cse371/mat371 LOGIC

Professor Anita Wasilewska

LOGIC: LECTURE 4 SHORT VERSION

Chapter 4 GENERAL PROOF SYSTEMS

PART 1: General Intoduction; Soundness and CompletenessPART 2: Formal Definition of a Proof SystemPART 3: Formal Proofs and Simple Examples

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

PART 1: General Introduction

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

Proof Systems - Intuitive Definition

Proof systems are built to prove, it means to **construct formal proofs** of statements formulated in a given language

First component of any proof system is hence its formal language \mathcal{L}

Proof systems are inference machines with statements called **provable statements** being their final products

The **starting points** of the inference machine of a proof system S are called its **axioms**

We distinguish two kinds of axioms: **logical axioms** LA and **specific axioms** SA

Semantical link: we usually build a proof systems for a given language and its **semantics** i.e. for a logic defined semantically

We always choose as a set of **logical axioms** LA some **subset of tautologies**, under a given **semantics**

We will **consider here** only proof systems with **finite sets** of **logical** or **specific axioms**, i.e we will examine only **finitely axiomatizable** proof systems

We can, and we often do, consider proof systems with languages without yet established semantics

In this case the **logical axioms LA** serve as description of **tautologies** under a **future semantics** yet to be built

Logical axioms LA of a proof system S are hence not only tautologies under an established **semantics**, but they can also guide us how to define a semantics when it is yet **unknown**

Specific Axioms

The **specific axioms SA** consist of statements that describe a specific knowledge of an universe we want to use the proof system S to prove facts about

Specific axioms SA are not universally true

Specific axioms SA are true only in the universe we are interested to describe and investigate by the use of the proof system S

Formal Theory

Given a proof system S with logical axioms LA

Specific axioms SA of the proof system S is any finite set of formulas that are not **tautologies**, and hence they are always disjoint with the set of **logical axioms LA** of S

The proof system S with added set of specific axioms SA is called a formal theory based on S

Inference Machine

The **inference machine** of a proof system S is defined by a finite set of **inference rules**

The **inference rules** describe the way we are allowed to **transform** the information within the system with **axioms** as a staring point

We depict it informally on the next slide

Inference Machine

AXIOMS

 $\downarrow \downarrow \downarrow \downarrow$

RULES applied to AXIOMS

 $\downarrow \ \downarrow \ \downarrow \ \downarrow$

RULES applied to any expressions above

$\downarrow \downarrow \downarrow \downarrow$

Provable formulas

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Semantical link:

Rules of inference of a system S have to preserve the truthfulness of what they are being used to prove

The notion of truthfulness is always defined by a given semantics \mathbf{M}

Rules of inference that preserve the truthfulness are called **sound rules** under a given semantics **M**

Rules of inference can be sound under one semantics and not sound under another

Soundness Theorem

Goal 1

When developing a proof system S the first goal is prove the following theorem about it and its semantics **M**

Soundness Theorem

For any formula A of the language of the system S If a formula A is **provable** from **logical axioms** LA of S only, then A is a **tautology** under the semantics M

Propositional Proof Systems

We discuss here first only proof systems for propositional languages and call them **proof systems** for different propositional logics

Remember

The notion of **soundness** is connected with a given **semantics**

A proof system S can be sound under **one semantics**, and **not sound** under the **other**

For example a set of axioms and rules sound under classical logic semantics might not be sound under Ł logic semantics, or K logic semantics, or others

Completeness of the Proof Systems

In general there are many proof systems that are sound under a given **semantics**, i.e. there are many sound proof systems for a given **logic** semantically defined

Given a proof system S with logical axioms LA that is sound under a semantics M.

Notation

Denote by T_M the set of all tautologies defined by the semantics **M**, i.e. we have that

 $\mathbf{T}_{\mathbf{M}} = \{ \mathbf{A} \in \mathcal{F} : \models_{\mathbf{M}} \mathbf{A} \}$

Completeness Property

A natural question arises:

Are all tautologies i.e formulas $A \in T_M$ provable in the system S??

We assume that we have already proved that ${\rm S}$ is sound under the semantics ${\rm M}$

The positive answer to this question is called **completeness** property of the system S.

