CSE371 Extra Q3 SOLUTIONS Spring 2024 (3pts extra credit)

ONE PROBLEM PART 1 (1.5pts)

Let $\mathcal{L} = \mathcal{L}_{\{\neg, \neg, \Rightarrow, \rightarrow\}}$ be a language with one argument connectives \neg , \sim called **strong negation** and **weak negation**,

and with two arguments connectives \Rightarrow , \rightarrow called **strong implication** and **weak implication**.

We define a **3 valued** extensional semantics **M** for the language $\mathcal{L}_{\{\neg, \sim, \Rightarrow, \rightarrow\}}$ by **defining the connectives** \neg , \sim , \Rightarrow , \rightarrow as functions on the set $\{F, \bot, T\}$ of 3 logical values as follows.

The functions \neg , \Rightarrow restricted to the set $\{F, T\}$ are the same as in the classical case.

We extend them to the full set $\{F, \bot, T\}$ for strong negation as $\neg \bot = F$, and for strong implication as $x \Rightarrow \bot = F$ for x = T, F and

$$\perp \Rightarrow y = \begin{cases} \perp & \text{if } y = \perp \\ T & \text{otherwise} \end{cases}$$

We define the weak negation ~: $\{T, \bot, F\} \longrightarrow \{T, \bot, F\}$ as

$$\sim x = \begin{cases} T & \text{if } x = \bot \\ x & \text{for } x \in \{T, F\} \end{cases}$$

The weak implication \rightarrow : $\{T, \bot, F\} \times \{T, \bot, F\} \longrightarrow \{T, \bot, F\}$ is defined for all $x, y \in \{T, \bot, F\}$ as $x \to y = \sim (x \Rightarrow y)$ Fill in the connectives tables. Remember that the **M** connectives \neg , \Rightarrow on set $\{F, T\}$ are the same as **classical** \neg , \Rightarrow .

			m	
-	F	\bot	1	
	Т	F	F	
	\Rightarrow	F	I.	Т
		-		-
	F	T	F	Т
	1	T	1	Т
		1		-
	Т	F	F	Т

ONE PROBLEM PART 2 (1.5pts) Use shorthand notation.

(0.5pts) Prove that $\not\models_{\mathbf{M}} (a \Rightarrow a)$ and $\models_{\mathbf{M}} (a \Rightarrow \neg \neg a)$.

Solution To prove $\not\models_{\mathbf{M}} (a \Rightarrow a)$ we have to find a counter MODEL *v* for $(a \Rightarrow \neg \neg a)$.

Consider any $v: VAR \longrightarrow \{F, \bot, T\}$ such that $v(a) = \bot$.

We evaluate $\bot \Rightarrow \bot = F$ and so $(a \Rightarrow a)$ is not a **M** tautology.

To prove that $\models_{\mathbf{M}}(a \Rightarrow \neg \neg a)$ we first observe that it is a classical tautology and the **M** connectives \neg , \Rightarrow

on set $\{F, T\}$ are the same as **classical** \neg , \Rightarrow , so to prove $\models_{\mathbf{M}}(a \Rightarrow \neg \neg a)$ we have to consider only the case $a = \bot$

and get $\bot \Rightarrow \neg \neg \bot = \bot \Rightarrow \neg F = \bot \Rightarrow T = T$.

This ends the proof.

(0.5pts) Let T be a set of classical tautologies, LT be a set of Lukasiewicz tautologies, and MT be a set of all M tautologies.

Prove that $T \cap MT \neq \emptyset$ and $LT \neq MT$

Solution We just proved that the formula $(a \Rightarrow \neg \neg a) \in \mathbf{T} \cap \mathbf{MT}$, hence $\mathbf{T} \cap \mathbf{MT} \neq \emptyset$.

As we have proved that $\not\models_{\mathbf{M}} (a \Rightarrow a)$, and we know that $(a \Rightarrow a) \in \mathbf{LT}$ we proved that $\mathbf{LT} \neq \mathbf{MT}$.

- (0.5pts) Prove that the semantics M is well defined
- **Solution** By definition, semantics **M** is well defined if and only if $\mathbf{MT} \neq \emptyset$.

This is true as we have already proved that $(a \Rightarrow \neg \neg a) \in \mathbf{MT}$.