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Chapter 4
GENERAL PROOF SYSTEMS

PART 1: General Intoduction; Soundness and Completeness

PART 2: Formal Definition of a Proof System

PART 3: Formal Proofs and Simple Examples



PART 1: General Introduction



Proof Systems - Intuitive Definition

Proof systems are built to prove, it means to construct

formal proofs of statements formulated in a given language

First component of any proof system is hence its

formal language L

Proof systems are inference machines with statements

called provable statements being their final products



Semantical Link

The starting points of the inference machine of a proof
system S are called its axioms

We distinguish two kinds of axioms: logical axioms LA
and specific axioms SA

Semantical link: we usually build a proof systems for a
given language and its semantics i.e. for

a logic defined semantically



Semantical Link

We always choose as a set of logical axioms LA some
subset of tautologies, under a given semantics

We will consider here only proof systems with finite sets of
logical or specific axioms , i.e we will examine only finitely
axiomatizable proof systems



Semantical Link

We can, and we often do, consider proof systems with
languages without yet established semantics

In this case the logical axioms LA serve as description of
tautologies under a future semantics yet to be built

Logical axioms LA of a proof system S are hence not only
tautologies under an established semantics, but they can
also guide us how to define a semantics when it is yet
unknown



Specific Axioms

The specific axioms SA consist of statements that
describe a specific knowledge of an universe we want to use
the proof system S to prove facts about

Specific axioms SA are not universally true

Specific axioms SA are true only in the universe we are
interested to describe and investigate by the use of the
proof system S



Formal Theory

Given a proof system S with logical axioms LA

Specific axioms SA of the proof system S is any finite set of
formulas that are not tautologies, and hence they are always
disjoint with the set of logical axioms LA of S

The proof system S with added set of specific axioms SA
is called a formal theory based on S



Inference Machine

The inference machine of a proof system S is defined by a
finite set of inference rules

The inference rules describe the way we are allowed to
transform the information within the system with axioms as
a staring point

We depict it informally on the next slide



Inference Machine

AXIOMS

↓ ↓ ↓

RULES applied to AXIOMS

↓ ↓ ↓

RULES applied to any expressions above

↓ ↓ ↓

Provable formulas



Semantical Link

Semantical link:

Rules of inference of a system S have to preserve the
truthfulness of what they are being used to prove

The notion of truthfulness is always defined by a given
semantics M

Rules of inference that preserve the truthfulness are called
sound rules under a given semantics M

Rules of inference can be sound under one semantics and
not sound under another



Soundness Theorem

Goal 1

When developing a proof system S the first goal is prove the
following theorem about it and its semantics M

Soundness Theorem

For any formula A of the language of the system S

If a formula A is provable from logical axioms LA of S only,

then A is a tautology under the semantics M



Propositional Proof Systems

We discuss here first only proof systems for propositional
languages and call them proof systems for different
propositional logics

Remember

The notion of soundness is connected with a given
semantics

A proof system S can be sound under one semantics, and
not sound under the other

For example a set of axioms and rules sound under classical
logic semantics might not be sound under Ł logic semantics,
or K logic semantics, or others



Completeness of the Proof Systems

In general there are many proof systems that are sound
under a given semantics, i.e. there are many sound proof
systems for a given logic semantically defined

Given a proof system S with logical axioms LA that is
sound under a semantics M.

Notation

Denote by TM the set of all tautologies defined by the
semantics M, i.e. we have that

TM = {A ∈ F : |=M A }



Completeness Property

A natural question arises:

Are all tautologies i.e formulas A ∈ TM provable in the
system S ??

We assume that we have already proved that S is sound
under the semantics M

The positive answer to this question is called completeness
property of the system S .



Completeness Theorem

Goal 2

Given for a sound proof system S under its semantics M, our
the second goal is to prove the following theorem about S

Completeness Theorem

For any formula A of the language of S

A is provable in S iff A is a tautology under the
semantics M

We write the Completeness Theorem symbolically as

`S A iff |=M A

Completeness Theorem is composed of two parts:

Soundness Theorem and the Completeness Part that
proves the completeness property of a sound proof system



Proving Soundness and Completeness

Proving the Soundness Theorem for S under a semantics M
is usually a straightforward and not a very difficult task

We first prove that all logical axioms LA are tautologies,

and then we prove that all inference rules of the system S
preserve the notion of the truth

Proving the completeness part of the Completeness
Theorem is always a crucial, difficult and sometimes
impossible task



