CSE/MAT371 Extra Q4 SOLUTIONS SPRING 2024 (3pts extra credit)

ONE PROBLEM (3pts)

Part 1 (1.5pts)

1. (0.5pts) Given $\mathcal{L} = \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$ and classical semantics. We define: A set $\mathcal{G} \subseteq \mathcal{F}$ is consistent if and only if there is a truth assignment v such that $v \models \mathcal{G}$

PROVE that the set $\mathcal{G} = \{(a \Rightarrow (a \cup b)), (a \cup b), \neg b, (c \Rightarrow b)\}$ is **consistent**. Use **shorthand** notation.

Solution: We find a restricted model for \mathcal{G} as follows

First observe that the formula $((a \Rightarrow a \cup b))$, is a tautology, hence any v is its model. So we have only to see whether two other formulas have a common model. It means we check if it is possible to find v, such that $v^*(\neg b) = T$, $v^*((a \cup b)) = T$, and $v^*((c \Rightarrow b)) = T$.

We have that $\neg b = T$ if and only if b = F.

We evaluate $(a \cup b) = (a \cup F) = T$ if and only if a = T.

Consequently, $(c \Rightarrow b) = (c \Rightarrow F) = T$ if and only if c = F.

Hence, any v, such that a = T, b = T, and c = F is a model for \mathcal{G} .

2. (0.5 pts) How many restricted MODELS does \mathcal{G} have?

We proved that a = T, b = T, and c = F is the **only restricted model** for \mathcal{G} .

3. (0.5pts) We **define:** a formula $A \in \mathcal{F}$ is called **independent** from a set $\mathcal{G} \subseteq \mathcal{F}$ if and only if when there are truth assignments v_1, v_2 such that $v_1 \models \mathcal{G} \cup \{A\}$ and $v_2 \models \mathcal{G} \cup \{\neg A\}$.

PROVE the a formula $A = (d \cup \neg a)$ is **independent** of \mathcal{G} defined in **1**. Use **shorthand** notation.

Solution

We proved that a = T, b = T, and c = F is the **only restricted model** for \mathcal{G}

Any v_1 such that a = T, b = T, c = F, and d = T is a MODEL for $\mathcal{G} \cup \{A\}$

Any v_1 such that a = T, b = T, c = F, and d = F is a MODEL for $\mathcal{G} \cup \{\neg A\}$ as

 $\neg A = \neg (d \cup \neg a) = \neg (F \cup F) = T$

ONE PROBLEM PART 2 (1.5pts) Use shorthand notation.

1. (0.5pts) Given a formula $A = ((a \cap \neg c) \Rightarrow (c \cup b))$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$.

Transform A to a formula *B* of a language $\mathcal{L}_{\{\neg,\Rightarrow\}}$, such that $A \equiv B$.

Solution

$$((a \cap \neg c) \Rightarrow (c \cup b)) \equiv (\neg (a \Rightarrow \neg \neg c) \Rightarrow (\neg c \Rightarrow b))$$

(0.5pts) List all proper logical equivelences defining \cup , \cap connectives in terms of \neg , \Rightarrow

Equivalences used:

 $(A \cap B) \equiv \neg (A \Rightarrow \neg B)$ and $(A \cup B) \equiv (\neg A \Rightarrow B)$

Plus Plus Substitution Theorem.

2. (0.5pts) Given a formula $A = ((a \cap \neg c) \Rightarrow (c \cup b))$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$.

Transform it to a formula *B* of a language $\mathcal{L}_{\{\neg, \cap, \cup\}}$, such that $A \equiv B$.

Solution

$$((a \cap \neg c) \Rightarrow (c \cup b)) \equiv (\neg (a \cap \neg c) \cup (c \cup b)) \quad \text{or} \quad \neg ((a \cap \neg c) \cap \neg (c \cup b))$$

List all proper logical equivalences defining \Rightarrow in terms of \neg , \cup , \neg , \cap , respectively.

$$(A \Rightarrow B) \equiv (\neg A \cup B)$$
 or $(A \Rightarrow B) \equiv \neg (A \cap \neg B)$