CSE371 MIDTERM SOLUTIONS Spring 2024 (100pts + 10pts extra)

Midterm has 5 Questions. Extra Credit 10pts is included ithe Total sum of 110 pts for the test.

QUESTION 1 (20 pts)]

Write the following natural language statement:
One likes to play bridge, or from the fact that the weather is good we conclude the following: one does not like to play bridge or one likes not to play bridge
as a formula of 2 different languages

1. (10pts) Formula $A_{1} \in \mathcal{F}_{1}$ of a language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$, where $\mathbf{L} A$ represents statement "one likes A", "A is liked".

Use Propositional Variables a, b as consecutive statements

Solution

a denotes statement: play bridge,
b denotes statement: the weather is good
The formula $A_{1} \in \mathcal{F}_{1}$ is

$$
A_{1}=(\mathbf{L} a \cup(b \Rightarrow(\neg \mathbf{I} a \cup \mathbf{L} \neg a)))
$$

2. (10pts) Formula $A_{2} \in \mathcal{F}_{2}$ of a language $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$.

Use Propositional Variables a, b, c as consecutive statements

Solution

a denotes statement: One likes to play bridge ,
b denotes statement: the weather is good,
c denotes statement: one likes not to play bridge
The formula $A_{2} \in \mathcal{F}_{2}$ is

$$
A_{2}=(a \cup(b \Rightarrow(\neg a \cup c)))
$$

QUESTION 2 (20 pts)

Let A be a formula

$$
((((a \cap \neg c) \Rightarrow \neg b) \cup a) \Rightarrow(c \cup b))
$$

1. (5pts) A language $\mathcal{L}_{\text {CON }}$ to which the formula A belongs is:

Solution: The language is $\mathcal{L}_{\{\neg, \cap, \Rightarrow\}}$.
2. (5pts) Determine the degree of A and write down all its sub-formulas of the degree 2 .

Solution: The degree of A is 7. There is only one sub-formula of the degree 2: $(a \cap \neg c)$.
3. (5pts) Determine whether $A \in \mathbf{T}$. Use "proof by contradiction" method and shorthand notation.

Solution: of the case $A \in \mathbf{T}$.
Assume $((((a \cap \neg c) \Rightarrow \neg b) \cup a) \Rightarrow(c \cup b))=F$. This is possible if and only if $(((a \cap \neg c) \Rightarrow \neg b) \cup a)=$ T and $(c \cup b)=F$. This gives as that $c=F, b=F$. We evaluate $(((a \cap \neg F) \Rightarrow \neg F) \cup a)=T$. This is possible for $a=T$.
Any truth assignment such that $a=T, b=F, c=F$ is a counter-model for A, hence $A \notin \mathbf{T}$.
4. (5pts) Determine whether $A \in \mathbf{C}$. Use shorthand notation.

Solution: Any truth assignment such that $a=T, b=T, c=F$ is a model for A, hence $A \notin \mathbf{C}$. This is not the only model.

QUESTION 3 (20 pts)

1. (5pts) Given $\mathcal{L}=\mathcal{L}_{\{\neg,=, \cup, \cap\}}$ and classical semantics.

We define: A set $\mathcal{G} \subseteq \mathcal{F}$ is consistent if and only if there is a truth assignment v such that $v \vDash \mathcal{G}$
PROVE that the set

$$
\mathcal{G}=\{((a \cap b) \Rightarrow b),(a \cup b), \neg b,(c \Rightarrow b)\}
$$

is consistent. Use shorthand notation.
Solution We find a restricted model for \mathcal{G} as follows
First observe that the formula $((a \cap b) \Rightarrow b)$, is a tautology, hence any v is its model. So we have only to see whether the other formulas have a common model. It means we check if it is possible to find v, such that $v^{*}(\neg b)=T, v^{*}((a \cup b))=T$, and the $v^{*}((c \Rightarrow b))=T$.

We have that $\neg b=T$ if and only if $b=F$.
We evaluate $(a \cup b)=(a \cup F)=T$ if and only if $a=T$.
Consequently, $(c \Rightarrow b)=(c \Rightarrow F)=T$ if and only if $c=F$.
Hence, any v , such that $a=T, b=F$, and $c=F$ is a model for \mathcal{G}.
2. $(5 \mathrm{pts})$ How many restricted MODELS does \mathcal{G} have?

Solution

We proved that $a=T, b=F$, and $c=F$ is the only restricted model for \mathcal{G}.
3. (10pts) We define: a formula $A \in \mathcal{F}$ is called independent from a set $\mathcal{G} \subseteq \mathcal{F}$ if and only if when there are truth assignments v_{1}, v_{2} such that $v_{1} \vDash \mathcal{G} \cup\{A\}$ and $v_{2} \vDash \mathcal{G} \cup\{\neg A\}$.

PROVE the a formula $A=(d \cup(b \Rightarrow \neg a))$ is independent of \mathcal{G} defined in 1. Use shorthand notation.

Solution

We proved that $a=T, b=F$ and $c=F$ is the only restricted model for \mathcal{G}.
Any v_{1} such that $a=T, b=F, c=F$, and $d=T$ is a MODEL for $\mathcal{G} \cup\{A\}$ because the main connective of $A=(d \cup(b \Rightarrow \neg a))$ is disjunction and $(T \cup(b \Rightarrow \neg a))=T$ for any logical values of a, b, in particular for $a=T, b=F$

Any v_{1} such that $a=T, b=F, c=F$, and $d=F$ is a MODEL for $\mathcal{G} \cup\{\neg A\}$ as $(T \cup(b \Rightarrow \neg a))=T$
for any logical values of a, b, in particular for $a=T, b=F$.
QUESTION 4 (20pts)
We define a 3 valued extensional semantics \mathbf{M} for the language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$ by defining the connectives its connectives on on a set $\{F, \perp, T\}$ of logical values by the following truth tables.

