CSE371/math371 Practice Final Fall 2022 (15 pts - extra credit)

Final - December 13, 11:15 am -1:45pm in the classroom.

PROBLEM 1

Given a set of formulas

$$\mathcal{G} = \{ ((a \Rightarrow (a \cup b)), (a \cup b), \neg b, (c \Rightarrow b) \}$$

1. Show that G is CONSISTENT under classical semantics. Use shorthand notation.

Solution

- We find a restricted model for \mathcal{G} . The formula $((a \Rightarrow (a \cup b))$ is a tautology, hence any v is its model. $\neg b = T$ only if b=F. We evaluate $(a \cup b) = (a \cup F) = T$ only if a=T. Consequently, $(c \Rightarrow b) = (c \Rightarrow F) = T$ only if c=F. Hence, any v, such that a=T, b= T, and c= F is a model for \mathcal{G} .
- 2. Find a formula *A* that is iINDEPENDENT of *G*. Must prove it. Use shorthand notation.

Solution

THIS IS MY SOLUTION. THERE ARE MANY OTHERS!

Let A be any atomic formula $d \in VAR - \{a, b, c\}$. Any v, such that a=T, b= T, and c= F, d= T is a model for $\mathcal{G} \cup \{A\}$. Any v, such that a=T, b= T, and c= F, d= F is a model for $\mathcal{G} \cup \{\neg A\}$.

3. Find an infinite number of formulas that are iINDEPENDENT of \mathcal{G} . Justify your answer.

Solution

There is countably infinitely many atomic formulas A=d where $d \in VAR - \{a, b, c\}$.

PROBLEM 2

Given a language $\mathcal{L} = \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$. We a define a L₄ semantics as follows.

Logical values are F, \perp_1 , \perp_2 , T and they are ordered: $F < \perp_1 < \perp_2 < T$.

The connectives are defined as follow

 $\neg \bot_1 = \bot_1, \ \neg \bot_2 = \bot_2, \ \neg F = T, \ \neg T = F.$

For any $x, y \in \{F, \bot_1, \bot_2, T\}$, $x \cap y = min\{x, y\}$, $x \cup y = max\{x, y\}$, and

$$x \Rightarrow y = \begin{cases} \neg x \cup y & \text{if } x > y \\ T & \text{otherwise} \end{cases}$$

1. Write Truth Tables for implication and negation.

Solution

\Rightarrow	F	\perp_1	\perp_2	Т
F	Т	Т	Т	Т
\perp_1	\perp_1	Т	Т	Т
\perp_2	\perp_2	\perp_2	Т	Т
Т	F	\perp_1	\perp_2	Т

2. Prove/disaprove: $\models_{\mathbf{L}_4}((a \Rightarrow b) \Rightarrow (\neg a \cup b))$. Use **shorthand** notation.

Solution

Let *v* be a truth assignment such that $v(a) = v(b) = \bot_1$. We evaluate $v^*((a \Rightarrow b) \Rightarrow (\neg a \cup b)) = ((\bot_1 \Rightarrow \bot_1) \Rightarrow (\neg \bot_1 \cup \bot_1)) = (T \Rightarrow (\bot_1 \cup \bot_1)) = (T \Rightarrow \bot_1) = \bot_1$.

This proves that *v* is a **counter-model** for our formula and that $\not\models_{\mathbf{L}_4} ((a \Rightarrow b) \Rightarrow (\neg a \cup b))$.

Observe that there are other counter-models. For example, *v* such that $v(a) = v(b) = \bot_2$ is also a counter model, as $v^*((a \Rightarrow b) \Rightarrow (\neg a \cup b)) = ((\bot_2 \Rightarrow \bot_2) \Rightarrow (\neg \bot_2 \cup \bot_2)) = (T \Rightarrow (\bot_2 \cup \bot_2)) = (T \Rightarrow \bot_2) = \bot_2$.

3. Prove that the equivalence defining \cup in terms of negation and implication in classical logic **does not hold** under L₄, i.e. prove that $(A \cup B) \not\equiv_{L_4} (\neg A \Rightarrow B)$.

Solution

Any v such that $v^*(A) = \perp_2$ and $v^*(B) = \perp_1$ is a **counter-model**. This is not the only counter-model.

