cse371/mat371 LOGIC

Professor Anita Wasilewska

LECTURE 5 SHORT

Chapter 5
 HILBERT PROOF SYSTEMS: Completeness of Classical Propositional Logic

PART 1: Hilbert Proof System H_{1}, Deduction Theorem and examples of formal proofs
PART 2: System H_{2} and Completeness Theorem for Classical Propositional Logic
PART 3: Examples of Complete Proof Systems for Classical Propositional Logic

Hilbert Proof Systems

Hilbert proof systems are based on a language with implication and contain Modus Ponens as a rule of inference

Modus Ponens is probably the oldest of all known rules of inference as it was already known to the Stoics in
3rd century B.C. and is also considered as the most natural to our intuitive thinking

The proof systems containing Modus Ponens as the inference rule play a special role in logic.

Hilbert Proof Systems

Hilbert systems put major emphasis on logical axioms and keep the number of rules of inference at the minimum
Hilbert systems often admit the Modus Ponens as the sole rule of inference

There are many proof systems that describe classical propositional logic, i.e. that are complete with respect to the classical semantics

We present a Hilbert proof system for the classical propositional logic and discuss two ways of proving the Completeness Theorem for it

Hilbert Proof Systems

The first proof is based on the one included in Elliott
Mendelson's book Introduction to Mathematical Logic
It is is a constructive proof that shows how one can use the assumption that a formula A is a tautology in order to
construct its formal proof

The second proof is non-constructive
Its importance lies in a fact that the methods it uses can be applied to the proof of completeness for classical predicate logic (chapter 9)

It also generalizes to some non-classical logics

Hilbert Proof Systems

We prove completeness part of the Completeness Theorem by proving the converse implication to it

We show how one can deduce that a formula A is not a tautology from the fact that it does not have a proof

It is hence called a counter-model construction proof

Both proofs relay on the Deduction Theorem and so this is the first theorem we are now going to prove

Hilbert Proof System H_{1}

We consider now a Hilbert proof system H_{1} based on a this is language with implication as the only connective, with two logical axioms, and with Modus Ponens as a sole rule of inference

Hilbert Proof System H_{1}

We define Hilbert system H_{1} as follows

$$
H_{1}=\left(\mathcal{L}_{\{\Leftrightarrow\}}, \mathcal{F},\{A 1, A 2\}, M P\right)
$$

A1 (Law of simplification)

$$
(A \Rightarrow(B \Rightarrow A))
$$

A2 (Frege's Law)

$$
((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))
$$

MP is the Modus Ponens rule

$$
(M P) \frac{A ;(A \Rightarrow B)}{B}
$$

where A, B, C are any formulas from \mathcal{F}

Formal Proofs in H_{1}

Finding formal proofs in this system requires some ingenuity. The formal proof of $(A \Rightarrow A)$ in H_{1} is a sequence

$$
B_{1}, B_{2}, B_{3}, B_{4}, B_{5}
$$

as defined below.
$B_{1}:((A \Rightarrow((A \Rightarrow A) \Rightarrow A)) \Rightarrow((A \Rightarrow(A \Rightarrow A)) \Rightarrow(A \Rightarrow A)))$,
axiom A2 for $A=A, B=(A \Rightarrow A)$, and $C=A$
$B_{2}:(A \Rightarrow((A \Rightarrow A) \Rightarrow A))$,
axiom A1 for $A=A, B=(A \Rightarrow A)$
$\left.B_{3}:((A \Rightarrow(A \Rightarrow A)) \Rightarrow(A \Rightarrow A))\right)$,
MP application to B_{1} and B_{2}
$B_{4}:(A \Rightarrow(A \Rightarrow A))$,
axiom A1 for $A=A, B=A$
$B_{5}:(A \Rightarrow A)$
MP application to B_{3} and B_{4}

Searching for Proofs in a Proof System

A general procedure for automated search for proofs in
a proof system S can be stated is as follows
Let B be an expression of the system S that is not an axiom
If B has a proof in S, B must be the conclusion of one of the inference rules
Let's say it is a rule r
We find all its premisses, i.e. we evaluate $r^{-1}(B)$
If all premisses are axioms, the proof is found
Otherwise we repeat the procedure for any premiss that
is not an axiom

Search for Proof by the Means of MP

The MP rule says:
given two formulas A and $(A \Rightarrow B)$ we conclude a formula B

Assume now that and want to find a proof of a formula B If B is an axiom, we have the proof; the formula itself If B is not an axiom, it had to be obtained by the application of the Modus Ponens rule to certain two formulas A and $(A \Rightarrow B)$ and there is infinitely many of such formulas!