Completeness Theorem

Goal 2

Given for a **sound** proof system S under its semantics \mathbf{M} , our the second goal is to prove the following theorem about S

Completeness Theorem

For any formula A of the language of S

A is provable in S iff A is a tautology under the semantics M

We write the Completeness Theorem symbolically as

 $\vdash_S A$ iff $\models_M A$

Completeness Theorem is composed of two parts:

Soundness Theorem and the Completeness Part that proves the completeness property of a sound proof system **Proving** Soundness and Completeness

Proving the Soundness Theorem for S under a semantics **M** is usually a straightforward and not a very difficult task

We **first prove** that all **logical axioms** LA are **tautologies**, and then we **prove** that all **inference rules** of the system S preserve the notion of the truth

(ロ)、(同)、(E)、(E)、(E)、(O)((C)

Proving the completeness part of the **Completeness Theorem** is always a crucial, difficult and sometimes impossible task

BOOK PLAN

We present two proofs of the **Completeness Theorem** for **classical propositional** proof system in **Chapter 5**

We also present a constructive proofs of **Completeness Theorem** for two different Gentzen style automated theorem proving systems for **classical Logic** in Chapter 6

We discuss the Inuitionistic Logic in Chapter 7

Predicate Logics proof of the **Completeness Theorems** and Automated Theorem proving systems, land Goedel Theorems Chapters 8, 9, 10, 11

PART 2 PROOF SYSTEMS: Formal Definitions

Proof System S

In this section we present **formal definitions** of the following notions

Proof system S

Formal proof from logical axioms in a proof system S Formal proof from specific axioms in a proof system S Formal Theory based on a proof system S We also give examples of different simple proof systems

Components: Language

Language \mathcal{L} of a proof system S is any formal language \mathcal{L}

 $\mathcal{L} = (\mathcal{A}, \mathcal{F})$

We assume as before that both sets \mathcal{A} and \mathcal{F} are enumerable, i.e. we deal here with enumerable languages The Language \mathcal{L} can be propositional or first order (predicate) but we discuss propositional languages first

Components: Expressions

Expressions \mathcal{E} of a proof system S

Given a set ${\mathcal F}$ of well formed formulas of the language ${\mathcal L}$ of the system ${\rm S}$

We often extend the set \mathcal{F} to some set \mathcal{E} of expressions build out of the language \mathcal{L} and some extra symbols, if needed

In this case all other components of S are also defined on basis of elements of the set of expressions ${\cal E}$

In particular, and **most common case** we have that $\mathcal{E} = \mathcal{F}$

Automated theorem proving systems usually use as their basic components different sets of expressions build out of formulas of the language \mathcal{L}

In Chapters 6 and 10 we consider finite sequences of formulas instead of formulas, as basic expressions of the proof systems **RS** and **RQ**

We also present there proof systems that use yet other kind of expressions, called original **Gentzen sequents** or their modifications

Some systems use yet other expressions such as clauses, sets of clauses, or sets of formulas, others use yet still different expressions

We always have to **extend** a given semantics **M** for the language \mathcal{L} of the system **S** to the set \mathcal{E} of all **expression** of the system **S**

Sometimes, like in case of **Resolution** based proof systems we have also to **prove** a semantic equivalency of new created expressions \mathcal{E} (sets of clauses in Resolution case) with appropriate formulas of \mathcal{L}

Components: Logical Axioms

Logical axioms LA of S form a **non-empty** subset of the set \mathcal{E} of **expressions** of the proof system S, i.e.

$LA \subseteq \mathcal{E}$

In particular, LA is a non-empty subset of formulas, i.e.

$\mathsf{LA}\subseteq \mathcal{F}$

We **assume here** that the set LA of **logical axioms** is always **finite**, i.e. that we consider here finitely axiomatizable systems

Components: Axioms

Semantical link

Given a semantics **M** for \mathcal{L} and its **extension** to the set \mathcal{E} of all expressions

We extend the notion of **tautology** to the expressions and write

⊨_M *E*

to denote that the **expression** $E \in \mathcal{E}$ is a **tautology** under semantics **M** and we put

 $\mathbf{T}_{\mathbf{M}} = \{ E \in \mathcal{E} : \models_{\mathbf{M}} E \}$

Logical axioms LA are always a subset of expressions that are **tautologies** of under the semantics **M**, i.e.

