology if and only if v∗(A) = T for all v : V AR −→ {T, F}.

The second uses the notion of satisfaction and model and the fact that in any
extensional semantic the notions ” v satisfies A” and ”v is a model for A” are
interchangeable. It is stated as follows.

Definition 24 (Tautology 2)

For any formula A ∈ F ,
A is tautology if and only if v |= A for all v : V AR −→ {T, F}, i.e. when
all truth assignments are models for A.

We write symbolically
|= A

for the statement ”A is a tautology”.

Remark 1

We use the symbol |= A only for classical tautology. For all other extensional
semantics M we must use the symbol |=M A and say ” A is a tautology under
a semantics M, or to say in short ”A is a M semantics tautology”.

We usually use the definition 24 to express that a formula in not a tautology,
i.e. we say that a formula is not a tautology if it has a counter model. To stress
it we put it in a form of a following definition.

Definition 25

For any formula A ∈ F ,
A is not a tautology if and only if A has a counter model;
i.e. when there is a truth assignment v : V AR −→ {T, F}, such that v 6|= A.

We denote the statement ”A is not a tautology” symbolically by

6|= A.

A formula A : ((a⇒ b)∪¬a)) is not a tautology (6|= ((a⇒ b)∪¬a))). A truth
assignment v : V AR −→ {T, F}, such that v(a) = T, v(b) = F , and v(x) = F
for all x ∈ V AR− {a, b} is a counter model for A, as we proved Exercise 7.

This ends the formal definition of classical semantics that follows the pattern
for extensional semantics established in the definition 7.

24

3.1 Tautologies: Decidability and Verification Methods

There is a large number of basic and important tautologies listed and discussed
in Chapter 2. We assume that the reader is familiar, or will familiarize with them
when needed. We will refer to them and use them within our book. Chapter
2 also provides the motivation for classical approach to definition of tautolo-
gies as ways of describing correct rules of our mathematical reasoning. It also
contains an informal definition of classical semantics and discusses a tautology
verification method. We have just defined formally the classical semantics. Our
goal now is to prove formally that the notion of classical tautology is decidable
(Theorem 9) and to prove correctness of the tautology verification method pre-
sented in Chapter 2. Moreover we present here other basic tautology verification
methods and prove their correctness.

We start now a natural question. How do we verify whether a given formula
A ∈ F is or not is not a tautology. The answer seems to be very simple. By
definition 23 we examine all truth assignments v : V AR −→ {T, F}. If they
all evaluate in T, we proved that |= A. It at least one of them evaluate to F, we
found a counter model and proved 6|= A. The verification process is decidable,
if the we have a finite number of v to consider. So now all we have to do is to
count how many truth assignments there are, i.e. how many there are functions
that map the set V AR of propositional variables into the set {T, F} of logical
values. In order to do so we need to introduce some standard notations and
some known facts. For a given set X, we denote by |X| the cardinality of X.
In a case of a finite set, it is called a number of elements of the set. We write
|X| = n to denote that X has n elements, for n ∈ N . We have a special names
and notations to denote the cardinalities of infinite set. In particular we write
|X| = ℵ0 and say ” cardinality of X is aleph zero,” for any countably infinite
set X. We write |X| = C and say ” cardinality of X is continuum” for any
uncountable set X that has the same cardinality as Real numbers.

Theorem 4 (Counting Functions)

For any sets X,Y, there are |Y ||X| functions that map the set X into Y.

In particular, when the set X is countably infinite and the set Y is finite, then
there are nℵ0 = C functions that map the set X into Y.

In our case of counting the truth assignment v : V AR −→ {T, F} we have that
|V AR| = ℵ0 and |{T, F}| = 2. We know that 2ℵ0 = C and hence we get directly
from Theorem 4 the following.

Theorem 5 (Counting Truth Assignments)

There are uncountably many (exactly as many as real numbers) of all possible
truth assignments v, where v : V AR −→ {T, F}.

25

Fortunately for us, we are going to prove now that in order to decide whether a
given formula A ∈ F is, or is not a tautology it is enough consider only a finite
number of special truth assignments, not the uncountably many of them as
required by the tautology definition 23, i.e. we are going to prove the Tautology
Decidability Theorem 9. In order to be able to do so we need to introduce some
new notions and definitions.

Definition 26

For any A ∈ F , let V ARA be a set of all propositional variables appearing
in A. Any function vA : V ARA −→ {T, F}, is called a truth assignment
restricted to A.

Example 12

Let A = ((a ⇒ ¬b) ∪ ¬c). The set of variables appearing in A is V ARA =
{a, b, c}. The truth assignment restricted to A is any function vA : {a, b, c} −→
{T, F}.

Definition 27

Given a formula A ∈ F and a set V ARA of all propositional variables appearing
in A. Any function vA : V ARA −→ {T, F}, such that v |= A (v 6|= A) is
called a restricted model (counter model) for A.

We use the following particular case of Theorem 4 to count, for any formula A,
possible truth assignment restricted to A, i.e. all possible restricted models and
counter models for A.

Theorem 6 (Counting Functions 1)

For any finite sets X and Y , if X has n elements and Y has m elements, then
there are mn possible functions that map X into Y .

We also can prove it independently by Mathematical Induction over m.

Given a formula A ∈ F , the set V ARA is always finite, and |{T, F}| = 2 , so
directly from Theorem 6 we get the following.

Theorem 7 (Counting Restricted Truth)

For any A ∈ F , there are 2|V ARA| of possible truth assignments restricted to
A

So there are 23 = 8 possible truth assignment restricted to the formula A =
((a ⇒ ¬b) ∪ ¬c). We usually list them, and their value on the formula A in a
form of an extended truth table below.

26

vA a b c v∗(A) computation v∗(A)
v1 T T T (T ⇒ T) ∪ ¬T = T ∪ F = T T
v2 T T F (T ⇒ T) ∪ ¬F = T ∪ T = T T
v3 T F F (T ⇒ F) ∪ ¬F = F ∪ T = T T
v4 F F T (F ⇒ F) ∪ ¬T = T ∪ F = T T
v5 F T T (F ⇒ T) ∪ ¬T = T ∪ F = T T
v6 F T F (F ⇒ T) ∪ ¬F = T ∪ T = T T
v7 T F T (T ⇒ F) ∪ ¬T = F ∪ F = F F
v8 F F F (F ⇒ F) ∪ ¬F = T ∪ T = T T

(6)

v1, 2, v3, v4, v5, v6, v8 are restricted models for A and v7 is a restricted
counter model for A.

Now we are ready to prove the correctness of the well known truth tables tau-
tology verification method. We formulate it as the follows.

Theorem 8 (Truth Tables)

For any formula A ∈ F ,
|= A if and only if vA |= A for all vA : V ARA −→ {T, F}, i.e.
|= A if and only if all vA : V ARA −→ {T, F} are restricted models for A.

Proof Assume |= A. By definition 24 we have that v |= A for all v : V AR −→
{T, F}, hence vA |= A for all vA : V ARA −→ {T, F} as V ARA ⊆ V AR.

Assume vA |= A for all vA : V ARA −→ {T, F}. Take any v : V AR −→ {T, F},
as V ARA ⊆ V AR, any v : V AR −→ {T, F} is an extersion of some vA, i.e.
v(a) = vA(a) for all a ∈ V ARA. By Truth Extension Definition 19 we get that
v∗(A) = vA

∗(A) = T and v |= A. This ends the proof.

Directly from Theorem 7 and the above Theorem 8 we get the proof of the cor-
rectness and decidability of the Truth Tables Method, and hence the decidability
of the notion of classical propositional tautology.

Theorem 9 (Tautology Decidability)

For any formula A ∈ F , one has to examine at most 2V ARA restricted truth
assignments vA : V ARA −→ {F, T} in order to decide whether

|= A or 6|= A,

i.e. the notion of classical tautology is decidable.

We present now and prove correctness of some basic tautologies verification
methods. We just proved (Theorem 9) the correctness of the truth table tau-
tology verification method, so we we start with it.

27

Truth Table Method

The verification method, called a truth table method consists of examination,
for any formula A, all possible truth assignments restricted to A. By theorem 7
we have to perform at most 2|V ARA| steps. If we find a truth assignment which
evaluates A to F , we stop the process and give answer: 6|= A. Otherwise we
continue. If all truth assignments evaluate A to T , we give answer: |= A.

We usually list all restricted truth assignments vA in a form of a truth table
similar to the table6, hence the name of the method.

Consider, for example, a formula A: (a ⇒ (a ∪ b)). There are 22 = 4 possible
truth assignment restricted to A. We usually list them, and evaluate their value
on the formula A in a form of an extended truth table as follows.

w a b w∗(A) computation w∗(A)
w1 T T T ⇒ (T ∪ T) = T ⇒ T = T T
w2 T F T ⇒ (T ∪ F) = T ⇒ T = T T
w3 F T F ⇒ (F ∪ T) = F ⇒ T = T T
w4 F F F ⇒ (F ∪ F) = F ⇒ F = T T

(7)

The table (7) shows that all w : V ARA −→ {T, F} are restricted models for A
and hence by Theorem 9 we proved that |= (a⇒ (a ∪ b)) and T 6= ∅.
Observe that the table (7) proves that the formula 6|= ((a⇒ ¬b) ∪ ¬c).

Moreover we have proved that the condition (3) of the definition 14 is fulfilled
and the classical semantics is well defined. We put it as a separate statement.

Fact 2

The classical semantics is well defined.

The complexity of the truth table methods grows exponentially. Impossible for
humans to handle formulas with more then few variables, and cumbersome for
computers for formulas with a great number of variables, In practice, if we need,
we use often much shorter and more elegant tautology verification methods pre-
sented below.

Proof by Contradiction Method

In this method, in order to prove that |= A we proceed as follows.

We assume that 6|= A. We work with this assumption. If we get a contradic-
tion, we have proved that 6|= A is impossible. We hence proved |= A. If we do

28

not get a contradiction, it means that the assumption 6|= A is true, i.e. we have
proved that A is not a tautology.

Exercise 8

Follow the Proof by Contradiction Method and examine whether
|= (a⇒ (a ∪ b)).

Solution
We use a short-hand notation.
Assume that 6|= (a⇒ (a ∪ b)). It means that (a⇒ (a ∪ b)) = F for some truth
assignment v. By definition of implication ⇒ we have that
(a⇒ (a ∪ b)) = F if and only if a = T and (a ∪ b) = F.

From a = T and (a∪ b) = F we get (T ∪ b) = F . This is a contradiction with
the definition of disjunction ∪. Hence we proved |= (a⇒ (a ∪ b)).

Exercise 9

Use the Proof by Contradiction Method to decide whether
|= ((a ∪ b)⇒ a).

Solution We do not use short-hand notation.

Assume that 6|= ((a∪b)⇒ a). It means that there is v : V AR −→ {T, F}, such
that v∗(((a∪b)⇒ a)) = F . We evaluate, v∗(((a∪b)⇒ a))) = v∗((a∪b))⇒ v(a)
and we get that the truth assignment v is such that v∗((a ∪ b)) ⇒ v(a) = F .
By definition implication ⇒ we have that v∗((a ∪ b)) ⇒ v(a) = F if and only
if v(a) ∪ v(b) = T and (a) = F . From (a) = F and v(a) ∪ v(b) = T we get
that F ∪ v(b) = T . This is possible for any v : V AR −→ {T, F}, such that
v(b) = T . This proves that any truth assignment v : V AR −→ {T, F}, such that
(a) = F, v(b) = T is a counter model for ((a∪b)⇒ a) , i.e. that 6|= ((a∪b)⇒ a).

Substitution Method

We define and prove the correctness of a method, called Substitution Method
that allows us to obtain new tautologies from formulas already proven to be
tautologies.

We can use the same reasoning as we used in the solution to the Exercise 8 that
proved |= (a⇒ (a ∪ b)) to prove that, for example the formulas

((((a⇒ b) ∩ ¬c)⇒ ((((a⇒ b) ∩ ¬c) ∪ ¬d)) (8)

((a⇒ b) ∩ ¬c) ∪ d) ∩ ¬e)⇒ (((a⇒ b) ∩ ¬c) ∪ d) ∩ ¬e) ∪ ((a⇒ ¬e))) (9)

are also a tautologies.

29

Instead of repeating the same argument from Exercise 8 for a much more com-
plicated formulas we make a simple observation that we can obtain (8), (9) from
the formula (a⇒ (a∪b)) by a proper substitutions (replacements) of more com-
plicated formulas for the variables a and b in (a⇒ (a ∪ b)). We use a notation
A(a, b) = (a ⇒ (a ∪ b)) to denote that (a ⇒ (a ∪ b)) is a formula A with two
variables a, b and we denote by

A(a/A1, b/A2)

a result of a substitution (replacement) of formula A1, A2 on a place of the
variables a, b, respectively, everywhere where they appear in A(a, b).
Theorem 10 we are going to prove states that substitutions lead always from a
tautology to a tautology. In particular, making the following substitutions s1
and s2 in A(a, b) = (a ⇒ (a ∪ b)) we get, that the respective formulas (8), (9)
are tautologies.

By substitution s1: A(a/((a⇒ b) ∩ ¬c), b/¬d) we get that

|= ((((a⇒ b) ∩ ¬c)⇒ ((((a⇒ b) ∩ ¬c) ∪ ¬d)).

By substitution s2: A(a/((a⇒ b) ∩ ¬c), b/((a⇒ ¬e)) we get that
|= (((a⇒ b) ∩ ¬c) ∪ d) ∩ ¬e)⇒ (((a⇒ b) ∩ ¬c) ∪ d) ∩ ¬e) ∪ ((a⇒ ¬e))).

The theorem 10 describes validity of a method of constructing new tautologies
from given tautologies. In order to formulate and prove it we first introduce
needed notations.

Let A ∈ F be a formula and V ARA = {a1, a2, ...an} be the set of all proposi-
tional variables appearing in A. We will denote it by A(a1, a2, ...an).

Given a formula A(a1, a2, ...an), and A1, ...An be any formulas. We denote by

A(a1/A1, ..., an/An)

the result of simultaneous replacement (substitution) in A(a1, a2, ...an) variables
a1, a2, ...an by formulas A1, ...An, respectively.

Theorem 10

For any formulas A(a1, a2, ...an), A1, . . . , An ∈ F ,

If |= A(a1, a2, ...an) and B = A(a1/A1, ..., an/An), then |= B.

Proof. Let B = A(a1/A1, ..., an/An). Let b1, b2, ...bm be all those propositional
variables which occur in A1, ...An. Given a truth assignment v : V AR −→
{T, F}, any values v(b1), v(b2), ...v(bm) defines the logical value of A1, ...An, i.e.
v∗(A1), ...v∗(An) and, in turn, v∗(B).

