CSE/MAT371 Extra Q2 SOLUTIONS SPRING 2024 (2pt extra credit)

ONE PROBLEM (2pts)

Part 1 (1pts) Write the following natural language statement:
From the fact that there is a bird that does not fly and $4+4=4$, we deduce the following: it is not possible that all birds fly OR it is not necessary that $4+4=4$.
in the TWO WAYS:
WAY 1 (0.5pts) As a formula $A_{1} \in \mathcal{F}_{1}$ of a language $\mathcal{L}_{\{\neg, \square, \diamond, \cap, \cup, \Rightarrow\}}$
SOLUTION Use Propositional Variables a, b, c where
a denotes statement: there is a bird that does not fly
b denotes statement: $4+4=4 c$ denotes statement: all birds fly
The formula $A_{1} \in \mathcal{F}_{1}$ is:

$$
((a \cap b) \Rightarrow(\neg \diamond c \cup \neg \square b))
$$

WAY 2 (0.5pts) As a formula $A_{2} \in \mathcal{F}_{2}$ of a PREDICATE LANGUAGE language $\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{V})$ with the set $\{\neg, \square, \diamond, \cap, \cup, \Rightarrow\}$ of propositional connectives.

Use the following Predicates, Functions and Constants
$B(x)$ for x is a bird, $F(x)$ for x can fly, $E(x, y)$ for $x=y, f(x, y)$ for + , and c for 4.
(0.2pts) Restricted domain formula is:

$$
\left(\left(\exists_{B(X)} \neg F(x) \cap E(f(c, c), c)\right) \Rightarrow\left(\neg \diamond \forall_{B(X)} F(x) \cup \neg \square E(f(c, c), c)\right)\right)
$$

(0.3pts) Formula $A_{2} \in \mathcal{F}_{2}$ is:

$$
((\exists x(B(X) \cap \neg F(x)) \cap E(f(c, c), c)) \Rightarrow(\neg \diamond \forall x(B(X) \Rightarrow F(x)) \cup \neg \square E(f(c, c), c)))
$$

Part 2 (1pts)

(0.5pts) Circle formulas that are propositional tautologies
(0.5pts) Circle formulas that are propositional tautologies

$$
\mathcal{S}_{1}=\{((\neg c \cap c) \Rightarrow(\neg b \Rightarrow(d \cap e))), \quad((a \Rightarrow b) \cup \neg(a \Rightarrow b)), \quad((a \cap \neg b) \Rightarrow((a \cap \neg b) \Rightarrow(\neg d \cup e))), \quad(\neg a \Rightarrow(\neg a \cup b))\}
$$

Solution $\quad \forall=((a \cap \neg b) \Rightarrow((a \cap \neg b) \Rightarrow(\neg d \cup e)))$, all other formulas are tautologies
(0.5pts) Circle formulas that are predicate tautologies

$$
\begin{aligned}
& \mathcal{S}_{2}=\{(\exists x A(x) \Rightarrow \neg \forall x \neg A(x)), \quad(\forall x(P(x, y) \cap Q(y)) \Rightarrow \neg \exists x \neg(P(x, y) \cap Q(y))), \\
& ((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x(A(x) \cap B(x))), \quad(\forall x(A(x) \Rightarrow B) \Rightarrow(\exists x A(x) \Rightarrow B))\}
\end{aligned}
$$

Solution $\quad \neq((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x(A(x) \cap B(x)))$, all other formulas are tautologies