 $LA \subseteq T_M$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Components: Rules of Inference

Rules of inference \mathcal{R}

We **assume** that a proof system contains only a finite number of **inference rules**

We **assume** that each rule has a finite number of **premisses** and **one conclusion**

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Components: Rules of Inference

We write the **inference rules** in a following convenient way **One** premiss rule

 $(r) \quad \frac{P_1}{C}$

Two premisses rule

$$(r) \quad \frac{P_1 \ ; \ P_2}{C}$$

m premisses rule

$$(r) = \frac{P_1 ; P_2 ; \dots ; P_m}{C}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへで

Semantic Link: Sound Rules of Inference

Given some m premisses rule

$$r) \quad \frac{P_1 \ ; \ P_2 \ ; \ \dots \ ; \ P_m}{C}$$

Semantical link

Given a semantics **M** for the language \mathcal{L} and for the set of expressions \mathcal{E}

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

We want the **rules of inference** $r \in \mathcal{R}$ to preserve

truthfulness i.e. to be sound under the semantics M

Propositional Definition: Sound Rule of Inference

Definition (Shorthand Notation) An inference rule $r \in \mathcal{R}$, such that

(r)
$$\frac{P_1; P_2;; P_m}{C}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

is sound under a semantics **M** f and only if ifrom that assumption that $P_1 = T$, $P_2 = T$, $P_m = T$, we prove C = T

Example

Given a rule of inference

$$r) \quad \frac{(A \Rightarrow B)}{(B \Rightarrow (A \Rightarrow B))}$$

Prove that (r) is **sound** underclassical semantics Assume that $A \Rightarrow B = T$ We **evaluate** logical value of the **conclusion** as follows

$$(B \Rightarrow (A \Rightarrow B)) = B) \Rightarrow T = T$$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

This proves the **soundness** of (r)

Formal Definition: Proof System

Definition

By a proof system we understand a quadruple

 $S = (\mathcal{L}, \mathcal{E}, \mathcal{L}A, \mathcal{R})$

where

 $\mathcal{L} = \{\mathcal{A}, \mathcal{F}\}$ is a **language** of S with a set \mathcal{F} of formulas \mathcal{E} is a set of **expressions** of S formed out of the set \mathcal{F} of formulas of \mathcal{L}

In particular case $\mathcal{E} = \mathcal{F}$

 $LA \subseteq \mathcal{E}$ is a non- empty, finite set of logical axioms of S

 $\mathcal R$ is a non-empty, finite set of rules of inference of S

PART 3: Formal Proofs Simple Examples of Proof Systems

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Provable Expressions

A final product of a single or multiple use of the inference rules of S, with axioms taken as a starting point are called provable expressions of the proof system S

A single use of an inference rule is called a direct consequence

A multiple application of rules of inference with axioms taken as a starting point is called a **proof**

Definition: Direct Consequence

Formal definitions are as follows

Direct consequence

For any rule of inference $r \in \mathcal{R}$ of the form

$$(r) \quad \frac{P_1 \ ; \ P_2 \ ; \ \dots \ ; \ P_m}{C}$$

C is called a **direct consequence** of $P_1, ..., P_m$ by virtue of the rule $r \in \mathcal{R}$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Definition: Formal Proof

Formal Proof of an expression $E \in \mathcal{E}$ in a proof system

 $S = (\mathcal{L}, \mathcal{E}, \mathcal{L}A, \mathcal{R})$

is a sequence

$$A_1, A_2, A_n$$
 for $n \ge 1$

of expressions from \mathcal{E} , such that

 $A_1 \in LA$, $A_n = E$

and for each $1 < i \le n$, either $A_i \in LA$ or A_i is a **direct** consequence of some of the **preceding expressions** by virtue of one of the rules of inference

 $n \ge 1$ is the length of the proof A_1 , A_2 , A_n

Formal Proof Notation

We write

⊦_s E

to denote that $E \in \mathcal{E}$ has a proof in S

When the proof system S is **fixed** we write $\vdash E$

Any $E \in \mathcal{E}$, such that $\vdash_{\mathcal{S}} E$ is called a **provable** expression of S

The set of **all provable expressions** of S is denoted by P_S , i.e. we put

 $\mathbf{P}_{\mathcal{S}} = \{ E \in \mathcal{E} : \vdash_{\mathcal{S}} E \}$

Formal Proof

Given a proof system:

$$S = (\mathcal{L}_{\{\neg, \Rightarrow\}}, \mathcal{F}, \{ (A \Rightarrow A), (A \Rightarrow (\neg A \Rightarrow B)) \}, (r) \ \frac{(A \Rightarrow B)}{(B \Rightarrow (A \Rightarrow B))})$$

Problem 3.