30

Let w : V AR −→ {T, F} be a truth assignment such that w(a1) = v∗(A1), w(a2) =
v∗(A2), ...w(an) = v∗(An). Obviously, v∗(B) = w∗(A). Since A is a proposi-
tional tautology, w∗(A) = T , for all possible w, hence v∗(B) = w∗(A) = T for
all truth assignments w and B is also a tautology.

We have proved (Exercise 8) that the formula D(a, b) = (a ⇒ (a ∪ b)) is a
tautology. By the above Theorem 10 we get that D(a/A, b/B) = ((A∪B)⇒ A)
is a tautology. We hence get the following.

Fact 3

For any A,B ∈ F , |= ((A ∪B)⇒ A).

Generalization Method

Now let’s look at the task of finding whether the formulas (8), (9) are tautologies
from yet another perspective. This time we observe that both of them are build
in a similar way as a formula (A⇒ (A ∪ B)), for A = ((a⇒ b) ∩ ¬c), B = ¬d
in (8) and for A = ((a⇒ b) ∩ ¬c), B = ((a⇒ ¬e)) in (9).

It means we represent, if it is possible, a given formula as a particular case of
some much simpler general formula. Hence the name Generalization Method.
We then use Proof by Contradiction Method or Substitution Method to examine
whether the given formula is /is not a tautology.

In this case, we prove, for example Proof by Contradiction Method by that
|= (A⇒ (A ∪B)), for any formulas A,B ∈ F and get, as a particular cases for
A, B that that both formulas (8), (9) are tautologies.

Let’s assume that there are formulas A,B ∈ F 6|= (A ⇒ (A ∪ B)). This means
that (A ⇒ (A ∪ B)) = F for some truth assignment v. This holds only when
A = T and (A ∪ B) = F , i.e. (T ∪ B) = F . This is a contradiction with the
definition of ∪. So |= (A⇒ (A ∪B)) for all A,B ∈ F .

Exercise 10

Show that v |= (¬((a ∩ ¬b) ⇒ ((c ⇒ (¬f ∪ d)) ∪ e)) ⇒ ((a ∩ ¬b) ∩ (¬(c ⇒
(¬f ∪ d)) ∩ ¬e))), for all v : V AR −→ {T, F}.

Solution
Observe that we really have to prove that |= (¬((a ∩ ¬b) ⇒ ((c ⇒ (¬f ∪ d)) ∪
e)) ⇒ ((a ∩ ¬b) ∩ (¬(c ⇒ (¬f ∪ d)) ∩ ¬e))). We can hence use any of our
tautology verification methods. In this case V ARA = {a, b, c, d, e, f}, so there
are 26 = 64 restricted truth assignments to consider. Much too many to apply
the Truth Table Method. Our formula is also far too complicated to guess a
simple tautology from which we could obtain it by the Substitution Method.

The Proof by Contradiction Method is less complicated, but before we apply
it let’s look closer at the sub-formulas of our formula and patterns they form

31

inside the formula it, i.e. we try to apply the Generalization Method first.
Let’s put B = (a ∩ ¬b), C = (c ⇒ (¬f ∪ d)), D = e. We re-write our formula
in a general form as (¬(B ⇒ (C ∪D))⇒ (B ∩ (¬C ∩ ¬D))) and prove that for
all B,C,D ∈ F ,

|= (¬(B ⇒ (C ∪D))⇒ (B ∩ (¬C ∩ ¬D)).

We use Proof by Contradiction Method, i.e. we assume that there are formulas
B,C,D ∈ F , such that

6|= (¬(B ⇒ (C ∪D))⇒ (B ∩ (¬C ∩ ¬D)).

This means that there is a truth assignment v, such that (we use short-hand
notation) (¬(B ⇒ (C ∪ D)) ⇒ (B ∩ (¬C ∩ ¬D))) = F . By definition of
implication it is possible if and only if ¬(B ⇒ (C ∪ D)) = T and (B ∩ (¬C ∩
¬D)) = F , i.e. if and only if
(B ⇒ (C∪D)) = F and (B∩(¬C∩¬D)) = F Observe that (B ⇒ (C∪D)) = F
if and only if B = T, C = F, D = F. We now evaluate the logical value of
(B∩ (¬C ∩¬D)) for B = T,C = F,D = F , i.e. we compute (B∩ (¬C ∩¬D)) =
(T ∩ (¬F ∩ ¬F)) = (T ∩ (T ∩ T)) = T . This contradicts that we must have
(B ∩ (¬C ∩ ¬D)) = F . This proves that for all B,C,D ∈ F

|= (¬(B ⇒ (C ∪D))⇒ (B ∩ (¬C ∩ ¬D))),

and hence is holds for our particular case, i..e.

|= (¬((a ∪ b)⇒ ((c⇒ d) ∪ e))⇒ ((a ∪ b) ∩ (¬(c⇒ d) ∩ ¬e)))

and that all truth assignments are models for (¬((a ∪ b) ⇒ ((c ⇒ d) ∪ e)) ⇒
((a ∪ b) ∩ (¬(c⇒ d) ∩ ¬e))).

Sets of Formulas; Tautologies and Contradictions

We distinguish now special sets of formulas and examine their properties. We
define sets of all tautologies, contradictions, consistent sets, inconsistent sets
and discuss a notion of independence of formulas from sets of formulas.

Definition 28 (Set of Tautologies)

We denote by T the set of all tautologies, i.e. we put

T = {A ∈ F : |= A.}

We distinguish now another type of formulas, called contradictions.

Definition 29 (Contradiction)

A formula A ∈ F is called a contradiction if it does not have a model.

32

We write symbolically =| A for the statement ”A is a contradiction.”

Directly from the Definition 29 we have that

=| A if and only if v 6|= A for all v : V AR −→ {T, F}.

Example 13

The following formulas are contradictions

(a ∩ ¬a), (a ∩ ¬(a ∪ b)), ¬(a⇒ a), ¬(¬(a ∩ b) ∪ b)).

Definition 30 (Set of Contradictions)

We denote by C the set of all tautologies, i.e. we put

C = {A ∈ F : =| A.}

Following the proof of Theorem 10 we get similar theorem for contradictions,
and hence a a proof of correctness of the Substitution Method of constructing
new contradictions.

Theorem 11

For any formulas A(a1, a2, ...an), A1, . . . , An ∈ F ,

If A(a1, a2, ...an) ∈ C and B = A(a1/A1, ..., an/An), then B ∈ C.

Directly from the Theorem 11 we get the following.

Example 14 For any formulas A,B ∈ F , the following formulas are contra-
dictions

(A ∩ ¬A), (A ∩ ¬(A ∪B)), ¬(A⇒ A), ¬(¬(A ∩B) ∪B)).

Observe, that there are formulas which neither in T nor in C, for example
(a ∪ b). Any truth assignment v, such that v(a) = F, v(b) = F falsifies (a ∪ b)
and it proves that it is not a tautology. Any truth assignment v, such that
v(a) = T, v(b) = T satisfies (a ∪ b), what proves that it is not a contradiction.

3.2 Sets of Formulas: Consistency and Independence

Next important notions for any logic are notions of consistency, inconsistency of
the sets of formulas and the independence of a formula from the set of formulas.
We adopt the following definitions.

33

Definition 31

A truth truth assignment v : V AR −→ {T, F} is model for the set G ⊆ F of
formulas if and only if v |= A for all formulas A ∈ G. We denote it by

v |= G.

The restriction vG of the model v to the domain V ARG =
⋃

A∈GV ARA is
called a restricted model for G.

Exercise 11

Find a model and a restricted model for a set

G = {((a ∩ b)⇒ b), (a ∪ b),¬a}.

Solution
Let v be a truth assignment v : V AR −→ {T, F}. By the defininition 31, v |=
{((a∩ b)⇒ b), (a∪ b),¬a} if and only if v∗(((a∩ b)⇒ b)) = T, v∗((a∪ b) = T),
and v∗(¬a) = T . Observe that |= ((a ∩ b) ⇒ b), so we have to find v, such
that v∗((a ∪ b)) = T, v∗(¬a) = T . This holds if and only if v(a) = F and
F ∪ v(b) = T , i.e. if and only if v(a) = F and v(b) = T . This proves that
any v such that v(a) = F and v(b) = T is a model for G, and G has only one
restricted model. We put it as a separate fact.

Fact 4

Given G = {((a ∩ b) ⇒ b), (a ∪ b),¬a}, we have that V ARG =
⋃

A∈GV ARA =
{a, b} and vG : {a, b} −→ {T, F}, such that vG(a) = F and vG(b) = T is a
unique restricted model for G.

Observation 4

For some sets G ⊆ F , V ARG can be infinite. For example, for G = V AR we
have that V ARG = V AR and the notions of model and restricted model are the
same.

Definition 32

A set G ⊆ F is called consistent if and only if there is v : V AR −→ {T, F},
such that v |= G.

Otherwise the set G is called inconsistent.

Plainly speaking, a set G is consistent if it has a model, and is inconsistent if it
does not have a model.

34

Example 15

The set G1 = {((a∩ b)⇒ b), (a∪ b),¬a} is consistent as v : V AR −→ {T, F},
such that v(a) = F and v(b) = T is the model for G1.

The set G2 = V AR is also consistent, as v : V AR −→ {T, F}, such that
v(a) = T , for all a ∈ V AR is a model for G2.

Observe that G1 is a finite consistent set. G2 is an infinite consistent set. This
and other examples justify the need of truth assignment domain being the set
VAR of all propositional variables.

Example 16

The set G1 = {((a ∩ b) ⇒ b), (a ∩ ¬a),¬a} is a finite inconsistent set as it
contains a formula (a ∩ ¬a) ∈ C.

The set G2 = V AR ∪ {¬a} for some a ∈ V AR, is an infinite inconsistent set
as it contains a certain variable a and its negation ¬a.

Of course the most obvious example of an infinite consistent set is the set T of
all tautologies, and of an infinite inconsistent consistent set is the set C of all
contradictions.

Definition 33

A formula A ∈ F is called independent from a set G ⊆ F if and only if
the sets G ∪ {A} and G ∪ {¬A} are both consistent. I.e. when there are truth
assignments v1, v2 such that

v1 |= G ∪ {A} and v2 |= G ∪ {¬A}.

Exercise 12

Show that a formula A = ((a ⇒ b) ∩ c) is independent from the set G =
{((a ∩ b)⇒ b), (a ∪ b),¬a}.

Solution
We define two truth assignments v1, v2 : V AR −→ {T, F} such that v1 |=
G ∪{(a⇒ b)∩ c)} and v2 |= G ∪{¬(a⇒ b)∩ c)} as follows. We have just proved
(Exercise 11) that any v : V AR −→ {T, F}, such that v(a) = F, v(b) = T
is a model for G. Take as v1 any truth assignment such that v1(a) = v(a) =
F, v1(b) = v(b) = T, v1(c) = T. We evaluate v1

∗(A) = v1
∗(((a ⇒ b) ∩ c)) =

(F ⇒ T) ∩ T = T . This proves that v1 |= G ∪ {A}. Take as v2 any truth
assignment such that, v2(a) = v(a) = F, v2(b) = v(b) = T, v2(c) = F . We
evaluate v2

∗(¬A) = v2
∗(¬(((a ⇒ b) ∩ c)) = T ∩ T = T . This proves that

v2 |= G ∪ {¬A}. It ends the proof that formula A is independent from G.

35

Exercise 13

Show that a formula A = (¬a∩b) is not independent from G = {((a∩b)⇒
b), (a ∪ b),¬a}.

Solution We have to show that it is impossible to construct v1, v2 such that
v1 |= G ∪{A} and v2 |= G ∪{¬A}. From Fact 4 G has a unique restricted model
v : {a, b} −→ {T, F}, such that v(a) = F, and v(b) = T . and {a, b} = V ARA.
So we have to check now if it is possible v |= A and v |= ¬A. We evaluate
v∗(A) = v∗((¬a ∩ b) = ¬v(a) ∩ v(b) = ¬F ∩ T = T ∩ T = T and get v |= A. By
definition v∗(¬A) = ¬v∗(A) = ¬T = F and v 6|= ¬A. This end the proof that
the formula A = (¬a ∩ b) is not independent from G.

Exercise 14

Given a set G = {a, (a⇒ b)}.
Find a formula A that is independent from G.

Solution
Observe that truth assignment v such that v(a) = T, v(b) = T is the only
restricted model for G. So we have to come up with a formula A such that
there are two different truth assignments, v1, v2 such that v1 |= G ∪ {A} and
v2 |= G ∪ {¬A}. Let’s think about as simple a formula as it could be, namely
let’s consider A = c, where c any propositional variable (atomic formula) dif-
ferent from a and b. G ∪ {A} = {a, (a ⇒ b), c} and any truth assignment v1,
such that v1(a) = T, v1(b) = T, v1(c) = T is a model for G ∪ {c}. Likewise for
G ∪ {¬c} = {a, (a⇒ b),¬c}. Any v2 such that v2(a) = T, v2(b) = T, v2(c) = F
is a model for G ∪{¬c}. This proves that we have found the formula A = c that
is independent from G.

Here is a simple generalization of the Exercise 14.

Exercise 15

Find an infinite number of formulas that are independent from G = {((a ∩
b)⇒ b), (a ∪ b),¬a}.

Solution
First we have to find all v : V AR −→ {T, F} such that v |= {((a ∩ b) ⇒
b), (a ∪ b),¬a}, i.e such that (shorthand notation) ((a ∩ b) ⇒ b) = T, (a ∪
b) = T, ¬a = T . Observe that |= ((a ∩ b) ⇒ b), so we have to consider only
(a∪ b) = T, ¬a = T . This holds if and only if a = F and (F ∪ b) = T , i.e. if
and only if a = F and b = T. This proves that that vG such that vG(a) = F
and vG(b) = T is the only one restricted model for G. All possible models for
G must be extensions of vG . We define a countably infinite set of formulas (and

36

their negations) and corresponding extensions v of vG (restricted to to the set
of variables {a, b}) such that v |= G as follows.

Observe that all extensions of v of vG have as domain the infinitely countable set
V AR = {a1, a2, . . . , an. . . . }. We take as the infinite set of formulas in which
every formula is to be proved independent of G the set of atomic formulas

F0 = V AR− {a, b} = {a1, a2, . . . , an. . . . } − {a, b}.

Let c ∈ F0. We define truth assignments v1, v2 : V AR −→ {T, F} as follows

v1(a) = v(a) = F, v1(b) = v(b) = T, and v1(c) = T for all c ∈ F0.

v2(a) = v(a) = F, v2(b) = v(b) = T, and v2(c) = F for all c ∈ F0.