BOOK PLAN

We present two proofs of the Completeness Theorem for
classical propositional proof system in Chapter 5

We also present a constructive proofs of Completeness
Theorem for two different Gentzen style automated theorem
proving systems for classical Logic in Chapter 6

We discuss the Inuitionistic Logic in Chapter 7

Predicate Logics proof of the Completeness Theorems
and Automated Theorem proving systems,Iand Goedel
Theorems Chapters 8, 9, 10, 11



PART 2
PROOF SYSTEMS: Formal Definitions



Proof System S

In this section we present formal definitions of the following
notions

Proof system S

Formal proof from logical axioms in a proof system S

Formal proof from specific axioms in a proof system S

Formal Theory based on a proof system S

We also give examples of different simple proof systems



Components: Language

Language L of a proof system S is any formal language L

L = (A,F )

We assume as before that both sets A and F are
enumerable, i.e. we deal here with enumerable languages

The Language L can be propositional or first order

(predicate) but we discuss propositional languages first



Components: Expressions

Expressions E of a proof system S

Given a set F of well formed formulas of the language L of
the system S

We often extend the set F to some set E of expressions
build out of the language L and some extra symbols, if
needed

In this case all other components of S are also defined on
basis of elements of the set of expressions E

In particular, and most common case we have that E = F



Expressions Examples

Automated theorem proving systems usually use as their
basic components different sets of expressions build out of
formulas of the language L

In Chapters 6 and 10 we consider finite sequences of
formulas instead of formulas, as basic expressions of the
proof systems RS and RQ

We also present there proof systems that use yet other kind of
expressions, called original Gentzen sequents or their
modifications

Some systems use yet other expressions such as clauses,
sets of clauses, or sets of formulas, others use yet still
different expressions



Semantical Link

We always have to extend a given semantics M for the
language L of the system S to the set E of all expression of
the system S

Sometimes, like in case of Resolution based proof systems
we have also to prove a semantic equivalency of new
created expressions E (sets of clauses in Resolution case)
with appropriate formulas of L



Components: Logical Axioms

Logical axioms LA of S form a non-empty subset of the set
E of expressions of the proof system S, i.e.

LA ⊆ E

In particular, LA is a non-empty subset of formulas, i.e.

LA ⊆ F

We assume here that the set LA of logical axioms is always
finite , i.e. that we consider here finitely axiomatizable
systems



Components: Axioms

Semantical link
Given a semantics M for L and its extension to the set E
of all expressions
We extend the notion of tautology to the expressions and
write

|=M E

to denote that the expression E ∈ E is a tautology under
semantics M and we put

TM = {E ∈ E : |=M E}

Logical axioms LA are always a subset of expressions that
are tautologies of under the semantics M, i.e.

LA ⊆ TM



Components: Rules of Inference

Rules of inference R

We assume that a proof system contains only a finite number
of inference rules

We assume that each rule has a finite number of premisses
and one conclusion



Components: Rules of Inference

We write the inference rules in a following convenient way

One premiss rule

(r)
P1

C
Two premisses rule

(r)
P1 ; P2

C

m premisses rule

(r)
P1 ; P2 ; .... ; Pm

C



Semantic Link: Sound Rules of Inference

Given some m premisses rule

(r)
P1 ; P2 ; .... ; Pm

C
Semantical link

Given a semantics M for the language L and for the set of
expressions E

We want the rules of inference r ∈ R to preserve

truthfulness i.e. to be sound under the semantics M



Propositional Definition: Sound Rule of Inference

Definition ( Shorthand Notation)

An inference rule r ∈ R, such that

(r)
P1 ; P2 ; .... ; Pm

C

is sound under a semantics M f and only if

ifrom that assumption that P1 = T , P2 = T , .Pm = T ,

we prove C = T



Example

Given a rule of inference

(r)
(A ⇒ B)

(B ⇒ (A ⇒ B))

Prove that (r) is sound underclassical semantics

Assume that A ⇒ B) = T

We evaluate logical value of the conclusion as follows

(B ⇒ (A ⇒ B)) = B)⇒ T = T

This proves the soundness of (r)



Formal Definition: Proof System

Definition

By a proof system we understand a quadruple

S = (L,E, LA ,R)

where

L = {A,F } is a language of S with a set F of formulas

E is a set of expressions of S formed out of the set F of
formulas of L

In particular case E = F

LA ⊆ E is a non- empty, finite set of logical axioms of S

R is a non- empty, finite set of rules of inference of S



PART 3: Formal Proofs
Simple Examples of Proof Systems



Provable Expressions

A final product of a single or multiple use of the inference
rules of S, with axioms taken as a starting point are called
provable expressions of the proof system S