The proof system H_{1} is not syntactically decidable

Semantic Links

Semantic Link 1

System H_{1} is sound under classical semantics and H_{1} is not sound under \mathbf{K} semantics

Soundness Theorem for H_{1}

For any $A \in \mathcal{F}$, if $\quad \vdash_{H_{1}} A$, then $\models A$

Semantic Links

Semantic Link 2

The system H_{1} is not complete under classical semantics
Not all classical tautologies have a proof in H_{1}

We proved that can't define negation in term of implication alone and so for example, a basic tautology $(\neg \neg A \Rightarrow A)$ is not provable in H_{1}, i.e.

$$
\Vdash_{H_{1}}(\neg \neg A \Rightarrow A)
$$

Proof from Hypothesis

Given a proof system $S=(\mathcal{L}, \mathcal{E}, L A, \mathcal{R})$
While proving expressions we often use some extra
information available, besides the axioms of the proof system
This extra information is called hypothesis in the proof

Let $\Gamma \subseteq \mathcal{E}$ be any set expressions called hypothesis

We write \quad トs E to denote that
" E has a proof in S from the set Γ and the logical axioms LA"

Formal Definition

Definition

We say that $E \in \mathcal{E}$ has a formal proof in S from the set 「 and the logical axioms LA and denote it as $\Gamma \vdash s E$ if and only if there is a sequence

$$
A_{1}, \ldots, A_{n}
$$

of expressions from \mathcal{E}, such that

$$
A_{1} \in L A \cup \Gamma, \quad A_{n}=E
$$

and for each $1<i \leq n$, either $A_{i} \in L A \cup \Gamma$ or A_{i} is a direct consequence of some of the preceding expressions by virtue of one of the rules of inference of S

Deduction Theorem for H_{1}

Deduction Theorem for H_{1}

For any $A, B \in \mathcal{F}$ and $\Gamma \subseteq \mathcal{F}$

$$
\Gamma, A \vdash_{H_{1}} B \quad \text { if and only if } \quad \Gamma \vdash_{H_{1}}(A \Rightarrow B)
$$

In particular

$$
A \vdash_{H_{1}} B \quad \text { if and only if } \quad \vdash_{H_{1}}(A \Rightarrow B)
$$

Formal Proofs

The proof of the following Lemma provides a good example of multiple applications of the Deduction Theorem

Lemma

For any $A, B, C \in \mathcal{F}$,
(a) $(A \Rightarrow B),(B \Rightarrow C) \vdash \vdash_{H_{1}}(A \Rightarrow C)$,
(b) $(A \Rightarrow(B \Rightarrow C)) \vdash_{H_{1}}(B \Rightarrow(A \Rightarrow C))$

Observe that by Deduction Theorem we can re-write (a) as
(a') $(A \Rightarrow B),(B \Rightarrow C), A \vdash_{H_{1}} C$

Formal Proofs

Poof of (a')
We construct a formal proof

$$
B_{1}, B_{2}, B_{3}, B_{4}, B_{5}
$$

of $\quad(A \Rightarrow B),(B \Rightarrow C), A \vdash_{H_{1}} C$ as follows.
$B_{1}: \quad(A \Rightarrow B)$
hypothesis
B_{2} : $\quad(B \Rightarrow C)$
hypothesis
B_{3} : A
hypothesis
B_{4} : B
B_{1}, B_{3} and MP
B_{5} : $\quad C$
B_{2}, B_{4} and MP

Formal Proofs

Thus we proved by Deduction Theorem that (a) holds, i.e.

$$
(A \Rightarrow B),(B \Rightarrow C) \vdash \vdash_{H_{1}}(A \Rightarrow C)
$$

Proof of Lemma part (b)
By Deduction Theorem we have that

$$
\begin{aligned}
& (A \Rightarrow(B \Rightarrow C)) \vdash_{H_{1}}(B \Rightarrow(A \Rightarrow C)) \\
& \text { if and only if } \\
& \quad(A \Rightarrow(B \Rightarrow C)), B \vdash H_{1}(A \Rightarrow C)
\end{aligned}
$$