Obviously, v1 |= G ∪{c} and v2 |= G ∪{¬c} for all c ∈ F0. What proves that the
set F0 is a countably infinite set of formulas independent from G = {((a∩b)⇒
b), (a ∪ b),¬a}.

4 Classical Tautologies and Equivalence of Lan-
guages

We first present here a set of most widely used classical propositional tautologies
which we will use, in one form or other, in our investigations in future chapters.
Another extended list of tautologies and their discussion is presented in Chapter
??.

As the next step we define notions of a logical equivalence and an equivalence of
languages. We prove that all of the languages

L{¬⇒}, L{¬∩}, L{¬∪}, L{¬,∩,∪,⇒}, L{¬,∩,∪,⇒,⇔}, L{↑}, L{↓}

are equivalent under classical semantics and hence can be used (and are) as
different languages for classical propositional logic.

We generalize these notions to the case of any extensional semantics M in the
next section 5. We also discuss and examine there some particular many valued
extensional semantics and properties of their languages.

Some Tautologies

For any A,B ∈ F , the following formulas are tautologies.

Implication and Negation

(A⇒ (B ⇒ A)), ((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))),

((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B)) (10)

37

(A⇒ A), (B ⇒ ¬¬B), (¬A⇒ (A⇒ B)), (A⇒ (¬B ⇒ ¬(A⇒ B))),

(¬¬B ⇒ B), ((A⇒ B)⇒ ((¬A⇒ B)⇒ B)), ((¬A⇒ A)⇒ A).

Disjunction, Conjunction

(A⇒ (A ∪B)), (B ⇒ (A ∪B)), ((A ∩B)⇒ A), ((A ∩B)⇒ A),

((A⇒ C)⇒ ((B ⇒ C)⇒ ((A ∪B)⇒ C))),

(((A ∩B)⇒ C)⇒ (A⇒ (B ⇒ C)),

(¬(A ∩B)⇒ (¬A ∪ ¬B)), ((¬A ∪ ¬B)⇒ ¬(A ∩B)), (11)

((¬A ∪B)⇒ (A⇒ B)), ((A⇒ B)⇒ (¬A ∪B)),

(A ∪ ¬A).

Contraposition (1)

((A⇒ B)⇔ (¬B ⇒ ¬A)), ((B ⇒ A)⇔ (¬A⇒ ¬B)). (12)

Contraposition (2)

((¬A⇒ B)⇔ (¬B ⇒ A)), ((A⇒ ¬B)⇔ (B ⇒ ¬A)). (13)

Double Negation
(¬¬A⇔ A), (14)

Logical Equivalences

Logical equivalence is a very useful notion when we want to obtain new formu-
las or new tautologies, if needed, on a base of some already known in a way
that guarantee preservation of the logical value of the initial formula. For any
formulas A,B, we say that are logically equivalent if they always have the same
logical value. We write it symbolically as A ≡ B. We have to remember that
the symbol ” ≡” not a logical connective. It is a metalanguage symbol for saying
”A, B are logically equivalent”. This is a very useful symbol. It says that two
formulas always have the same logical value, hence it can be used in the same
way we use the equality symbol ” =.” Formally we define it as follows.

Definition 34 (Logical Equivalence)

For any A, B ∈ F , we say that the formulas A and B are logically equivalent
and denote it as A ≡ B

if and only if v∗(A) = v∗(B), for all v : V AR → {T, F}.

Observe that the following property follows directly from the definition 34.

38

Property 1

For any formulas A,B ∈ F ,

A ≡ B if and only if |= (A⇔ B)

For example we write the laws of contraposition (15), (16), and the law of dou-
ble negation (17) as logical equivalences as follows.

E - Contraposition (1), (2)

(A⇒ B) ≡ (¬B ⇒ ¬A), (B ⇒ A) ≡ (¬A⇒ ¬B). (15)

E - Contraposition (2)

(¬A⇒ B) ≡ (¬B ⇒ A), (A⇒ ¬B) ≡ (B ⇒ ¬A). (16)

E - Double Negation
¬¬A ≡ A. (17)

Logical equivalence is a very useful notion when we want to obtain new formu-
las, or tautologies, if needed, on a base of some already known in a way that
guarantee preservation of the logical value of the initial formula.

For example, we easily obtain equivalences for laws of E -mContraposition (16)
from equivalences for laws of E- Contraposition (15) and the E - Double Negation
equivalence (17) as follows. (¬A ⇒ B) ≡(15) (¬B ⇒ ¬¬A) ≡(17) (¬B ⇒ A).
We also have that (A⇒ ¬B) ≡(15) (¬¬B ⇒ ¬A)≡(17) (B ⇒ ¬A). This end the
proof of E- Contraposition (16).

The correctness of the above procedure of proving new equivalences from the
known ones is established by the following theorem.

Theorem 12 (Equivalence Substitution)

Let a formula B1 be obtained from a formula A1 by a substitution of a formula
B for one or more occurrences of a sub-formula A of A1, what we denote as

B1 = A1(A/B).

Then the following holds for any formulas A, A1, B, B1 ∈ F .

If A ≡ B, then A1 ≡ B1. (18)

Proof
By the logical equivalence Definition 34 proving our theorem statement 18 is
equivalent to proving that the implication

If v∗(A) = v∗(B), then v∗(A1) = v∗(B1) (19)

39

holds for all v : V AR → {T, F}.

Consider a truth assignment v. If v∗(A) 6= v∗(B), then the implication (19) is
vacuously true. If v∗(A) = v∗(B), then so v∗(A1) = v∗(B1), since B1 differs
from A1 only in containing B in some places where A1 contains A and the
implication (19) holds.

Example 17

Let A1 = (C ∪D) and B = ¬¬C. By E - Double Negation equivalence (17) we
have that ¬¬C ≡ C. Let B1 = A1(C/B) = A1(C/¬¬C) = (¬¬C ∪D). By the
Equivalence Substitution Theorem 12

(C ∪D) ≡ (¬¬C ∪D).

Equivalence of Languages

The next set of equivalences, or corresponding tautologies, correspond the notion
of definability of connectives discussed in section 3. For example, a tautology

|= ((A⇒ B)⇔ (¬A ∪B))

makes it possible, via Property 1, to define implication in terms of disjunction
and negation. We state it in a form of logical equivalence and call it as follows.

Definability of Implication in terms of negation and disjunction:

(A⇒ B) ≡ (¬A ∪B) (20)

Observation 5 The direct proof of this and other Definability of Connectives
Equivalences presented here follow from the definability formulas developed in
the the proof of the Definability of Connectives Theorem 2, hence the names.

We are using the logical equivalence notion, instead of the tautology notion, as
it makes the manipulation of formulas much easier.

The equivalence 20 allows us, by the force of Theorem 12 to replace any formula
of the form (A⇒ B) placed anywhere in another formula by a formula (¬A∪B)
while preserving their logical equivalence. Hence we can use the equivalence (20)
to transform a given formula containing implication into an logically equivalent
formula that does contain implication (but contains negation and disjunction).

We usually use the equation 20 to transform any formula A of language con-
taining implication into a formula B of language containing disjunction and
negation and not containing implication at all, such that A ≡ B.

Example 18

40

Let A = ((C ⇒ ¬B)⇒ (B ∪ C)).

We use equality (20) to transform A into a logically equivalent formula not
containing ⇒ as follows.

((C ⇒ ¬B)⇒ (B∪C)) ≡ (¬(C ⇒ ¬B)∪ (B∪C))) ≡ (¬(¬C ∪¬B)∪ (B∪C))).

It means that for example that we can, by the Theorem 12 transform any
formula A of the language L1 = L{¬,∩,⇒} into a logically formula B of the
language L2 = L{¬,∩,∪}. In general, we say that we can transform a language
L1 into a logically equivalent language L2 if the following condition C1 holds.

C1: for any formula A of L1, there is a formula B of L2, such that A ≡ B.

Example 19

Let A = (¬A ∪ (¬A ∪ ¬B)). We also can use, in this case, the equivalence 20
as follows.

(¬A ∪ (¬A ∪ ¬B)) ≡ (¬A ∪ (A⇒ ¬B)) ≡ (A⇒ (A⇒ ¬B)).

It means we eliminated disjunction from A by replacing it by logically equivalent
formula containing implication only.

Observe, that we can’t always use the equivalence (20) to eliminate any disjunc-
tion. For example, we can’t use it for a formula A = ((a ∪ b) ∩ ¬a).

In order to be able to transform any formula of a language containing disjunc-
tion (and some other connectives) into a language with negation and implication
(and some other connectives), but without disjunction we need the following log-
ical equivalence.

Definability of Disjunction in terms of negation and implication:

(A ∪B) ≡ (¬A⇒ B) (21)

Example 20

Consider a formula A = (a ∪ b) ∩ ¬a).

We use equality (21) to transform A into its logically equivalent formula not
containing ∪ as follows: ((a ∪ b) ∩ ¬a) ≡ ((¬a⇒ b) ∩ ¬a).

In general, we use the equality 21 and Theorem 12 to transform any formula
C of the language L2 = L{¬,∩,∪} into a logically equivalent formula D of the
language L1 = L{¬,∩,⇒}. In general, the following condition hols.

C2: for any formula C of L2, there is a formula D of L1, such that C ≡ D.

The languages L1 and L2 for which we the conditions C1, C2 hold are logically
equivalent and denote it by L1 ≡ L2.

41

We put it in a general, formal definition as follows.

Definition 35 (Equivalence of Languages)

Given two languages:
L1 = LCON1

and L2 = LCON2
, for CON1 6= CON2.

We say that they are logically equivalent and denote it as L1 ≡ L2 if and
only if the following conditions C1, C2 hold.

C1 For every formula A of L1, there is a formula B of L2, such that A ≡ B,

C2 For every formula C of L2, there is a formula D of L1, such that C ≡ D.

Example 21

To prove the logical equivalence L{¬,∪} ≡ L{¬,⇒} we need two definability equiv-
alences (20) and (21), and the Theorem 12.

Exercise 16

To prove the logical equivalence L{¬,∩,∪,⇒} ≡ L{¬,∩,∪} we needed only the de-
finability equivalence (20).

Solution
The equivalence (20) proves, by Theorem 12 that for any formula A of L{¬,∩,∪,⇒}
there is B of L{¬,∩,∪} that equivalent to A, i.e. condition C1 holds. Any formula
A of language L{¬,∩,∪} is also a formula of L{¬,∩,∪,⇒} and of course A ≡ A, so
both conditions C1 and C2 of definition 35 are satisfied.

Exercise 17

Show that L{¬,∩} ≡ L{¬,⇒}.

Solution
The equivalence of languages holds by Theorem 12, Observation 5, and the
following two logical equalities. Definability of Conjunction in terms of
implication and negation and Definability of Implication in terms of con-
junction and negation:

(A ∩B) ≡ ¬(A⇒ ¬B) (22)

(A⇒ B) ≡ ¬(A ∩ ¬B). (23)

Exercise 18

Show that L{¬,∩} ≡ L{¬,∪}.

Solution
Similarly, it is true by Theorem 12, Observation 5, and the following two logical

42

equalities. Definability of disjunction in terms of negation and conjunction and
definability of conjunction in terms of negation and disjunction:

(A ∪B) ≡ ¬(¬A ∩ ¬B) (24)

(A ∩B) ≡ ¬(¬A ∪ ¬B). (25)

Theorem 12, Observation 5, and definability of equivalence in terms of implica-
tion and conjunction equality

(A⇔ B) ≡ ((A⇒ B) ∩ (B ⇒ A)). (26)

prove that, for example, L{¬,∩,∪,⇒} ≡ L{¬,∩,∪,⇒,⇔}.

Exercise 19

Show that L{¬,∩} ≡ L{↑} and L{¬,∩} ≡ L{↑}

Proof
We use the proof of Theorem 3 to prove the following definability equivalences
of ¬ and ∩ in terms of ↑:

¬A ≡ (A ↑ A), (A ∩B) ≡ (A ↑ B) ↑ (A ↑ B) (27)

and definability equivalences of ¬ and ∪ in terms of ↓:

¬A ≡ (A ↓ A), (A ∪B) ≡ (A ↓ B) ↓ (A ↓ B). (28)

This proves the condition C1 of definition 35.

The definability equivalences for fulfillment of the condition C2 are:

(A ↑ B) = ¬(A ∪B) and (A ↑ B) = ¬(A ∪B) (29)

Here are some more frequently used, important logical equivalences.

Idempotent
(A ∩A) ≡ A, (A ∪A) ≡ A,

Associativity

((A ∩B) ∩ C) ≡ (A ∩ (B ∩ C)), ((A ∪B) ∪ C) ≡ (A ∪ (B ∪ C)),

Commutativity

(A ∩B) ≡ (B ∩A), (A ∪B) ≡ (B ∪A),

43

Distributivity

(A ∩ (B ∪ C)) ≡ ((A ∩B) ∪ (A ∩ C)), (A ∪ (B ∩ C)) ≡ ((A ∪B) ∩ (A ∪ C)),

De Morgan Laws

¬(A ∪B) ≡ (¬A ∩ ¬B), ¬(A ∩B) ≡ (¬A ∪ ¬B).

Negation of Implication

¬(A⇒ B) ≡ (A ∩ ¬B), (30)

De Morgan laws are named after A. De Morgan (1806 - 1871), an English
logician, who discovered analogous laws for the algebra of sets. They stated that
for any sets A,B the complement of their union is the same as the intersection
of their complements, and vice versa, the complement of the intersection of two
sets is equal to the union of their complements. The laws of the propositional
calculus were formulated later, but they are usually also called De Morgan Laws.

Observe that De Morgan Laws tell us how to negate disjunction and conjunction,
so the laws stating how to negate other connectives follows them.

Consider a tautology A: |= ((¬(A⇒ B)⇒ ¬A)⇒ (A⇒ B)).

We know by (20) that (A ⇒ B) ≡ (¬A ∪ B). By Theorem 12, if we replace
(A ⇒ B) by (¬A ∪ B) in A, the logical value of A will remain the same and
((¬(A ⇒ B) ⇒ ¬A) ⇒ (A ⇒ B)) ≡ ((¬(¬A ∪ B) ⇒ ¬A) ⇒ (¬A ∪ B)). Now
we use de Morgan Laws and Double Negation Laws and by Theorem 12 we get
((¬(A ⇒ B) ⇒ ¬A) ⇒ (A ⇒ B)) ≡ ((¬(¬A ∪ B) ⇒ ¬A) ⇒ (¬A ∪ B)) ≡
(((¬¬A ∩ ¬B)⇒ ¬A)⇒ (¬A ∪B)) ≡ (((A ∩ ¬B)⇒ ¬A)⇒ (¬A ∪B)).