A single use of an inference rule is called a direct
consequence

A multiple application of rules of inference with axioms taken
as a starting point is called a proof



Definition: Direct Consequence

Formal definitions are as follows

Direct consequence

For any rule of inference r ∈ R of the form

(r)
P1 ; P2 ; .... ; Pm

C

C is called a direct consequence of P1, ...Pm by virtue of
the rule r ∈ R



Definition: Formal Proof

Formal Proof of an expression E ∈ E in a proof system

S = (L,E, LA ,R)

is a sequence
A1, A2, , An for n ≥ 1

of expressions from E, such that

A1 ∈ LA , An = E

and for each 1 < i ≤ n, either Ai ∈ LA or Ai is a direct
consequence of some of the preceding expressions by
virtue of one of the rules of inference

n ≥ 1 is the length of the proof A1, A2, , An



Formal Proof Notation

We write
`S E

to denote that E ∈ E has a proof in S

When the proof system S is fixed we write ` E

Any E ∈ E, such that `S E is called a provable
expression of S

The set of all provable expressions of S is denoted by
PS , i.e. we put

PS = {E ∈ E : `S E}



Formal Proof

Given a proof system:

S = (L{¬,⇒},F , {(A ⇒ A), (A ⇒ (¬A ⇒ B))}, (r)
(A ⇒ B)

(B ⇒ (A ⇒ B))
)

Problem 3.
Write a formal proof of your choice in S with 2 applications
of the rule (r)
Solution
There many of such proofs, of different length, with different
choice if axioms - here is my choice: A1,A2,A3, where
A1 = (A ⇒ A)
(Axiom)
A2 = (A ⇒ (A ⇒ A))
Rule (r) application 1 for A = A , B = A
A3 = ((A ⇒ A)⇒ (A ⇒ (A ⇒ A)))
Rule (r) application 2 for A = A ,B = (A ⇒ A)



Formal Proof

Given a proof system:

S = (L{¬,⇒},F , {(A ⇒ A), (A ⇒ (¬A ⇒ B))}, (r)
(A ⇒ B)

(B ⇒ (A ⇒ B))
)

Problem 4

1. Prove, by constructing a formal proof that

`S ((¬A ⇒ B)⇒ (A ⇒ (¬A ⇒ B)))

Solution Required formal proof is a sequence A1,A2,
where
A1 = (A ⇒ (¬A ⇒ B))
Axiom
A2 = ((¬A ⇒ B)⇒ (A ⇒ (¬A ⇒ B)))
Rule (r) application for A = A ,B = (¬A ⇒ B)



Definition: Sound S

Definition

Given a proof system

S = (L,E, LA ,R)

We say that the system S is sound under a semantics M
iff the following conditions hold

1. LA ⊆ TM

2. Each rule of inference r ∈ R is sound



Example

Given a proof system:

S = (L{¬,⇒}, F , {(A ⇒ A), (A ⇒ (¬A ⇒ B))}, (r) (A⇒B)
(B⇒(A⇒B))

)

1. Prove that S is sound under classical semantics

2. Prove that S is not sound under K semantics



Example

1. Both axioms of S are basic classical tautologies and we
have just proved that the rule of inference (r) is sound, hence
S is sound

2. Axiom (A ⇒ A) is not a K semantics tautology

Any truth assignment v such that v∗(A) =⊥ is a
counter-model for it

This proves that S is not sound under K semantics



Soundness Theorem

Let PS be the set of all provable expressions of S i.e.

PS = {A ∈ E : `S A }

Let TM be a set of all expressions of S that are tautologies
under a semantics M, i.e.

TM = {A ∈ E : |=M A }

Soundness Theorem for S and semantics M

PS ⊆ TM

i.e. for any A ∈ E, the following implication holds

If `S A , then |=M A .

Exercise: prove by Mathematical Induction over the length of
a proof that if S is sound, the Soundness Theorem holds for S



Completeness Theorem

Completeness Theorem for S and semantics M

PS = TM

i.e. for any A ∈ E, the following holds

`S A if and only if |=M A

The Completeness Theorem consists of two parts:

Part 1: Soundness Theorem

PS ⊆ TM

Part 2: Completeness Part of the Completeness Theorem

TM ⊆ PS