Formal Proof

Here is a simple proof of Lemma part (b)
We apply the Deduction Theorem twice, i.e. we get

$$
(A \Rightarrow(B \Rightarrow C)) \vdash_{H_{1}}(B \Rightarrow(A \Rightarrow C))
$$

if and only if

$$
(A \Rightarrow(B \Rightarrow C)), B \vdash \vdash_{H_{1}}(A \Rightarrow C)
$$

if and only if

$$
(A \Rightarrow(B \Rightarrow C)), B, A \vdash_{H_{1}} C
$$

Simple Proof

We now construct a proof of $(A \Rightarrow(B \Rightarrow C)), B, A \vdash H_{1} C$ as follows
$B_{1}: \quad(A \Rightarrow(B \Rightarrow C))$
hypothesis
B_{2} : B
hypothesis
B_{3} : A
hypothesis
$B_{4}: \quad(B \Rightarrow C)$
B_{1}, B_{3} and (MP)
B_{5} : C
B_{2}, B_{4} and (MP)

Classical Propositional Proof System H_{2}

Hilbert System H_{2}

The proof system H_{1} is sound and strong enough to prove the Deduction Theorem, but it is not complete
We extend now its language and the set of logical axioms to a complete set of axioms

We define a system H_{2} that is complete with respect to the classical semantics

The proof of completeness theorem is be presented in the next chapter.

Hilbert System H_{2} Definition

Definition

$$
H_{2}=\left(\mathcal{L}_{\{\Rightarrow, \neg\}}, \mathcal{F},\{A 1, A 2, A 3\}(M P)\right)
$$

A1 (Law of simplification)
$(A \Rightarrow(B \Rightarrow A))$
A2 (Frege's Law)
$((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))$
A3 $\quad((\neg B \Rightarrow \neg A) \Rightarrow((\neg B \Rightarrow A) \Rightarrow B)))$
MP (Rule of inference)

$$
(M P) \frac{A ;(A \Rightarrow B)}{B}
$$

where A, B, C are any formulas of the propositional language $\mathcal{L}_{\{\Rightarrow,\urcorner\}}$

Deduction Theorem for System H_{2}

Observation 1
The proof system H_{2} is obtained by adding axiom A_{3} to the system H_{1}
Observation 2
The language of H_{2} is obtained by adding the connective \neg to the language of H_{1}
Observation 3
The use of axioms A1, A2 in the proof of Deduction
Theorem for the system H_{1} is independent of the connective
\neg added to the language of H_{1}
Observation 4
Hence the proof of the Deduction Theorem for the system H_{1} can be repeated as it is for the system H_{2}

Deduction Theorem for System H_{2}

Observations 1-4 prove that he Deduction Theorem holds for system H_{2}

Deduction Theorem for H_{2}
For any $\Gamma \subseteq \mathcal{F}$ and $A, B \in \mathcal{F}$

$$
\Gamma, A \vdash_{H_{2}} B \text { if and only if } \Gamma \vdash_{H_{2}}(A \Rightarrow B)
$$

In particular

$$
A \vdash_{H_{2}} B \text { if and only if } \vdash_{H_{2}}(A \Rightarrow B)
$$

Soundness and CompletenessTheorems

We get by easy verification

Soundness Theorem H_{2}

For every formula $A \in \mathcal{F}$

$$
\text { if } \vdash_{H_{2}} A \text { then } \models A
$$

We prove in the next Lecture, that H_{2} is also complete, i.e. we prove
Completeness Theorem for H_{2}
For every formula $A \in \mathcal{F}$,

$$
\vdash_{\mathrm{H}_{2}} A \text { if and only if } \models A
$$

CompletenessTheorems

The proof of completeness theorem (for a given semantics) is always a main point in creation of any new logic

There are many techniques to prove it, depending on the proof system, and on the semantics we define for it

We present in Lecture 5a and Lecture 5b two proofs of the Completeness Theorem for the system H_{2}
These proofs use very different techniques, hence the reason of presenting both of them