This proves that
|= (((A ∩ ¬B)⇒ ¬A)⇒ (¬A ∪B)).

Exercise 20

Prove using proper logical equivalences that

(i) ¬(A⇔ B) ≡ ((A ∩ ¬B) ∪ (¬A ∩B)),

(ii) ((B ∩ ¬C)⇒ (¬A ∪B)) ≡ ((B ⇒ C) ∪ (A⇒ B)).

Solution (i)
¬(A ⇔ B)≡(26)¬((A ⇒ B) ∩ (B ⇒ A))≡de Morgan(¬(A ⇒ B) ∪ ¬(B ⇒
A))≡(30)((A ∩ ¬B) ∪ (B ∩ ¬A))≡commut((A ∩ ¬B) ∪ (¬A ∩B)).

Solution (ii)
((B ∩¬C)⇒ (¬A∪B))≡(21)(¬(B ∩¬C)∪ (¬A∪B))≡de Morgan((¬B ∪¬¬C)∪
(¬A ∪B))≡(17)((¬B ∪ C) ∪ (¬A ∪B))≡(21)((B ⇒ C) ∪ (A⇒ B)).

44

5 Many Valued Semantics: Lukasiewicz, Heyt-
ing, Kleene, Bohvar

Many valued logics in general and 3-valued logics in particular is an old object
of study which has its beginning in the work of a Polish mathematician Jan
Leopold Lukasiewicz in 1920. He was the first to define a 3 - valued semantics
for the language L{¬,∩,∪,⇒} of classical logic, and called it a three valued logic
for short. He left the problem of finding a proper axiomatic proof system for it
(i.e. the one that is complete with respect to his semantics) open. The same
happened to all other 3 - valued semantics presented here. They were also first
called 3 valued logics and this terminology is still widely used. Nevertheless, as
these logics were defined only semantically, i.e. defined by providing a semantics
for their languages we call them just semantics (for logics to be developed), not
logics. Existence of a proper axiomatic proof system for a given semantics and
proving its completeness is always a next open question to be answered (when
it is possible). A process of creating a logic (based on a given language) always
is three fold: we define semantics, create an an axiomatic proof system and
prove a completeness theorem that established a relationship between a given
semantics and proof system.

The first of many valued logics invented were first presented in a semantical
form only for other components to be developed later. We can think about the
process of their creation as inverse to the creation of Classical Logic, Modal
Logics, the Intuitionistic Logic which existed as axiomatic systems longtime be-
fore invention of their formal semantics.

Formal definition of all many valued extensional semantics M for the language
L we present and discuss here follows the extensional semantics Definition 7 in
general and the pattern of presented in detail for the classical case (Section 3)
in particular. It consists of giving definitions of the following main components:

Step 1: given the language L we define a set of logical values and its distinguish
value T, and define all logical connectives of L
Step 2: we define notions of a truth assignment and its extension;
Step 3: we define notions of satisfaction, model, counter model;
Step 4: we define notions tautology under the semantics M.

We present here some of the historically first 3-valued extensional semantics,
called also 3-valued logics. They are named after their authors: Lukasiewicz,
Heyting, Kleene, and Bochvar.

The 3-valued semantics we define here enlist a third logical value, besides clas-
sical T, F . We denote this third value by ⊥, or m in case of Bochvar semantics.
We also assume that the third value is intermediate between truth and falsity,
i.e. that F <⊥< T and F < m < T.

45

There has been many of proposals relating both to the intuitive interpretation
of this third value ⊥. If T is the only designated value, the third value ⊥ cor-
responds to some notion of incomplete information, like undefined or unknown
and is often denoted by the symbol U or I. If, on the other hand, ⊥ corresponds
to inconsistent information, i.e. its meaning is something like known to be both
true and false then corresponding semantics takes both T and the third logical
value ⊥ as designated. In general, the third logical value denotes a notion of
”unknown”, ”uncertain”, ”undefined”, or even can express that ”we don’t have
a complete information”, depending on the context and motivation for the logic
we plan to develop. In all of presented here semantics we take T as designated
value, i.e. T is the value that defines the notion of satisfiability and tautology.

 Lukasiewicz Semantics L

Motivation

 Lukasiewicz developed his semantics (called logic) to deal with future contin-
gent statements. According to him, such statements are not just neither true
nor false but are indeterminate in some metaphysical sense. It is not only that
we do not know their truth value but rather that they do not possess one. Intu-
itively, ⊥ signifies that the statement cannot be assigned the value true of false;
it is not simply that we do not have sufficient information to decide the truth
value but rather the statement does not have one.

We define all the steps of the Definition7 in case of Lukasiewicz’ s semantics to
establish a pattern and proper notation. We leave the detailed steps of other
semantics as an exercise for the reader.

Step 1: L Connectives

The language of the semantics L is L{¬, ∪, ∩, ⇒, ⇔}. The set LV of logical values
is {T, ⊥, F}. T is the distinguished value. We assume that the set of log0cal
values is ordered, i.e. that

F <⊥< T.

L Negation is a function ¬ : {T,⊥, F} −→ {T,⊥, F} such that

¬ ⊥=⊥, ¬T = F, ¬F = T.

L Conjunction is a function ∩ : {T,⊥, F}× {T,⊥, F} −→ {T,⊥, F} such
that for any (x, y) ∈ {T,⊥, F} × {T,⊥, F}, we put

x ∩ y = min{x, x}.

46

L Disjunction is a function ∪ : {T,⊥, F} × {T,⊥, F} −→ {T,⊥, F}, such
that for any (a, b) ∈ {T,⊥, F} × {T,⊥, F}, we put

x ∪ y = max{x, y}

L Implication is a function ⇒: {T,⊥, F} × {T,⊥, F} −→ {T,⊥, F} such
that for any (x, y) ∈ {T,⊥, F} × {T,⊥, F}, we put

x⇒ y =

{
¬x ∪ y if x > y
T otherwise

(31)

We write function defining the connectives in a standard form of tables defining
operations in finite sets. We call these tables truth tables definition of proposi-
tional connectives, or L connectives truth tables for short.

L Connectives Truth Tables

¬ F ⊥ T
T ⊥ F

∩ F ⊥ T
F F F F
⊥ F ⊥ ⊥
T F ⊥ T

∪ F ⊥ T
F F ⊥ T
⊥ ⊥ ⊥ T
T T T T

⇒ F ⊥ T
F T T T
⊥ ⊥ T T
T F ⊥ T

Step 2: Truth Assignment, Truth Extension

A truth assignment is now any function v : V AR −→ {F, ⊥, T}. We define
its extension to the set F of all formulas as any function v∗ : F −→ {T, F},
such that the following conditions are satisfied.

(1) for any a ∈ V AR, v∗(a) = v(a);

(2) for any A,B ∈ F ,
v∗(¬A) = ¬v∗(A);

v∗((A ∩B)) = v∗(A) ∩ v∗(B);

v∗((A ∪B)) = v∗(A) ∪ v∗(B);

v∗((A⇒ B)) = v∗(A)⇒ v∗(B).

47

Step 3: Satisfaction, Model, Counter-Model

We say that a truth assignment v : V AR −→ {F, ⊥, T} L satisfies a formula
A ∈ F if and only if v∗(A) = T . We denote it by v |=L A.

Any truth assignment v, v : V AR −→ {F, ⊥, T} such that v |=L A is called a
L model for A.

We say that a truth assignment v does not L satisfy a formula A ∈ F and
denote it by v 6|=L A, if and only if v∗(A) 6= T .

Any truth assignment v, v : V AR −→ {F, ⊥, T} such that v 6 |=L A is called
a L counter- model for A.

Step 4: L Tautology

We define, for any A ∈ F , A is a L tautology if and only if v∗(A) = T for
all v : V AR −→ {F,⊥, T}. We also say that A is a L tautology if and only if
all truth assignments v : V AR −→ {F,⊥, T} are L models for A. We write the
statement ” A is a L tautology” symbolically as

|=L A.

As a next step we define, as we did in the case of classical semantics the notions
of restricted truth assignment and restricted models, (Definitions 26, 27) i.e. we
have the following.
Any function vA : V ARA −→ {F,⊥, T}, such that vA |=L A (vA 6 |=L A)
is called a restricted L model (L counter model) for A, where V ARA is the set
of all propositional variables appearing in A. We call the function vA, a truth
assignment restricted to A, or restricted truth assignment for short.

We prove, in the same way we proved Theorem8 in Section 3, the following the-
orem that justifies the correctness of the truth tables L tautologies verification
method.

Theorem 13 (L Truth Tables)

For any formula A ∈ F ,
|=L A if and only if vA |=L A for all vA : V ARA −→ {T,⊥, F}, i.e.
|=L A if and only if all vA are restricted models for A.

Directly from Theorem 13 we get that the notion of L propositional tautology
is decidable, i.e. that the following holds.

Theorem 14 (Decidability)

48

For any formula A ∈ F , one has examine at most 3V ARA truth assignments
vA : V ARA −→ {F,⊥, T} in order to decide whether |=L A, or 6|=L A, i.e.
the notion of L tautology is decidable.

We denote by LT the set of all L tautologies, i.e. we have that

LT = {A ∈ F : |=L A}. (32)

We just proved (Theorem 14) the correctness of the truth table tautology veri-
fication method for L semantics stated as follows.

L Truth Table Method

The verification method, called a truth table method consists of examination,
for any formula A, all possible truth assignments restricted to A. By Theorem
13 we have to perform at most 3|V ARA| steps. If we find a truth assignment
which does not evaluate A to T , i.e. evaluates A to F , or to ⊥, we stop the
process and give answer: 6|=L A. Otherwise we continue. If all truth assignments
evaluate A to T , we give answer: |=L A.

Consider, for example, a formula A: (a ⇒ a). There are 31 = 3 possible re-
stricted truth assignment v : {a} −→ {F,⊥, T}. We list them, and evaluate
their value on the formula A in a form of an extended truth table as follows.

v a v∗(A) computation v∗(A)
v1 T T ⇒ T = T T
v2 ⊥ ⊥⇒⊥= T T
v3 F F ⇒ F = T T

This proves that the classical tautology (a⇒ a) is also a L tautology, i.e.

|= (a⇒ a) and |=L (a⇒ a). (33)

Moreover (33) proves that the condition (3) of the definition 14 is fulfilled and
the L semantics is well defined. We put it as a separate fact.

Fact 5

The Lukasiewicz semantics L is well defined.

As a next step we can adopt all other classical tautology verification methods
from Section 3. It is a quite straightforward adaptation and we leave it a san
exercise. Moreover it works for all of many valued semantics presented here, as
does the Decidability Theorem 14.

49

When defining and developing a new logic the first question one asks is how it
relates and compares with the classical case, it means with the classical logic. In
case of new semantics (logics defined semantically) we describe this relationship
in terms of respective sets of tautologies.

Let LT, T denote the sets of all L and classical tautologies, respectively.

Theorem 15

The following relationship holds between classical and L tautologies:

LT 6= T and LT ⊂ T. (34)

Proof
Consider a formula (¬a ∪ a). It is obviously a classical tautology. Take any
truth assignment v : V AR −→ {F,⊥, T} such that v(a) =⊥. By definition we
have that v∗(¬a ∪ a) = v∗(¬a) ∪ v∗(a) = ¬v(a) ∪ v(a) = ¬ ⊥ ∪ ⊥=⊥ ∪ ⊥=⊥.
This proves that v is a L counter-model for (¬a ∪ a) and hence 6|=L (¬a ∪ a).
This proves LT 6= T.

Observe now that if we restrict the values of functions defining L connectives to
the values T and F only, we get the functions defining the classical connectives.
It is directly visible when we compare the L and classical connectives truth
tables. This means that if v∗(A) = T for all v : V AR −→ {F,⊥, T}, then
v∗(A) = T for any v : V AR −→ {F, T} and for any A ∈ F , i.e. LT ⊂ T.

Exercise 21

Use the fact that v : V AR −→ {F,⊥, T} is such that v∗((a ∩ b) ⇒ ¬b) =⊥
under L semantics to evaluate v∗(((b ⇒ ¬a) ⇒ (a ⇒ ¬b)) ∪ (a ⇒ b)). Use
shorthand notation.

Solution
Observe that ((a ∩ b)⇒ ¬b) =⊥ in two cases.

c1: (a ∩ b) =⊥ and ¬b = F .
c12: (a ∩ b) = T and ¬b =⊥ .

Consider c1. We have ¬b = F , i.e. b = T , and hence (a ∩ T) =⊥ if and only
if a =⊥. We get that v is such that v(a) =⊥ and v(b) = T . We evaluate (in
short hand notation) v∗(((b⇒ ¬a)⇒ (a⇒ ¬b))∪ (a⇒ b)) = (((T ⇒ ¬ ⊥)⇒
(⊥⇒ ¬T)) ∪ (⊥⇒ T)) = ((⊥⇒⊥) ∪ T) = T .

Consider c2. We have ¬b =⊥, i.e. b =⊥, and hence (a∩ ⊥) = T what is
impossible, hence v from case c1 is the only one, and v∗(((b ⇒ ¬a) ⇒ (a ⇒
¬b)) ∪ (a⇒ b)) = T.

L4 Semantics

50

We define the semantics L4 as follows. The language is L = L{¬,⇒,∪,∩}.
The logical connectives ¬,⇒,∪,∩ of L4 as the following operations in the set
{F,⊥1,⊥2, T}, where {F < ⊥1 < ⊥2 < T}.

L4 Negation is a function such that ¬⊥1 = ⊥1, ¬⊥2 = ⊥2, ¬F = T, ¬T = F.

L4 Conjunction is a function such that for any x, y ∈ {F,⊥1,⊥2, T}, x∩ x =
min{x, y}.

L4 Disjunction is a function such that for any x, y ∈ {F,⊥1,⊥2, T}, x ∪ y =
min{x, y}.

L4 Implication is a function such that for any x, y ∈ {F,⊥1,⊥2, T},

x⇒ y =

{
¬x ∪ y if x > y
T otherwise

(35)

Exercise 22

Here are 3 simple problems.

1. Write down L4 Connectives Truth Tables.

2. Give an example of a L4 tautology.

3. We know that the formula ((a⇒ b)⇒ (¬a ∪ b)) is a classical tautology, i.e.
|= ((a⇒ b)⇒ (¬a ∪ b)). Verify whether |= L4

((a⇒ b)⇒ (¬a ∪ b)).

Solution 1.
Here are L4 Connectives Truth Tables.

