CSE/MAT371 Extra Q4 SOLUTIONS SPRING 2024 (3pts extra credit)

ONE PROBLEM (3pts)

Part 1 (1.5pts)

1. (0.5 pts$)$ Given $\mathcal{L}=\mathcal{L}_{\{\neg, \Rightarrow, \mathrm{U}, \cap\}}$ and classical semantics. We define: A set $\mathcal{G} \subseteq \mathcal{F}$ is consistent if and only if there is a truth assignment v such that $v \vDash \mathcal{G}$

PROVE that the set $\mathcal{G}=\{(a \Rightarrow(a \cup b)),(a \cup b), \neg b,(c \Rightarrow b)\} \quad$ is consistent. Use shorthand notation.
Solution: We find a restricted model for \mathcal{G} as follows
First observe that the formula $((a \Rightarrow a \cup b))$, is a tautology, hence any v is its model. So we have only to see whether two other formulas have a common model. It means we check if it is possible to find v, such that $v^{*}(\neg b)=T$, $v^{*}((a \cup b))=T$, and $v^{*}((c \Rightarrow b))=T$.

We have that $\neg b=T$ if and only if $b=F$.
We evaluate $(a \cup b)=(a \cup F)=T$ if and only if $a=T$.
Consequently, $(c \Rightarrow b)=(c \Rightarrow F)=T$ if and only if $c=F$.
Hence, any v , such that $a=T, b=T$, and $c=F$ is a model for \mathcal{G}.
2. (0.5pts) How many restricted MODELS does \mathcal{G} have?

We proved that $a=T, b=T$, and $c=F$ is the only restricted model for \mathcal{G}.
3. (0.5 pts) We define: a formula $A \in \mathcal{F}$ is called independent from a set $\mathcal{G} \subseteq \mathcal{F}$ if and only if when there are truth assignments v_{1}, v_{2} such that $v_{1} \vDash \mathcal{G} \cup\{A\}$ and $v_{2} \vDash \mathcal{G} \cup\{\neg A\}$.

PROVE the a formula $A=(d \cup \neg a)$ is independent of \mathcal{G} defined in 1 . Use shorthand notation.

Solution

We proved that $a=T, b=T$, and $c=F$ is the only restricted model for \mathcal{G}
Any v_{1} such that $a=T, b=T, c=F$, and $d=T$ is a MODEL for $\mathcal{G} \cup\{A\}$
Any v_{1} such that $a=T, b=T, c=F$, and $d=F$ is a MODEL for $\mathcal{G} \cup\{\neg A\}$ as
$\neg A=\neg(d \cup \neg a)=\neg(F \cup F)=T$
ONE PROBLEM PART 2 (1.5pts) Use shorthand notation.

1. (0.5 pts) Given a formula $A=((a \cap \neg c) \Rightarrow(c \cup b))$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$.

Transform A to a formula B of a language $\mathcal{L}_{\{\neg, \Rightarrow\}}$, such that $A \equiv B$.

Solution

$$
((a \cap \neg c) \Rightarrow(c \cup b)) \equiv(\neg(a \Rightarrow \neg \neg c) \Rightarrow(\neg c \Rightarrow b))
$$

(0.5 pts) List all proper logical equivelences defining \cup, \cap connectives in terms of \neg, \Rightarrow
Equivalences used:

$$
(A \cap B) \equiv \neg(A \Rightarrow \neg B) \quad \text { and } \quad(A \cup B) \equiv(\neg A \Rightarrow B)
$$

Plus Plus Substitution Theorem.
2. (0.5pts) Given a formula $A=((a \cap \neg c) \Rightarrow(c \cup b))$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$.

Transform it to a formula B of a language $\mathcal{L}_{\{\neg, \cap, \cup\}}$, such that $A \equiv B$.
Solution

$$
((a \cap \neg c) \Rightarrow(c \cup b)) \equiv(\neg(a \cap \neg c) \cup(c \cup b)) \quad \text { or } \quad \neg((a \cap \neg c) \cap \neg(c \cup b))
$$

List all proper logical equivalences defining \Rightarrow in terms of \neg, \cup, \neg, \cap, respectively.

$$
(A \Rightarrow B) \equiv(\neg A \cup B) \quad \text { or } \quad(A \Rightarrow B) \equiv \neg(A \cap \neg B)
$$