Hilbert Proof Systems
 Completeness of Classical Propositional Logic

PART 3: Some other Complete Axiomatizations for Classical Propositional Logic

Some Other Axiomatizations

We present here some of the most known, and historically important axiomatizations of classical propositional logic

It means the Hilbert proof systems that are proven to be complete under classical semantics

Lukasiewicz

Lukasiewicz (1929)

The Lukasiewicz proof system (axiomatization) is

$$
L=\left(\mathcal{L}_{\{\neg, \Rightarrow\}}, \mathcal{F}, A 1, A 2, A 3, M P\right)
$$

where
A1 $\quad((\neg A \Rightarrow A) \Rightarrow A)$
A2 $(A \Rightarrow(\neg A \Rightarrow B))$
A3 $\quad((A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))))$
for any formulas $A, B, C \in \mathcal{F}$

Hilbert and Ackermann

Hilbert and Ackermann (1928)

$$
H A=\left(\mathcal{L}_{\{\uparrow, U\}}, \mathcal{F}, A 1-A 4, \quad M P\right)
$$

where for any $A, B, C \in \mathcal{F}$
A1 $(\neg(A \cup A) \cup A)$
A2 $(\neg A \cup(A \cup B))$
A3 $(\neg(A \cup B) \cup(B \cup A))$
A4 $\quad(\neg(\neg B \cup C) \cup(\neg(A \cup B) \cup(A \cup C)))$
The Modus Ponens rule in the language $\mathcal{L}_{\{\neg, \mathrm{U}\}}$ has a form

$$
M P \frac{A ;(\neg A \cup B)}{B}
$$

Hilbert and Ackermann

Observe that also the Deduction Theorem is now formulated as follow.

Deduction Theorem for HA

For any subset Γ of the set of formulas \mathcal{F} of $H A$ and for any formulas $A, B \in \mathcal{F}$,

$$
\Gamma, A \vdash \text { HA } B \quad \text { if and only if } \quad \Gamma \vdash н A(\neg A \cup B)
$$

In particular,

$$
A \text { เнА } B \quad \text { if and only if } \quad \vdash \text { нн }(\neg A \cup B)
$$

Hilbert

Hilbert (1928)

$$
H=\left(\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}, \mathcal{F}, A 1-A 15, M P\right)
$$

where for any $A, B, C \in \mathcal{F}$
A1 $(A \Rightarrow A)$
A2 $(A \Rightarrow(B \Rightarrow A))$
A3 $\quad((A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C)))$
A4 $\quad((A \Rightarrow(A \Rightarrow B)) \Rightarrow(A \Rightarrow B))$
A5 $((A \Rightarrow(B \Rightarrow C)) \Rightarrow(B \Rightarrow(A \Rightarrow C)))$
A6 $\quad((A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C)))$
A7 $\quad((A \cap B) \Rightarrow A)$
A8 $\quad((A \cap B) \Rightarrow B)$

Hilbert

$$
\begin{aligned}
& \text { A9 } \quad((A \Rightarrow B) \Rightarrow((A \Rightarrow C) \Rightarrow(A \Rightarrow(B \cap C))) \\
& \text { A10 } \quad(A \Rightarrow(A \cup B)) \\
& \text { A11 } \quad(B \Rightarrow(A \cup B)) \\
& \text { A12 } \quad((A \Rightarrow C) \Rightarrow((B \Rightarrow C) \Rightarrow((A \cup B) \Rightarrow C))) \\
& \text { A13 } \quad((A \Rightarrow B) \Rightarrow((A \Rightarrow \neg B) \Rightarrow \neg A)) \\
& \text { A14 } \quad(\neg A \Rightarrow(A \Rightarrow B))
\end{aligned}
$$

A1-A14 are the axioms Hilbert proposed and were accepted as axioms defining Intuitionistic logic
They were later proved to be complete when the intuitionistic semantics was discovered

Hilbert obtained his classical axiomatization by adding as the last axiom the excluded middle law rejected by intuitionists A15 $(A \cup \neg A)$