¬ F ⊥1 ⊥2 T
T ⊥1 ⊥2 F

∩ F ⊥1 ⊥2 T
F F F F F
⊥1 F ⊥1 ⊥1 ⊥1

⊥2 F ⊥1 ⊥2 ⊥2

T F ⊥1 ⊥2 T

∪ F ⊥1 ⊥2 T
F F ⊥1 ⊥2 T
⊥1 ⊥1 ⊥1 ⊥2 T
⊥2 ⊥2 ⊥2 ⊥2 T
T T T T T

⇒ F ⊥1 ⊥2 T
F T T T T
⊥1 ⊥1 T T T
⊥2 ⊥2 ⊥2 T T
T F ⊥1 ⊥2 T

51

Solution 2.
Observe that by definition of L4 implication we get x ⇒ x = T for all x ∈
{F,⊥1,⊥2, T}. Hence v∗((a ⇒ a)) = v(a) ⇒ v(a) = T for all v, what proves
|=L4

(a⇒ a).

Solution 3.
We use the Proof by Contradiction Method (section 3) to verify whether |= L4

((a⇒
b) ⇒ (¬a ∪ b)). Observe that it applied to any situation, as its correctness is
based on our classical reasoning. Assume that 6|= L4

((a ⇒ b) ⇒ (¬a ∪ b)). Let
v : V AR −→ {F,⊥1,⊥2, T}, such that v∗(((a ⇒ b) ⇒ (¬a ∪ b))) 6= T. Ob-
serve that in L4 semantics, for any formula A ∈ F , v∗(A) 6= T gives us three
possibilities v∗(A) = F, v∗(A) = ⊥1, or v∗(A) = ⊥2 to consider (as opposed
to one case in classical case). It is a lot of work, but still less then listing and
evaluating 42 = 16 possibilities of all restricted truth assignment. Moreover,
our formula is a classical tautology, hence we know that it evaluates in T for all
combinations of T and F. A good strategy is to examine first some possibilities
of evaluating variables a, b for combination of ⊥1,⊥2 with hope of finding a
counter model. So let’s v be a truth assignment such that v(a) = v(b) = ⊥1.
We evaluate v∗((a ⇒ b) ⇒ (¬a ∪ b)) = ((⊥1 ⇒ ⊥1) ⇒ (¬⊥1 ∪ ⊥1)) = (T ⇒
(⊥1 ∪ ⊥1)) = (T ⇒ ⊥1) = ⊥1. This proves that v is a counter-model for our
formula. Observe that the v serves also as a L counter model for A when we
put ⊥1=⊥ and so we get

|= ((a⇒ b)⇒ (¬a ∪ b)), 6|=L4
((a⇒ b)⇒ (¬a ∪ b)), 6|=L ((a⇒ b)⇒ (¬a ∪ b))

Obviously, any v such that v(a) = v(b) = ⊥2 is also a counter model for A, as
v∗((a ⇒ b) ⇒ (¬a ∪ b)) = ((⊥2 ⇒ ⊥2) ⇒ (¬⊥2 ∪ ⊥2)) = (T ⇒ (⊥2 ∪ ⊥2)) =
(T ⇒ ⊥2) = ⊥2. We leave it as an exercise to find all possible counter models
for A.

Heyting Semantics H

Motivation
We discuss here the semantics H because of its connection with intuitionistic
logic. The H connectives are such that they represent operations in a certain 3
element algebra, historically called a 3 element pseudo-boolean algebra. Pseudo-
boolean algebras were created by McKinsey and Tarski in 1948 to provide se-
mantics for intuitionistic logic. The intuitionistic logic, the most important rival
to the classical one was defined and developed by its inventor Brouwer and his
school in 1900s as a proof system only. Heyting provided its first axiomatization
which everybody accepted. McKinsey and Tarski proved the completeness of
the Heyting axiomatization with respect to their pseudo boolean algebras se-
mantics. The pseudo boolean algebras are also called Heyting algebras in his
honor and so is our semantics H.

We say, that formula A is an intutionistic tautology if and only if it is valid in all

52

pseudo-boolean (Heying) algebras. The pseudo boolean algebras are defined in
a very general and mathematically sophisticated way. Their universe (it means
the set of logical values) can be any non empty set. Their operations that cor-
respond to L = L{¬,⇒,∪,∩} connectives must fulfill a set of special properties
(axioms). But we can prove that the operations defined by H connectives form
a 3-element pseudo boolean algebra with the universe U = {F,⊥, T}. Hence,
if A is an intuitionistic tautology, then in it is also valid (tautologically true)
for the H semantics, i.e. all intuitionistic propositional tautologies are also the
H semantics tautologies. It means that our H is a good candidate for finding
counter models for the formulas that might not be intuitionistic tautologies.

The other type of models, called Kripke models were defined by Kripke in 1964
and were proved later to be equivalent to the pseudo-boolean models. They are
very general and serve as a method of defining not extensional semantics for
various classes of logics. That includes semantics for a great number of modal,
knowledge, belief logics, and many new logics developed and being developed
by computer scientists.

H Connectives

We adopt the same language as in case of classical and Lukasiewicz’s L seman-
tics, i.e. L = L{¬,⇒,∪,∩}. We assume, as before, that {F <⊥< T}.

The connectives ¬, ∪, ∩ of H are defined as in L semantics. They are func-
tions defined by formulas x ∪ y = max{x, y}, x ∩ y = min{x, y}, for any
x, y ∈ {F,⊥, T}.

The definition of implication and negation for H semantics differs L semantics
and we define them as follows.

H Implication is a function ⇒: {T,⊥, F} × {T,⊥, F} −→ {T,⊥, F} such
that for any (x, y) ∈ {T,⊥, F} × {T,⊥, F}, we put

x⇒ y =

{
T if x ≤ y
y otherwise

(36)

H negation is a function ¬ : {F,⊥, T} −→ {F,⊥, T}, such that

¬a = a⇒ F.

The truth tables for H disjunction and conjunction are hence the same as cor-
responding L tables and the truth tables for H implication and negation are as
follows.

53

⇒ F ⊥ T
F T T T
⊥ F T T
T F ⊥ T

¬ F ⊥ T
T F F

For Steps 2 - 4 of the definition 7 we adopt definitions established for L
semantics. For example, we define the notion of H tautology as follows.

Definition 36 (H Tautology)

For any formula A ∈ F ,
A is a H tautology if and only if v∗(A) = T, for all v : V AR −→ {F,⊥, T},
i.e. v |=H A for all v. We write

|=H A

to denote that a formula A is an H tautology.

We leave it as an exercise to the reader to prove, in the same way as in case of
classical semantics (section3) the following theorems that justify the truth table
method of verification and the decidability theorem for K.

Theorem 16 (H Truth Tables)

For any formula A ∈ F ,
|=H A if and only if vA |=H A for all vA : V ARA −→ {T,⊥, F}, i.e.
|=H A if and only if all vA are restricted models for A.

Theorem 17 (H Decidability)

For any formula A ∈ F , one has examine at most 3V ARA truth assignments
vA : V ARA −→ {F,⊥, T} in order to decide whether |=H A, or 6|=H A, i.e.
the notion of H tautology is decidable.

We denote by HT the set of all H tautologies, i.e.

HT = {A ∈ F : |=H A}.

The following fact establishes relationship between classical and H tautologies.

Theorem 18

Let HT, LT, T denote the sets of all H, L, and classical tautologies, respectively.
Then the following relationship holds.

HT 6= LT, HT 6= T, and HT ⊂ T. (37)

54

Proof
A formula (¬a ∪ a) a classical tautology and not an H tautology. Take any
truth assignment v : V AR −→ {F, ⊥, T} such that v(a) =⊥. We evaluate is
v∗((¬a ∪ a) = ¬ ⊥ ∪ ⊥= F∪ ⊥=⊥ This proves that (¬a ∪ a) 6∈ HT and hence
HT 6= T. Directly from the definition of H connectives we get that if we restrict
the values of the functions defining them T and F only, we get the functions
defining the classical connectives. Hence for any formula A ∈ TH we have that
A ∈ TH and LT ⊂ T. A formula (¬¬a ⇒ a) is a L tautology and not an H
tautology by easy evaluation as presented in example 23 and (38). This proves
HT 6= LT.

Exercise 23

We know that v : V AR −→ {F,⊥, T} is such that v∗((a ∩ b) ⇒ (a ⇒ c)) =⊥
under H semantics.

Evaluate v∗(((b ⇒ a) ⇒ (a ⇒ ¬c)) ∪ (a ⇒ b)). You can use a short hand
notation.

Solution
By definition of H connectives we have that for any v, v∗((a∩b)⇒ (a⇒ c)) =⊥
if and only if a ∩ b) = T and (a ⇒ c) =⊥ if and only if a = T, b = T and
(T ⇒ c) =⊥ if and only if c =⊥. Hence v∗((a ∩ b) ⇒ (a ⇒ c)) =⊥ if and only
if a = T, b = T, c =⊥ . We evaluate v∗(((b ⇒ a) ⇒ (a ⇒ ¬c)) ∪ (a ⇒ b)) =
(((T ⇒ T)⇒ (T ⇒ ¬ ⊥)) ∪ (T ⇒ T)) = ((T ⇒ (T ⇒ F)) ∪ T) = T .

Exercise 24

We know that the following formulas are basic classical tautologies

|= (a ∪ ¬a), |= (¬¬a⇒ a), |= ((a⇒ b)⇒ (¬a ∪ b)). (38)

Use the H semantics to prove that none of them is intuitionostic tautology.

Solution Any v : V AR −→ {F, ⊥, T} such that v(a) = v(b) =⊥ is an H
counter model for all of the formulas. We evaluate (in shorthand notation) it
as follows. ⊥ ∪¬ ⊥=⊥ ∪F =⊥6= T, ¬¬ ⊥⇒⊥= ¬F ⇒⊥= T ⇒⊥=⊥6= T ,

(⊥⇒⊥) ⇒ (¬ ⊥ ∪ ⊥) = T ⇒ (¬ ⊥ ∪ ⊥) = T ⇒ (F∪ ⊥) = T ⇒⊥=⊥6= T. We
hence proved by the fact ”if a given formula A is not the H semantics tautol-
ogy, it is not intuitionistic tautology” that none of classical tautologies (38) is
neither intuitionostic nor H tautology.

The H semantics can serve as a tool of proving that some formulas are not
intutionistic tautologies, but it is not a universal one

55

Example 22

We know that the classical tautology (¬(a∩ b)⇒ (¬a∪¬b)) is not intuitionistic
tautology, but nevertheless |=H(¬(a ∩ b)⇒ (¬a ∪ ¬b)).

Proof
We use the Proof by Contradiction Method (section ??) and shorthand nota-
tion. Assume that 6|=H (¬(a ∩ b) ⇒ (¬a ∪ ¬b)). Let v : V AR −→ {F, ⊥, T}
such that v∗((¬(a ∩ b) ⇒ (¬a ∪ ¬b))) 6= T . We have to consider two cases:
c1 v∗((¬(a ∩ b) ⇒ (¬a ∪ ¬b))) =⊥ and c2 v∗((¬(a ∩ b) ⇒ (¬a ∪ ¬b))) = F .
If we get a contradiction in both cases we have proved |=H(¬(a∩b)⇒ (¬a∪¬b)).

Consider case c1. By definition of⇒ we have that v∗((¬(a∩b)⇒ (¬a∪¬b))) =⊥
if and only if ¬(a∩b) = T and ¬a∪¬b =⊥ if and only if a∩b = F and ¬a∪¬b =⊥.
Let’s look ¬a∪¬b =⊥. This is possible in 3 cases. 1. ¬a =⊥ and ¬b =⊥. Con-
tradiction with the definition of ⊥ as ¬x 6=⊥ for all x ∈ {F,⊥, T}. 2. ¬a =⊥
and ¬b = F . Contradiction with the definition of ⊥. 3. ¬a = F and ¬b =⊥.
Contradiction with the definition of ⊥. This proves that case c1 always leads
to contradiction.

Consider case c2. By definition of⇒ we have that v∗((¬(a∩b)⇒ (¬a∪¬b))) =
F if and only if 1. ¬(a∩b) =⊥, ¬a∪¬b = F . Contradiction. 2. ¬(a∩b) = T and
¬a ∪ ¬b = F if and only if a ∩ b = F and ¬a ∪ ¬b = F . Observe that a ∩ b = F
in 3 cases. Two involve only T, F and we get a contradiction as in classical case
(our formula is classical tautology). We have hence to consider only the cases
when a =⊥, b = F and a = F, b =⊥. They both lead to the contradiction with
¬a∪¬b = F . This proves that case c2 always leads to contradiction and it ends
the proof.

We can of course also use the Truth Tables Method that involves listing and
evaluating all of 23 = B restricted truth assignments.

Kleene Semantics K

Kleene’s logic semantics was originally conceived to accommodate undecided
mathematical statements.

Motivation

In Kleene’s semantics the third logical value ⊥, intuitively, represents undecided.
Its purpose is to signal a state of partial ignorance. A sentence a is assigned a
value ⊥ just in case it is not known to be either true of false.

For example, imagine a detective trying to solve a murder. He may conjecture

56

that Jones killed the victim. He cannot, at present, assign a truth value T or
F to his conjecture, so we assign the value ⊥, but it is certainly either true of
false and ⊥ represents our ignorance rather then total unknown.

K Connectives

We adopt the same language as in a case of classical, Lukasiewicz’s L, and Heyt-
ing H semantics, i.e. L = L{¬,⇒,∪,∩}.

We assume, as before, that {F <⊥< T}. The connectives ¬, ∪, ∩ of K
are defined as in L, H semantics. They are functions defined by formulas
x ∪ y = max{x, y}, x ∩ y = min{x, y}, for any x, y ∈ {F,⊥, T}, and

¬ ⊥=⊥, ¬F = T, ¬T = F.

The K implication is defined by the same formula as the classical, i.e.

x⇒ y = ¬x ∪ y. (39)

for any x, y ∈ {F,⊥, T}.

The connectives truth tables for the K negation, disjunction and conjunction
are the same as the corresponding tables for L, H and K implication table is
as follows.

⇒ F ⊥ T
F T T T
⊥ ⊥ ⊥ T
T F ⊥ T

For Steps 2 - 4 of the definition of K semantics we follow the general M
semantics definition 7, or adopt its particular case of L semantics definition.
For example, we define the notion of K tautology as follows.

Definition 37 (K Tautology)

For any formula A ∈ F ,
A is a K tautology if and only if v∗(A) = T, for all truth assignments
v : V AR −→ {F,⊥, T}, i.e. v |=K A for all v.