L Connective

\mathbf{L}	F	\perp	T
	F	F	T

Implication

\Rightarrow	F	\perp	T
F	T	T	T
\perp	T	\perp	T
T	F	F	T

Negation :

\neg	F	\perp	T
	T	F	F

Disjunction :

\cup	F	\perp	T
F	F	\perp	T
\perp	\perp	T	T
T	T	T	T

1. (10pts) Verify whether $\models_{\mathbf{M}}(\mathbf{L} A \cup \neg \mathbf{L} A)$. You can use shorthand notation.

Solution

We verify all possible logical values for the formula A.

$$
\mathbf{L} T \cup \neg \mathbf{L} T=T \cup F=T, \quad \mathbf{L} \perp \cup \neg \mathbf{L} \perp=F \cup \neg F=F \cup T=T, \quad \mathbf{L} F \cup \neg \mathbf{L} F=F \cup \neg F=T
$$

2. (5pts) Verify whether the formula

$$
(\mathbf{L} a \cup(b \Rightarrow(\neg \mathbf{L} a \cup \mathbf{L} \neg a)))
$$

has a model under the semantics \mathbf{M}. Use shorthand notation.

Solution

Any v, such that $v(a)=T$ is a \mathbf{M} model for A directly from the definition of \cup and \mathbf{L}.
We evaluate

$$
(\mathbf{L} T \cup(b \Rightarrow(\neg \mathbf{L} T \cup \mathbf{L} \neg T)))=(T \cup(b \Rightarrow(\neg \mathbf{L} T \cup \mathbf{L} \neg T)))=T
$$

for any logical value of b and $(b \Rightarrow(\neg \mathbf{L} T \cup \mathbf{L} \neg T))$
3. (5pts) Verify whether the following set \mathbf{G} is \mathbf{M}-consistent. Use shorthand notation

$$
\mathbf{G}=\{\mathbf{L} a, \quad(a \cup \neg \mathbf{L} b), \quad(a \Rightarrow b), b\}
$$

Solution

Any v, such that $v(a)=T, v(b)=T$ is a \mathbf{M} model for \mathbf{G} as

$$
\mathbf{L} T=T, \quad(T \cup \neg \mathbf{L} T)=T, \quad(T \Rightarrow T)=T, \quad b=T
$$

QUESTION 5 (30pts

1. (10pts) Given a formula $A=((a \cap \neg c) \Rightarrow(c \cup b))$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$.

Transform A to a formula B of a language $\mathcal{L}_{\{\neg, \Rightarrow\}}$, such that $A \equiv B$.
Solution

$$
((a \cap \neg c) \Rightarrow(c \cup b)) \equiv(\neg(a \Rightarrow \neg \neg c) \Rightarrow(\neg c \Rightarrow b))
$$

List all proper logical defining \cup, \cap connectives in terms of \neg, \Rightarrow

$$
(A \cap B) \equiv \neg(A \Rightarrow \neg B) \quad \text { and } \quad(A \cup B) \equiv(\neg A \Rightarrow B)
$$

Plus Plus Substitution Theorem.
2. (10pts) Given a formula $A=((a \cap \neg c) \Rightarrow(c \cup b))$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$.

Transform it to a formula B of a language $\mathcal{L}_{\{\neg, \cap, \cup\}}$, such that $A \equiv B$.
Solution

$$
((a \cap \neg c) \Rightarrow(c \cup b)) \equiv(\neg(a \cap \neg c) \cup(c \cup b)) \quad \text { or } \quad \neg((a \cap \neg c) \cap \neg(c \cup b))
$$

List all proper logical equivalences defining \Rightarrow in terms of \neg, \cup or $\neg \cap$, respectively.
List all proper logical equivalences defining \Rightarrow in terms of \neg, \cup, \cap, respectively.

$$
(A \Rightarrow B) \equiv(\neg A \cup B) \quad \text { or } \quad(A \Rightarrow B) \equiv \neg(A \cap \neg B)
$$

3. (10pts) Prove that $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}} \equiv \mathcal{L}_{\{\neg, \Rightarrow\}}$.

Solution

We have to prove that $\mathcal{L}_{\{\neg, \Rightarrow\}} \equiv \mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$.
Condition $\mathbf{C 1}$ holds because $\{\neg, \Rightarrow\} \subseteq\{\neg, \cap, \cup, \Rightarrow\}$.
Condition C2 holds because of the Substitution Theorem and because of the following
logical equivalences defining \cup, \cap in terms of \neg, \Rightarrow.

$$
(A \cap B) \equiv \neg(A \Rightarrow \neg B) \quad \text { and } \quad(A \cup B) \equiv(\neg A \Rightarrow B)
$$

Reminder

We define the equivalence of languages as follows:
Given two languages: $\mathcal{L}_{1}=\mathcal{L}_{\text {CON }_{1}}$ and $\mathcal{L}_{2}=\mathcal{L}_{\text {CON }_{2}}$, for $\mathrm{CON}_{1} \neq \mathrm{CON}_{2}$, we say that they are logically equivalent, i.e. $\mathcal{L}_{1} \equiv \mathcal{L}_{2}$ if and only if the following conditions $\mathbf{C 1}, \mathbf{C} 2$ hold.

C1: For every formula A of \mathcal{L}_{1}, there is a formula B of \mathcal{L}_{2}, such that $A \equiv B$,
C2: For every formula C of \mathcal{L}_{2}, there is a formula D of \mathcal{L}_{1}, such that $C \equiv D$.