Kleene

Kleene (1952)

$$
K=\left(\mathcal{L}_{\{\uparrow, \mathrm{U}, \mathrm{\cap}, \Rightarrow\}}, \mathcal{F}, A 1-A 10, M P\right)
$$

where for any $A, B, C \in \mathcal{F}$
A1 $\quad(A \Rightarrow(B \Rightarrow A))$
A2 $((A \Rightarrow(B \Rightarrow C)) \Rightarrow(B \Rightarrow(A \Rightarrow C)))$
A3 $\quad((A \cap B) \Rightarrow A)$
A4 $\quad((A \cap B) \Rightarrow B)$
A5 $(A \Rightarrow(B \Rightarrow(A \cap B)))$

Kleene

A6 $(A \Rightarrow(A \cup B))$
A7 $\quad(B \Rightarrow(A \cup B))$
A8 $\quad((A \Rightarrow C) \Rightarrow((B \Rightarrow C) \Rightarrow((A \cup B) \Rightarrow C)))$
A9 $\quad((A \Rightarrow B) \Rightarrow((A \Rightarrow \neg B) \Rightarrow \neg A))$
A10 $(\neg \neg A \Rightarrow A)$

Kleene proved that when A 10 is replaced by
A10' $\quad(\neg A \Rightarrow(A \Rightarrow B))$
the resulting system is a complete axiomatization of Intuitionistic Logic

Rasiowa-Sikorski

Rasiowa-Sikorski (1950)

$$
R S=\left(\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}, \mathcal{F}, A 1-A 12, M P\right)
$$

where for any $A, B, C \in \mathcal{F}$
A1 $\quad((A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C)))$
A2 $(A \Rightarrow(A \cup B))$
A3 $(B \Rightarrow(A \cup B))$
A4 $((A \Rightarrow C) \Rightarrow((B \Rightarrow C) \Rightarrow((A \cup B) \Rightarrow C)))$

Rasiowa-Sikorski

A5 $\quad((A \cap B) \Rightarrow A)$
A6 $\quad((A \cap B) \Rightarrow B)$
A7 $\quad((C \Rightarrow A) \Rightarrow((C \Rightarrow B) \Rightarrow(C \Rightarrow(A \cap B)))$
A8 $\quad((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \cap B) \Rightarrow C))$
A9 $\quad(((A \cap B) \Rightarrow C) \Rightarrow(A \Rightarrow(B \Rightarrow C))$
A10 $(A \cap \neg A) \Rightarrow B)$
A11 $((A \Rightarrow(A \cap \neg A)) \Rightarrow \neg A)$
A12 $(A \cup \neg A)$

Rasiowa-Sikorski

Rasiowa - Sikorski proved A1-A11 to be a complete axiomatization for the Intuitionistic Logic

They obtained the classical axiomatization by adding A12, the excluded middle law rejected by intuitionists, as Hilbert did

Both classical and intuitionistic completeness proofs were carried under respective Boolean and Pseudo-Boolean algebras semantics what is reflected in the choice of axioms A1-A12

Shortest Axiomatizations

Here is the shortest axiomatization for the language

$$
\mathcal{L}_{\{\neg, \Rightarrow\}}
$$

It contains just one axiom
Meredith (1953)

$$
M=\left(\mathcal{L}_{\{\neg, \Rightarrow\}}, \mathcal{F}, A 1 M P\right)
$$

where
A1 $\quad(((((A \Rightarrow B) \Rightarrow(\neg C \Rightarrow \neg D)) \Rightarrow C) \Rightarrow E)) \Rightarrow((E \Rightarrow$
$A) \Rightarrow(D \Rightarrow A)))$

Shortest Axiomatizations

Here is another axiomatization that uses only one axiom Jean Nicod (1917)

$$
N=\left(\mathcal{L}_{\{\uparrow\}}, \mathcal{F}, A 1,(r)\right)
$$

where
A1 $\quad(((A \uparrow(B \uparrow C)) \uparrow((D \uparrow(D \uparrow D)) \uparrow((E \uparrow B) \uparrow((A \uparrow$
$E) \uparrow(A \uparrow E))))))$
and

$$
(r) \frac{A \uparrow(B \uparrow C)}{A}
$$

Reminder

We have proved in chapter 3 that

$$
\mathcal{L}_{\{\uparrow, \cup, \cap, \Rightarrow\}} \equiv \mathcal{L}_{\{\uparrow\}}
$$