We write
|=K A

to denote that A is a K tautology. We prove, in the same way as in case of L
semantics the following theorems that justify truth table method of verification
and decidability theorem for K.

57

Theorem 19 (K Truth Tables)

For any formula A ∈ F ,
|=K A if and only if vA |=K A for all vA : V ARA −→ {T,⊥, F}, i.e.
|=K A if and only if all vA are restricted models for A.

Directly from Theorem 19 we get that the notion of K propositional tautology
is decidable, i.e. that the following holds.

Theorem 20 (K Decidability)

For any formula A ∈ F , one has examine at most 3V ARA truth assignments
vA : V ARA −→ {F,⊥, T} in order to decide whether |=L A, or 6|=K A, i.e.
the notion of K tautology is decidable.

We write
KT = {A ∈ F : |=K A}

to denote the set of all K tautologies. The following establishes relationship
between L, K, and classical tautologies.

Theorem 21

Let LT, T, KT denote the sets of all L, classical, and K tautologies, respec-
tively. Then the following relationship holds.

LT 6= KT, KT 6= T, and KT ⊂ T. (40)

Proof
Obviously |= (a ⇒ a) and also by (33) |= L (a ⇒ a). Consider now any
v such that v(a) =⊥. We evaluate in K semantics v∗(a ⇒ a) = v(a) ⇒
v(a) =⊥⇒⊥=⊥. This proves that 6 |=K (a ⇒ a) and hence the first two rela-
tionships in (40) hold. The third one follows directly from the the fact that, as
in the L case, if we restrict the functions defining K connectives to the values
T and F only, we get the functions defining the classical connectives.

Exercise 25

We know that formulas ((a ∩ b)⇒ a), (a⇒ (a ∪ b)), (a⇒ (b⇒ a)) are classical
tautologies. Show that none of them is K tautology.

Solution Consider any v such that v(a) = v(b) =⊥. We evaluate (in short
hand notation) v∗(((a ∩ b) ⇒ a) = (⊥ ∩ ⊥) ⇒⊥=⊥⇒⊥=⊥⇒⊥⊥, v∗((a ⇒
(a ∪ b))) =⊥⇒ (⊥ ∪ ⊥) =⊥⇒⊥=⊥, and v∗((a ⇒ (b ⇒ a))) = (⊥⇒ (⊥⇒ a ⊥
) =⊥⇒⊥=⊥. This proves that v such that v(a) = v(b) =⊥ is a counter model
for all of them.

58

We generalize this example and prove that in fact a similar truth assignment
can serve as a counter model for not only any classical tautology, but also for
any formula A of L{¬,⇒,∪,∩}.

Theorem 22

For any formula A ∈ F , 6|=K A, i.e. the set of all K tautologies is empty. We
write it as

KT = ∅.

Proof
We show that a truth assignment v : V AR −→ {F,⊥, T}, such that v(a) =⊥
for all a ∈ V AR is a counter model for any A ∈ F . We carry the proof the by
mathematical induction over the degree d(A) of the formula A.

Base Case: n=1 i.e. d(A) = 1. In this case we have that A = ¬a for any
a ∈ V AR, or A = (a ◦ b) for a, b ∈ V AR, ◦ ∈ {∪,∩,⇒}.

We evaluate: v∗(A) = v∗(¬a) = ¬v∗(a) = ¬ ⊥=⊥, v∗(a ◦ b) = v∗(a) ◦ v∗(b) =⊥
◦ ⊥=⊥ . This proves that the Base Case holds.

Inductive assumption: v∗(B) =⊥ for all B such that d(B) = k and 1 ≤ k < n.
Inductive thesis: v∗(A) =⊥ for any A such that d(A) = n.

Let A be such that d(A) = n. We have two cases to consider.

Case 1. A = ¬B, so d(B) = n − 1 < n. By inductive assumption v∗(B) =⊥.
Hence v∗(A) = v∗(¬B) = ¬v∗(B) = ¬ ⊥=⊥ and inductive thesis holds.

Case 2. A = (B ◦ C) for B,C ∈ F , ◦ ∈ {∪,∩,⇒} (and d(A) = n). Let
d(B) = k1, d(C) = k2. Hence d(A) = d(B ◦ C) = k1 + k2 + 1 = n. We
get that k1 + k2 = n − 1 < n. From k1 + k2 < n we get that k1 < n and
k2 < n. Hence by inductive assumption v∗(B) =⊥ and v∗(C) =⊥. We evalu-
ate: v∗(A) = v∗(B ◦ C) = v∗(B) ◦ v∗(C) =⊥ ◦ ⊥=⊥. This ends the proof.

Observe that the theorem 22 does not invalidate relationships (40). They be-
come now perfectly true statements

LT 6= ∅, T 6= ∅, and ∅ ⊂ T.

But when we develop a logic by defining its semantics we must make sure for
semantics to be such that the logic has a non empty set of its tautologies. The
semantics K an example of a correctly and carefully) defined semantics that is
not well definedin terms of the definition 14. We write is as separate fact.

Fact 6

The Kleene semantics K is not well defined.

59

K semantics also provides a justification for a need of introducing a distinction
between correctly and well defined semantics. This is the main reason why it is
included here.

Bochvar semantics B

Bochvar’s 3-valued logic was directly inspired by considerations relating to se-
mantic paradoxes. Here is the motivation for definition of its semantics.

Motivation

Consider a semantic paradox given by a sentence: this sentence is false. If it
is true it must be false, if it is false it must be true. There have been many
proposals relating to how one may deal with semantic paradoxes. Bohvar’s
proposal adopts a strategy of a change of logic. According to Bochvar, such
sentences are neither true of false but rather paradoxical or meaningless. The
semantics follows the principle that the third logical value, denoted now by m
is in some sense ”infectious”; if one one component of the formula is assigned
the value m then the formula is also assigned the value m.

Bohvar also adds an one argument assertion operator S that asserts the logical
value of T and F , i.e. SF = F , ST = T and it asserts that meaningfulness is
false, i.e Sm = F .

Language LB

The language of B semantics differs from all previous languages in that it con-
tains an extra one argument assertion connective S added to the usual set
{¬,⇒,∪,∩} of the language L = L{¬,S,⇒,∪,∩} of all previous semantics.

LB = L{¬,S,⇒,∪,∩}. (41)

The set LV of logical values is {T, m, F}. T is the distinguished value.

B Connectives

We define the connectives of LB the functions defined in the set {F,mT} by the
following truth tables.

B Connectives Truth Tables

60

¬ F m T
T m F

∩ F m T
F F m F
m m m m
T F m T

∪ F m T
F F m T
m m m m
T T m T

⇒ F m T
F T m T
m m m m
T F m T

S F m T
F F T

For all other steps of definition of B semantics we follow the standard way estab-
lished for extensional M semantics, we did in all previous cases. In particular
we define the notion of K tautology as follows.

Definition 38

A formula A of LB is a B tautology if and only if v∗(A) = T , for all
v : V AR −→ {F,m, T}, i.e. if all variable assignments v are B models for A.

We write
|=B A

to denote that A is an B tautology.

We, prove, in the same way as for all previous logics semantics, the following
theorems that justify the truth table method of verification and decidability for
B tautologies.

Theorem 23 (B Truth Tables)

For any formula A of LB,
|=BA if and only if vA|=B A for all vA : V ARA −→ {F,m, T}.

Theorem 24 (Decidability)

For any formula A of LB, one has examine at most 3V ARA truth assignments
v : V ARA −→ {F,m, T} in order to decide whether |=BA, or 6|=B A, i.e. the
notion of B tautology is decidable.

Let denote by FB the set of formulas of the language LB and by BT the set of
all B tautologies:

BT = {A ∈ FB : |=B A}.

Which formulas (if any) are the B tautologies is more complicated to determine
then in the case previous semantics because we have the following Fact 7.

61

Fact 7

For any formula A ∈ FB which do not contain a connective S, i.e. for any
formula A of the language L{¬,⇒,∪,∩}, 6|=B A.

Proof We show that a truth assignment v : V AR −→ {F,m, T}, such that
v(a) = m for all a ∈ V AR is a counter model for any A ∈ F . The proof the by
mathematical induction over the degree d(A) of the formula A is similar to the
proof of Theorem 22 and is left to the reader as an exercise.

By the Fact 7 for a formula to be considered to be a B tautology, it must contain
the connective S. We get by easy evaluation that |=B (Sa ∪ ¬Sa). This proves
that BT 6= ∅ and the B semantics is well defined by definition 14. Of course
not all formulas containing the connective S are B tautologies, for example

6 |=B (a ∪ ¬Sa), 6 |=B (Sa ∪ ¬a), 6 |=B (Sa ∪ S¬a),

as any truth assignment v, such that v(a) = m is a counter model for all of them,
because m∪x = m for all x ∈ {F,m, T} and Sm∪S¬m = F ∪Sm = F ∪F = F .

6 M Tautologies, M Consistency, and M Equiv-
alence of Languages

The classical truth tables verification method a and classical decidability theo-
rem hold in a proper form in all of L. H, K and B semantics as it was discussed
separately for each of them. We didn’t discuss other classical tautologies veri-
fication methods of substitution and generalization. We do it now in a general
and unifying way in a case of an extensional M semantics.

Given an extensional semantics M defined for a propositional language LCON

with the set F of formulas and a finite, non empty set LV of logical values.

We introduce, as we did in classical case a notion of a restricted model (definition
26) and prove, in a similar way as we proved theorem8 the following theorem that
justifies the correctness of the M truth tables tautologies verification method.

Theorem 25 (M Truth Tables)

For any formula A ∈ F ,
|=M A if and only if vA |=M A for all vA : V ARA −→ LV, i.e.
|=M A if and only if all vA are restricted models for A.

M Truth Table Method

62

A verification method, called a M truth table method consists of examination,
as in the classical case, for any formula A, all possible M truth assignments
restricted to A. By theorem 25 we have to perform at most |LV ||V ARA| steps.
If we find a truth assignment which evaluates A to a value different then T ,
we stop the process and give answer: 6|=M A. Otherwise we continue. If all M
truth assignments restricted to A evaluate A to T , we give answer: |=M A.

Example 23

Consider a formula (¬¬a⇒ a) and H semantics. We evaluate

v a v∗(A) computation v∗(A)
v1 T ¬¬T ⇒ T = ¬F ⇒ T = F ⇒ T = T T
v2 ⊥ ¬¬ ⊥⇒⊥= ¬F ⇒⊥= T ⇒⊥=⊥ ⊥

It proves that 6|=H (¬¬a⇒ a).

Example 24

Consider a formula (¬¬a⇒ a) and L semantics. We evaluate

v a v∗(A) computation v∗(A)
v1 T ¬¬T ⇒ T = ¬F ⇒ T = F ⇒ T = T T
v2 ⊥ ¬¬ ⊥⇒⊥= ¬ ⊥⇒⊥=⊥⇒⊥= T T
v3 F neg¬F ⇒ F = ¬T ⇒ F = F ⇒ F = T T

It proves that |=L (¬¬a⇒ a).

We also proved that the set HT of all H tautologies is different from the set set
LT of all L tautologies, i.e.

LT 6= HT (42)

Directly from Theorem 25 and the above we get that the notion of M propo-
sitional tautology is decidable, i.e. that the following holds.

Theorem 26 (M Decidability)

For any formula A ∈ F , one has examine at most |LV |V ARA truth assignments
vA : V ARA −→ LV in order to decide whether |=M A, or 6|=M A, i.e. the
notion of M tautology is decidable.

M Proof by Contradiction Method

In this method, in order to prove that |=M A we proceed as follows.

63

We assume that 6|= A. We work with this assumption. If we get a contradic-
tion, we have proved that 6|=M A is impossible. We hence proved |=M A. If we
do not get a contradiction, it means that the assumption 6|=M A is true, i.e. we
have proved that A is not A M tautology.

Observe that correctness of his method is based on a correctness of classical
reasoning. Its correctness is based on the Reductio ad Absurdum classical tau-
tology |= ((¬A ⇒ (B ∩ ¬B)) ⇒ A). The contradiction to be obtained follows
from the properties of the M semantics under consideration.

Substitution Method
The Substitution Method allows us to obtain, as in a case of classical semantics
new M tautologies from formulas already proven to be M tautologies. The
theorem 27 and its proof is a straightforward modification of the classical proof
(theorem 27) and we leave it as an exercise to the reader. It assesses the validity
of the substitution method. In order to formulate and prove it we first remind
of the reader of needed notations.

Let A ∈ F be a formula and V ARA = {a1, a2, ...an} be the set of all proposi-
tional variables appearing in A. We will denote it by A(a1, a2, ...an). Given a
formula A(a1, a2, ...an), and A1, ...An be any formulas. We denote by

A(a1/A1, ..., an/An)

the result of simultaneous replacement (substitution) in A(a1, a2, ...an) variables
a1, a2, ...an by formulas A1, ...An, respectively.

Theorem 27

For any formulas A(a1, a2, ...an), A1, . . . , An ∈ F ,

If |=M A(a1, a2, ...an) and B = A(a1/A1, ..., an/An), then |=M B.

We have proved (exercise 24) that the formula D(a) = (¬¬a⇒ a) is L tautology.
By the above theorem 27 we get that D(a/A) = (¬¬A⇒ A) is also L tautology
for any formula A ∈ F . We hence get the following.

Fact 8

For any A ∈ F , |=L (¬¬A⇒ A).

M Generalization Method

In this method we represent, if it is possible, a given formula as a particular
case of some simpler general formula. Hence the name Generalization Method.
We then use other methods to examine the simpler formula thus obtained.

64

Exercise 26

Prove that

|=L (¬¬(¬((a ∩ ¬b) ⇒ ((c ⇒ (¬f ∪ d)) ∪ e)) ⇒ ((a ∩ ¬b) ∩ (¬(c ⇒ (¬f ∪
d)) ∩ ¬e))) ⇒ (¬((a ∩ ¬b) ⇒ ((c ⇒ (¬f ∪ d)) ∪ e)) ⇒ ((a ∩ ¬b) ∩ (¬(c ⇒
(¬f ∪ d)) ∩ ¬e)))).

Solution
Observe that our formula is a particular case of a more general formula (¬¬A⇒
A) for A = (¬((a ∩ ¬b) ⇒ ((c ⇒ (¬f ∪ d)) ∪ e)) ⇒ ((a ∩ ¬b) ∩ (¬(c ⇒ (¬f ∪
d)) ∩ ¬e))) and by fact 8 our formula is proved to be L tautology.

One of the most important notions for any logic are notions of consistency and
inconsistency. We introduced and discussed them in case of classical semantics
in section 3. We formulate them now for any M extensional semantics and
examine them in cases of L and H semantics.