Write a **formal proof** of your choice in S with 2 applications of the rule (r)

Solution

There many of such proofs, of different length, with different choice if axioms - here is my choice: A_1, A_2, A_3 , where $A_1 = (A \Rightarrow A)$ (Axiom) $A_2 = (A \Rightarrow (A \Rightarrow A))$ Rule (*r*) application 1 for A = A, B = A $A_3 = ((A \Rightarrow A) \Rightarrow (A \Rightarrow (A \Rightarrow A)))$ Rule (*r*) application 2 for $A = A, B = (A \Rightarrow A)$

Formal Proof

Given a proof system:

 $S = (\mathcal{L}_{\{\neg, \Rightarrow\}}, \mathcal{F}, \{ (A \Rightarrow A), (A \Rightarrow (\neg A \Rightarrow B)) \}, (r) \ \frac{(A \Rightarrow B)}{(B \Rightarrow (A \Rightarrow B))})$

Problem 4

1. Prove, by constructing a formal proof that

$$\vdash_{S} ((\neg A \Rightarrow B) \Rightarrow (A \Rightarrow (\neg A \Rightarrow B)))$$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Solution Required formal proof is a sequence A_1, A_2 , where

 $A_1 = (A \Rightarrow (\neg A \Rightarrow B))$

Axiom

 $\begin{array}{l} A_2 = ((\neg A \Rightarrow B) \Rightarrow (A \Rightarrow (\neg A \Rightarrow B)))\\ \text{Rule } (r) \text{ application for } A = A, B = (\neg A \Rightarrow B) \end{array}$

Definition: Sound S

Definition

Given a proof system

 $S = (\mathcal{L}, \mathcal{E}, \mathcal{L}A, \mathcal{R})$

We say that the system $\,S\,\,$ is $\,sound\,\,$ under a semantics $\,M\,\,$ iff the following conditions hold $\,$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

- 1. *LA* ⊆ **T**_M
- 2. Each rule of inference $r \in \mathcal{R}$ is **sound**

Example

Given a proof system:

 $S = (\mathcal{L}_{\{\neg, \Rightarrow\}}, \ \mathcal{F}, \ \{(A \Rightarrow A), (A \Rightarrow (\neg A \Rightarrow B))\}, \ (r) \ \frac{(A \Rightarrow B)}{(B \Rightarrow (A \Rightarrow B))})$

ション 小田 マイビット ビー シックション

- 1. Prove that S is sound under classical semantics
- 2. Prove that S is not sound under K semantics

Example

1. Both axioms of S are basic classical tautologies and we have just proved that the rule of inference (r) is **sound**, hence S is **sound**

2. Axiom $(A \Rightarrow A)$ is not a **K** semantics tautology

Any truth assignment v such that $v^*(A) = \bot$ is a **counter-model** for it

This proves that **S** is **not sound** under **K** semantics

Soundness Theorem

Let \mathbf{P}_S be the set of all provable expressions of S i.e.

 $\mathbf{P}_{\mathcal{S}} = \{ A \in \mathcal{E} : \vdash_{\mathcal{S}} A \}$

Let T_M be a set of all expressions of S that are tautologies under a semantics M, i.e.

 $\mathbf{T}_{\mathbf{M}} = \{ A \in \mathcal{E} : \models_{\mathbf{M}} A \}$

Soundness Theorem for S and semantics M

 $\mathbf{P}_S \subseteq \mathbf{T}_{\mathbf{M}}$

i.e. for any $A \in \mathcal{E}$, the following implication holds

If $\vdash_S A$, then $\models_M A$.

Exercise: prove by Mathematical Induction over the length of a proof that if S is sound, the Soundness Theorem holds for S

Completeness Theorem

Completeness Theorem for S and semantics M

 $\mathbf{P}_{\mathcal{S}}=\mathbf{T}_{\mathbf{M}}$

i.e. for any $A \in \mathcal{E}$, the following holds

 $\vdash_{S} A$ if and only if $\models_{M} A$

The Completeness Theorem consists of two parts:

Part 1: Soundness Theorem

$\textbf{P}_{\mathcal{S}} \ \subseteq \textbf{T}_{\textbf{M}}$

Part 2: Completeness Part of the Completeness Theorem

$\textbf{T}_{\textbf{M}} \subseteq \textbf{P}_{\mathcal{S}}$

- ロト・日本・日本・日本・日本・日本