Consider LCON and let S 6= ∅ be any non empty set of formulas of LCON . Let
M be an extensional semantics for LCON . We adopt the following definitions.

Definition 39

A truth truth assignment v : V AR −→ LV is M model for the set G of
formulas if and only if v |=M A for all formulas A ∈ G. We denote it by
v |= G.

Definition 40

A set G ⊆ F is called M consistent if and only if there is v : V AR −→ LV ,
such that v |= G.

Otherwise the set G is called M inconsistent.

Observe that in this case the inconsistency definition is stated as follows.

Definition 41

A set G ⊆ F is called M inconsistent if and only if for all v : V AR −→ LV ,
v∗(A) 6= T holds for all formulas A ∈ G.

Plainly speaking, a set G is consistent , if it has a model, and is inconsistent if
it does not have a model under a semantic M.

Exercise 27

Prove that the set
G = {((a ∩ b)⇒ b), (a ∪ b),¬a}

65

is L, H, and K consistent.

Solution Let v be a truth assignment v : V AR −→ {T,⊥, F}. By the defin-
inition 39, v |= {((a ∩ b) ⇒ b), (a ∪ b),¬a} if and only if v∗(((a ∩ b) ⇒ b)) =
T, v∗((a ∪ b) = T), and v∗(¬a) = T . Observe that |= ((a ∩ b)⇒ b), so we have
to find v, such that v∗((a ∪ b)) = T, v∗(¬a) = T . This holds if and only if
v(a) = F and F ∪ v(b) = T , i.e. if and only if v(a) = F and v(b) = T .
Observe that the semantics L, H, and K are all defined in such a way that if
we restrict the functions defining their connectives to the values T and F only,
we get the functions defining the classical connectives. This proves that any v
such that v(a) = F and v(b) = T is a L, H, and K model for G.

The same argument prove the following general fact.

Fact 9

For any non empty set G of formulas of a language L{¬,⇒,∪,∩} the following
holds. If G is consistent under classical semantics, then it is L, H, and K
consistent.

Exercise 28

Give an example of an infinite set G of formulas of a language LB = L{¬,S,⇒,∪,∩}
that is L, H, K and B consistent.

Solution
Observe that for the set G to be considered to be L, H, K consistent its formulas
must belong to the language sub language L{¬,⇒,∪,∩} of the language LB. So
for example let’s consider a set

G = {(a ∪ ¬b) : a, b ∈ V AR}.

G is infinite since the set V AR is infinite. Let v : V AR −→ {F,m, T} be such
that v(a) = T, v(b) = T , we have v∗(a ∪ b) = v(a) ∪ v(b) = T ∪ T by the L, H,
K and B definition of ∪. This proves that G is L, H, K and B consistent.

Exercise 29

Prove that the set
G = {(a ∩ ¬a) : a ∈ V AR}

is L, H, K, and B inconsistent..

Solution
We know that the set G is classically inconsistent, i.e. v∗((a ∩ ¬a)) 6= T for all
v : V AR −→ {F, T} under classical semantics. It also holds for We have to

66

show that it also holds for L, H, K and B semantics when we restrict the func-
tions defining their connectives to the values T and F only. In order to prove
inconsistency under L, H, K, semantics we have to show that v∗((a∩¬a)) 6= T
for all v : V AR −→ {F,⊥, T} under the respective semantics, i.e. we have to
evaluate additional case v(a) =⊥ in all of them. Observe that negation ¬ is de-
fined in all of them as ¬ ⊥=⊥, and v∗((a∩¬a)) =⊥ ∩¬ ⊥=⊥ ∩ ⊥=⊥6= T . This
proves that G is L, H, and K inconsistent. The case of B semantics is similar,
except that now we consider all v : V AR −→ {F,m, T} and the additional
case is v(a) = m. By definition ¬m = m and v∗((a ∩ ¬a)) = m ∩m = m 6= T .

The examples of B consistent, or inconsistent sets G in exercise 28 and exercise
29 were restricted to formulas from LB = L{¬,S,⇒,∪,∩} that did not include the
connective S. In this sense they were not characteristic to the semantics B. We
pose hence a natural question whether such examples exist.

Exercise 30

Give an example of sets G1,G2 containing some formulas that include the S
connective of the language LB = L{¬,S,⇒,∪,∩} such that G1 is B consistent and
G2 is B inconsistent

Solution
There are many such sets G, here are just two simple examples.

G1 = {(Sa ∪ S¬a), (a⇒ ¬b), S¬(a⇒ b), (b⇒ Sa)}

G2 = {Sa, (a⇒ b), (¬b∪, S¬a}.

Any v : V AR −→ {F,m, T}, such that v(a) = T, v(b) = F is a b model for G1,
i.e. G1 is consistent. Assume now that there is v : V AR −→ {F,m, T}, such
that v |=B G2. In particular v∗(Sa) = T . This is possible if and only if v(a) = T ,
then v∗(S¬a) = SF = F. This contradicts v |=B G2. Hence G2 is B inconsistent.

We introduce, as we did in classical case a notion of a contradiction as follows.

Definition 42

Let M be an extensional semantics for LCON . We say that a formula A is a
M contradiction if it doesn’t have a M model.

Example 25

A formula (Sa ∩ S¬a) of LB = L{¬,S,⇒,∪,∩} is a B contradiction.

Proof
Assume that there is v, such that v |= (Sa ∩ S¬a), i.e. v∗((Sa ∩ S¬a)) = T if

67

and only if (shorthand notation) Sa = T and S¬a = T . But Sa = T if and
only of a = T . In this case S¬T = SF = F 6= T. This contradiction proves that
such v does not exist, i.e. that for all v, v 6|= (Sa ∩ S¬a).

This also justifies the following.

Example 26 The set G = {(Sa ∩ S¬a) : a ∈ V AR} is an countably infinite
B inconsistent set.

Here is a simple problem asking to create your own, specific M semantics ful-
filling certain specifications. This semantics is different from all of previous
semantics defined and examined. We also ask to examine some of its properties,
including M consistency and M inconsistency. We provide an example two dif-
ferent semantics. We encourage the reader to come up with his/hers own and
to write down formally its full definition according to definition 7 as it was done
in the case of L semantics.

Review Problem

Part 1. Write the following natural language statement:

One likes to play bridge, or from the fact that the weather is good we conclude
the following: one does not like to play bridge or one likes not to play bridge

as a formula of 2 different languages

1. Formula A1 ∈ F1 of a language L{¬, L, ∪, ⇒}, where LA represents
statement ”one likes A”, ”A is liked”.

2. Formula A2 ∈ F2 of a language L{¬, ∪, ⇒}.

Part 2. Define formally, following all steps of the defnition 7, a 3 valued
extensional semantics LK for the language L{¬, L, ∪, ⇒} under the following
assumptions.

s1 We assume that the third value is denoted by ⊥ is intermediate between
designated value T and F, i.e. that F <⊥< T.

s2 We model a situation in which one ”likes” only truth, represented by T; i.e.
in which

LT = T, L ⊥= F, LF = F.

s3 The connectives ¬, ∪, ⇒ can be defined as one wishes, but they have to
be defined in such a way to make sure that always ”one likes A or does not like
A”, i.e. it must be assured that |=LK (LA ∪ ¬LA).

68

Part 3.

1. Verify whether the formulas A1 and A2 from the Part 1. have a model/
counter model under your semantics LK. You can use shorthand notation.

2. Verify whether the following set G is LK consistent. You can use shorthand
notation.

G = {La, (a ∪ ¬Lb), (a⇒ b), b }.

3. Give an example on an infinite, LK consistent set of formulas of the language
L{¬, L, ∩, ∪, ⇒}. Some formulas must contain the connective L.

Review Problem Solutions

Part 1 Solution

1. We translate the statement into a formula A1 ∈ F1 of a language L{¬, L, ∩, ∪, ⇒}
as follows.

Propositional variables: a, b, where a denotes statement: play bridge, b denotes
a statement: the weather is good.

A1 = (La ∪ (b⇒ (¬Ia ∪ L¬a))).

2. We translate our statement into a formula A2 ∈ F2 of a language L{¬, ∪, ⇒}
as follows.

Propositional Variables: a, b, c, where a denotes statement: One likes to play
bridge, b denotes a statement: the weather is good, and c denotes a statement:
one likes not to play bridge.

A2 = (a ∪ (b⇒ (¬a ∪ c))).

Part 2 Solution 1

Here is a simple LK semantics. We define the logical connectives by writing
functions defining connectives in form of the truth tables and skipping other
points of the definition 7. We leave it to the reader as an exercise to write down
a full definition according to the definition 7.

LK Semantics 1

L F ⊥ T
F F T

¬ F ⊥ T
T F F

69

∩ F ⊥ T
F F F F
⊥ F ⊥ ⊥
T F ⊥ T

∪ F ⊥ T
F F ⊥ T
⊥ ⊥ T T
T T T T

⇒ F ⊥ T
F T T T
⊥ T ⊥ T
T F F T

We verify whether the condition s3 is satisfied, i.e. whether |=LK (LA∪¬LA)
by simple evaluation. Let v : V AR −→ {F,⊥, T} be any truth assignment. For
any formula A, v∗(A) ∈ {F,⊥, T} and LF ∪¬LF = LF ∪¬LF = F ∪¬F ∪T =
T, L ⊥ ∪¬L ⊥= F ∪ ¬F = F ∪ T = T, LT ∪ ¬LT = T ∪ ¬T = F ∪ T = T.

Part 2 Solution 2

Here is another simple LK semantics. Writing, yet again, a full definition is left
to the reader as an exercise.

LK Semantics 2

The logical connectives are the following funcions in the set {F,⊥, T}, where
{F <⊥< T}. We define ¬F = T, ¬ ⊥= T, ¬T = F and, as by s2, LT =
T, L ⊥= F, LF = F. We define, for any x, y ∈ {F,⊥, T}

x ∩ y = min{x, y}, x ∪ y = T, x⇒ y = T if x ≤ y, x⇒ y = F if x > y.

From the above definition we can see the LK satisfies the requirement s3 that
especially |=LK (LA ∪ ¬LA) since for any truth assignment v, no matter what
values v∗(LA) and v∗(¬LA) are, the combination of them by ∪ will always be T .

Part 3

1. Verify whether the formulas A1 and A2 from the Part 1. have a model/
counter model under your semantics LK. You can use shorthand notation.

Solution 1
A model for A1 = (La ∪ (b ⇒ (¬La ∪ L¬a))) under LK semantics 1 is any v,
such that v(a) = T . By easy evaluation, A1 does not have no counter model,
i.e. |=LK A1. Also any v, such that v(a) = T is a model for A1 as we have
v∗(A2) = T ∪ v∗((b⇒ (¬a ∪ c))) = T by definition of ∪.

Solution 2 The main connective of A1 and A2 is ∪. By definition of ∪ in LK
semantics 2, x ∪ y = T for all x, y ∈ {F,⊥, T}, and hence any v is a model for
both A1 and A2, i.e. they are both tautologies under LK semantics 2.

Part 3

70

2. Verify whether the following set G is LK consistent. You can use shorthand
notation.

G = {La, (a ∪ ¬Lb), (a⇒ b), b }.

Solution 1]
G is LK consistent under semantics 1 because any v, such that v(a) = T, v(b) =
T is a LK model for G under semantics 1 by straightforward evaluation.

Solution 2
Consider any v, such that v(a) = v(b) = T . We evaluate: v∗(La) = LT =
T, v∗((a ∪ ¬Lb)) = T ∪ F = T, v∗(a ⇒ b)) = T ⇒ T = T. This proves
v |=LK G, i.e. G is consistent.

Part 3

3. Give an example on an infinite, LK consistent set of formulas of the language
L{¬, L, ∩, ∪, ⇒}. Some formulas must contain the connective L.

Solution
The infinite set G = {La : a ∈ V AR} is consistent under both LK semantics,
as any v, such that v(a) = T we get v∗(La) = LT = T by s2.

The infinite set G = {(La∪ (b∩L¬c)) : a, b, c ∈ V AR} is consistent under the
semantics 2 by its definition of ∪. Any v, such that v(a) = T is its model.

M Equivalence of Formulas

Given an extensional semantics M defined for a propositional language LCON

with the set F of formulas and a set LV 6= ∅ of logical values. We extend
now the classical notion of logical equivalence introduced in section 4 to the
extensional semantics M.

Definition 43

For any formulas A,B ∈ F , we say that A,B are M logically equivalent if
and only if they always have the same logical value assigned by the semantics
M, i.e. when v∗(A) = v∗(B) for all v : V AR → LV. We write

A ≡MB

to denote that A,B are M- logically equivalent.

Remember that ≡M is not a logical connective. It is just a metalanguage
symbol for saying ”formulas A,B are logically equivalent under the semantics
M”. We use symbol ≡ for classical logical equivalence only.

71

Exercise 31

The classical logical equivalence (A ∪B) ≡ (¬A⇒ A) holds for all formulas A,
B and is defining ∪ in terms of negation and implication. Show that it does not
hold under L semantics, i.e. that there are formulas A, B, such that

(A ∪B) 6≡L (¬A⇒ B)

Solution
Consider a case when A = a and B = b. By definition 43 we have to show
v∗((a ∪ b)) 6= v∗((¬a ⇒ b)) for some v : V AR → {F,⊥, T}. Observe that
v∗((a∪ b)) = v∗((¬a⇒ b)) for all v : V AR → {F, T}. So we have to check only
truth assignments that involve ⊥. Let v be any v such that v(a) = v(b) =⊥.
We evaluate v∗((a ∪ b) =⊥ ∪ ⊥=⊥ and v∗((¬a ⇒ b)) = ¬ ⊥⇒⊥= F ⇒⊥= T .
This proves that (a ∪ b) 6≡L (¬a ⇒ b).. and hence we have proved (A ∪ B) 6≡L

(¬A⇒ B).

We proved that the classical equivalence defining disjunction in terms of nega-
tion and implication can’t be used for the same goal in L semantics. It does not
mean that we can’t define L disjunction in terms of L implication. In fact, we
prove by simple evaluation that the following holds.

Fact 10

The L disjunction is definable in terms of L implication only, i.e. for any
formulas A,B ∈ F

(A ∪B) ≡L ((A⇒ B)⇒ B).

The classical equivalence substitution theorem 12 extends to any semantics M
as follows.

Theorem 28 (M Equivalence)

Let a formula B1 be obtained from a formula A1 by a substitution of a formula
B for one or more occurrences of a sub-formula A of A1, what we denote as

B1 = A1(A/B).

Then the following holds for any formulas A, A1, B, B1 ∈ F .

If A ≡M B, then A1 ≡M B1.

We leave the proof to the reader as an exercise.

Example 27

72

Let A1 = (a ⇒ (¬a ∪ b)) and consider a sub formula A = (¬a ∪ b) of A1. By
Fact 10, (¬a ∪ b) ≡L ((¬a ⇒ b) ⇒ b). Take B = ((¬a ⇒ b) ⇒ b) and let
B1 = A1(A/B) = A1((¬a∪ b)/((¬ ⇒ b)⇒ b)) = (a⇒ ((¬a⇒ b)⇒ b)). By the
M Equivalence Theorem 28

(a⇒ (¬a ∪ b)) ≡L (a⇒ ((¬ ⇒ b)⇒ b)).

M Equivalence of Languages

We extend now, in a natural way, the classical notion equivalence of languages
introduced and examined in section 4.

Definition 44

Given two languages: L1 = LCON1
and L2 = LCON2

, for CON1 6= CON2. We
say that they are M logically equivalent and denote it by

L1 ≡M L2

if and only if the following conditions C1, C2 hold.

C1: for any formula A of L1, there is a formula B of L2, such that A ≡M B,

C2: for any formula C of L2, there is a formula D of L1, such that C ≡M D.

Exercise 32

Prove that
L{¬,⇒} ≡L L{¬,⇒,∪}

Solution
Condition C1 holds because any formula of L{¬,⇒} is a formula of L{¬,⇒,∪}.
Condition C2 holds because the Fact 10 equivalence (A∪B)≡L((A⇒ B)⇒ B)
and the Theorem 28.

7 Homework Problems

Formal Propositional Languages

For the problems below do the following.

(i) Determine which of the formulas is, and which is not a well formed formula.
Determine a formal language of L to which the formula or set of formulas
belong.

73

(ii) If a formula is correct, write what its main connective is. If it is not correct,
write the corrected formula and then write its main connective. If there
is more then one way to correct the formula, write all possible corrected
formulas.

(iii) If a formula is correct, write what it says. If it is not correct, write the
corrected formula and then write what it says.

(iv) For each of correct formula determine its degree and write down its all
sub-formulas of the degree 0 and 1.

Problems

1. ((a ↑ b) ↑ (a ↑ b) ↑ a)

2. (a⇒ ¬b)⇒ ¬a

3. ♦(a⇒ ¬b) ∪ a, ♦(a⇒ (¬b ∪ a), ♦a⇒ ¬b ∪ a

4. (�¬♦a⇒ ¬a), �(¬♦a⇒ ¬a), �¬♦(a⇒ ¬a)

5. ((a ∪ ¬K¬a)), KK(b⇒ ¬a), ¬K(a ∪ ¬a)

6. (B(a ∩ b)⇒ Ka), B((a ∩ b)⇒ Ka)

7. G(a⇒ b)⇒ Ga⇒ Gb), a⇒ HFa, FFa⇒ Fa

8. (a⇒ ((¬b⇒ (¬a ∪ c))⇒ ¬a))

9. ♦((a ∩ ¬a)⇒ (a ∩ b))

10. �¬♦(a⇒ ¬a)

11. ♦(♦a⇒ (¬b ∪ ♦a))

12. (¬(a ∩ b) ∪ a)

13. Write the natural language statement:

From the fact that it is not necessary that an elephant is not a bird we
deduce that:
it is not possible that an elephant is a bird or, if it is possible that an
elephant is a bird, then it is not necessary that a bird flies.

in the following two ways.

1. As a formula A1 ∈ F1 of a language L{¬,C,I,∩,∪,⇒}.

2. As a formula A2 ∈ F2 of a language L{¬,∩,∪,⇒}.

74

14. Write the natural language statement

If it is not believed that quiz is easy or quiz is not easy, then from the fact
that 2 + 2 = 5 we deduce that it is believed that quiz is easy.

in the following two ways.

1. As a formula A1 of a language L1 = L{¬,B,∩,∪,⇒}, where B is a believe
connective. Statement BA says: It is believed that A.

2. As a formula A2 of a language L2 = L{¬,∩,∪,⇒}.

Formal Classical Semantics

1. Find and prove definability formula defining implication in terms of con-
junction and negation.

2. Find and prove definability formula defining conjunction in terms of dis-
junction and negation.

3. Find and prove definability formula defining conjunction in terms of im-
plication and negation.

4. Prove that ∪ can be defined in terms of ⇒ alone.

5. Find and prove definability formula defining ⇒ in terms of ↑.

6. Find definability formula defining ⇒ in terms of ↓.

7. Define ∩ in terms of ⇒ and ¬.

8. Find definability formula defining ∩ in terms of ↓ alone.

9. Given a formula A: (((a ∩ b) ∪ ¬c)⇒ b). Evaluate (do not use shorthand
notation) v∗(A) for truth assignments v : V AR −→ {T, F} such that

(i)v(a) = T, v(b) = F, v(c) = F, v(x) = T for all x ∈ V AR− {a, b, c},
(ii)v(a) = F, v(b) = T, v(c) = T, v(x) = F for all x ∈ V AR− {a, b, c}.

10. Given a formula A: (((a ⇒ ¬b) ∪ b) ⇒ a). Evaluate (use shorthand
notation) v∗(A) for all truth assignments restricted to A.

11. Given a formula A: (((a ↓ ¬b) ∪ b) ↑ a). Evaluate (do not use shorthand
notation) v∗(A) for truth assignments v : V AR −→ {T, F} such that

(i) v(a)=T, v(b)=F, v(c) =F for all c ∈ V AR− {a, b},
(ii) v(a)=F, v(b)=T, v(c) =T for all c ∈ V AR− {a, b}.
(iii) List all restricted models and counter-models for A.

75

Write the following natural language statement From the fact that it is
possible that 2+2 6= 4 we deduce that it is not possible that 2+2 6= 4 or, if
it is possible that 2 + 2 6= 4, then it is not necessary that you go to school.
as a formula . A ∈ F of a language L = L{¬,∩,∪,⇒}.
(i) Find a restricted model v for the formula A.

(ii) Find 3 models w of A such that v∗(A) = w∗(A) the for v from (i).
How many of such models exist?

(iii) Find all models, counter-models (restricted) for A. Use shorthand
notation.

(iv) Is A ∈C?, is A2 ∈T? Justify your answers.

12. Given v : V AR −→ {T, F} such that v∗((¬a ∪ b) ⇒ (a ⇒ ¬c)) = F .
Evaluate: v∗(((b⇒ a)⇒ (a⇒ ¬c)) ∪ (a⇒ b)).

13. Show that all of the truth assignments v1, v2, v3 defined below are models
for the formula A : ((a ∩ ¬b) ∪ ¬c).
v1 : V AR −→ {T, F}, is such that v1(a) = T, v1(b) = F, v1(c) = T,
and v1(x) = F , for all x ∈ V AR− {a, b, c};
v2 : V AR −→ {T, F} is such that v2(a) = T, v2(b) = F, v2(c) = T,
v2(d) = T, and v2(x) = F for all x ∈ V AR− {a, b, c, d};
v3 : V AR −→ {T, F} is such that v3(a) = T, v3(b) = F, v3(c) = T,
v3(d) = T, v3(e) = T , and v3(x) = F , for all x ∈ V AR− {a, b, c, d, e}.

14. Prove that for any formula A ∈ F , if A has a model (counter- model),
then it has uncountably many models (counter-models). More precisely,
as many as there are real numbers. Hint Use the Counting Functions
Theorem 4.

15. Use Generalization Method to determine whether

|= (¬((a ∪ b)⇒ ((c⇒ d) ∪ e))⇒ ((a ∪ b) ∩ (¬(c⇒ d) ∩ ¬e))).

16. Prove |= (¬((a ∪ b)⇒ (c⇒ d))⇒ (¬((a ∪ b)⇒ (c⇒ d))⇒ (¬e ∩ a))).

17. Use Proof by Contradiction Method to determine whether

|= (((A⇒ (B ⇒ C)) ∩ (A⇒ B))⇒ (A⇒ C)).

18. Use Truth Table and Substitution Methods to prove |= (¬¬A⇔ A).

19. Use Truth Table and Substitution Methods to prove to prove the Reductio
ad Absurdum tautology ((¬A⇒ (B ∩ ¬B))⇒ A).

20. Use Proof by Contradiction Method to prove the Exportation and Impor-
tation tautology (((A ∩B)⇒ C)⇔ (A⇒ (B ⇒ C))).

21. For the formulas listed below determine whether they are tautologies or
not. If a formula is not a tautology list its counter-model (restricted). Use
shorthand notation.

76

(i) A1 = (¬(a⇒ (b ∩ ¬c))⇒ (a ∩ ¬(b ∩ ¬c)))
(ii) A2 = ((a ∩ ¬b)⇒ ((c ∩ ¬d)⇒ (a ∩ ¬b)))
(iii) A3 = (¬(A ∩ ¬B) ∪ (A ∩ ¬B))

22. Find all models and a counter-model restricted to G (if exist) for the
following sets G of formulas. Use shorthand notation.

(i) S1 = {a, (a ∩ ¬b), (¬a⇒ (a ∪ b))}
(ii) S2 = {(a⇒ b), (c ∩ ¬a), b}
(iii) S3 = {a, (a ∩ ¬b),¬a, c}

23. Give an example of an infinite set G ⊆ F , such that G 6= T and G has a
model, i.e. is consistent.

24. Give an example of an infinite consistent set G ⊆ F , such that G ∩T = ∅.

25. Give an example of an infinite set G ⊆ F , such that G 6= C and G does
not have a model, i.e.is inconsistent.

26. Give an example of an infinite set G ⊆ F , such that G ∩C = ∅.

27. Find an infinite number of formulas that are independent from a set
G = {(a⇒ (a ∪ b)), (a ∪ b), ¬b, (c⇒ b)}. Use shorthand notation.

28. Given an infinite set G = {(a ∪ ¬a) : a ∈ V AR}. Find 3 formulas A ∈ F
that are independent from G.

29. Give an example of an infinite set G and an infinite set of formulas inde-
pendent from it.

Equivalence of Languages

1. Prove that L{∩,¬} ≡ L{∪,¬}.

2. Transform a formula A = ¬(¬(¬a ∩ ¬b) ∩ a) of L{∩,¬} into a logically
equivalent formula B of L{∪,¬}.

3. Transform a formula A = (((¬a ∪ ¬b) ∪ a) ∪ (a ∪ ¬c)) of L{∪,¬} into a
formula B of L{∩,¬}, such that A ≡ B.

4. Prove, using proper logical equivalences (list them at each step) that

(i) ¬(A⇔ B) ≡ ((A ∩ ¬B) ∪ (¬A ∩B)).

(ii) ((B ∩ ¬C)⇒ (¬A ∪B)) ≡ ((B ⇒ C) ∪ (A⇒ B)).

5. Prove that L{¬,∩} ≡ L{¬,⇒}.

6. Prove by using proper logical equivalences that

(i) ¬(¬A ∪ ¬(B ⇒ ¬C)) ≡ (A ∩ ¬(B ∩ C)),

(ii) (¬A ∩ (¬A ∪B)) ≡ (¬A ∪ (¬A ∩B)).

77

7. Prove that L{∩,∪.¬} ≡ L{⇒,¬}.

8. Prove that L{∩,∪,⇒,¬} ≡ L{∪,¬}.

9. (i) Transform a formula A = (((a∪¬b)⇒ a)∩ (¬a⇒ ¬b)) of L{∩,∪,⇒,¬}
into a logically equivalent formula B of L{∪,¬}.
(ii) Find all B of L{∪,¬}, such that B ≡ A, for A from (i).

10. (i) Transform a formula A = (((¬a ∪ ¬b) ∪ a) ∪ (a ∪ ¬c)) of L{∪,¬} into
a formula B of L{∩,∪,⇒,¬}, such that A ≡ B.

(ii) Find all B of L{∩,∪,⇒,¬}, such that B ≡ A, for A from (i)

11. Prove taht L{∩,∪,⇒,¬} ≡ L{↑}.

12. Prove that L{∩,∪,⇒,¬} ≡ L{ ↓}.

13. Prove that L{↑} = L{ ↓}.

Many Valued Semantics

1. In all 3-valued semantics presented here we chose the language without
the equivalence connective ”⇔”. Extend t L, L4 semantics to a language
containing the equivalence connective. Prove that your semantics is well
defined as by definition 14.

2. Extend H, K, semantics to a language containing the equivalence connec-
tive. Are your semantics well defined as by definition 14?

3. Extend B, semantics to a language containing the equivalence connective.
Are your semantics well defined as by definition 14?

4. Let v : V AR −→ {F,⊥, T} be any v, such that v∗((a∪ b)⇒ (a⇒ c)) =⊥
under H semantics. Evaluate v∗(((b⇒ a)⇒ (a⇒ ¬c)) ∪ (a⇒ b)).

5. Verify which of the classical tautologies (10) are, and which are not L
tautologies.

6. Verify which of the classical tautologies (11) are, and which are not L
tautologies.

7. Give an example of 3 formulas

8. For each of 3-valued logic semantics presented in this chapter, find 5 clas-
sical tautologies that are tautologies of that logic.

9. Examine the notion of definability of connectives as defined in section 3,
definition 16 for L semantics. semantics.

10. Examine the notion of definability of connectives as defined in section 3,
definition 16 for H semantics. semantics.

78

11. Given a set G = {((a∩ b)⇒ b), (a∪ b), a}. Verify whether G is consistent
under H semantics.

12. Given a set G = {((a∩ b)⇒ b), (a∪ b), a}. Verify whether G is consistent
under L semantics.

13. Given a language L{¬,⇒,∪,∩}. We define: A formula A ∈ F is called M
independent from a set G ⊆ F if and only if the sets G ∪ {A} and
G ∪ {¬A} are both M consistent. I.e. when there are truth assignments
v1, v2 such that v1|=M G ∪ {A} and v2|=M G ∪ {¬A}.
Given a set G = {((a ∩ b)⇒ b), (a ∪ b), a}.
(i) Find a formula A that is L independent from a set G.

(ii) Find a formula A that is H independent from a set G.

(iii) Find an infinite number of that are L independent from a set G.

(iv) Find an infinite number of that are H independent from a set G.

14. By exercise 31 the classical logical equivalence (A ∪B) ≡ (¬A⇒ A) does
not hold under L semantics, i.e. that there are formulas A, B, such that
(A∪B) 6≡L (¬A⇒ B). Show 3 formulas A,B such that it does hold for L
semantics, i.e. such that are formulas A, B, such that (A∪B) ≡L (¬A⇒
B).

79