PROBLEM 3

Consider the Hilbert system $H1 = (\mathcal{L}_{\{\Rightarrow\}}, \mathcal{F}, \{A1, A2\}, (MP) \xrightarrow{A ; (A \Rightarrow B)}{B})$ where for any $A, B \in \mathcal{F}$

 $A1; \ (A \Rightarrow (B \Rightarrow A)), \quad A2: \ ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))).$

1. We have proved that the **Deduction Theorem** holds for *H*1.

Use **Deduction Theorem** to prove $(A \Rightarrow (C \Rightarrow B)) \vdash_H (C \Rightarrow (A \Rightarrow B))$.

Solution

We apply the **Deduction Theorem** twice, i.e. we get

 $(A \Rightarrow (C \Rightarrow B)) \vdash_H (C \Rightarrow (A \Rightarrow B))$ if and only if

 $(A \Rightarrow (C \Rightarrow B)), C \vdash_H (A \Rightarrow B)$ if and only if

$$(A \Rightarrow (C \Rightarrow B)), C, A \vdash_H B$$

We now construct a proof of $(A \Rightarrow (C \Rightarrow B)), C, A \vdash_H B$ as follows

- B_1 : $(A \Rightarrow (C \Rightarrow B))$ hypothesis
- B_2 : C hypothesis
- B_3 : A hypothesis
- $B_4: (C \Rightarrow B) \quad B_1, B_3 \text{ and } (MP)$

 B_5 : C B_2 , B_4 and (MP)

2. Explain why **1.** proves that $(\neg a \Rightarrow ((b \Rightarrow \neg a) \Rightarrow b)) \vdash_H ((b \Rightarrow \neg a) \Rightarrow (\neg a \Rightarrow b))$.

Solution

This is **1.** for $A = \neg a$, $C = (b \Rightarrow \neg a)$, and B = b.

3. H1 is sound under classical semantics. Explain why H1 is not complete.

Solution

- The system *S* is not complete under classical semantics means that not all classical tautologies have a proof in *S*. We have proved that one needs negation and one of other connectives \cup, \cap, \Rightarrow to express all classical connectives, and hence all classical tautologies. Our language contains only implication and one can't express negation in terms of implication alone and hence we can't provide a proof of any tautology i.e. its logically equivalent form in our language $\mathcal{L}_{\{\Rightarrow\}}$.
- **4.** Let *H*2 be the proof system obtained from the system *H*1 by **extending the language** to contain the negation ¬ and **adding** one additional axiom:

A3 $((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B))).$

Explain shortly why Deduction Theorem holds for H2.

Solution

5. We know that *H*2 is complete.

Let H3 be the proof system obtained from the system H2 adding additional axiom

A4
$$(\neg (A \Rightarrow B) \Rightarrow \neg (A \Rightarrow \neg B))$$

Does Deduction Theorem holds for H3? Justify.

Solution

Does Completeness Theorem holds for H3? Justify.

Solution

No, it does't. The system H3 is not sound. Axiom A4 is not a tautology.

Any v such that A=T and B=F is a **counter model** for $(\neg(A \Rightarrow B) \Rightarrow \neg(A \Rightarrow \neg B))$.

The proof of the Deduction Theorem for H1 used only axioms A1, A2 so Adding axiom A3 (and adding \neg to the language) does not change anything in the proof. Hence **Deduction Theorem** holds for H2.

PROBLEM 4

Let GL be the Gentzen style proof system for classical logic defined in chapter 6.

Prove, by constructing a proper decomposition tree that

$$\vdash_{\mathbf{GL}} ((\neg a \Rightarrow \neg \neg b) \Rightarrow (\neg b \Rightarrow a))$$

Solution

By definition we have that

 $\vdash_{\mathbf{GL}} ((\neg a \Rightarrow \neg \neg b) \Rightarrow (\neg b \Rightarrow a)) \quad \text{if and only if} \quad \vdash_{\mathbf{GL}} \longrightarrow ((\neg a \Rightarrow \neg \neg b) \Rightarrow (\neg b \Rightarrow a)).$

$$\mathbf{T}_{\rightarrow A}$$

$$\longrightarrow ((\neg a \Rightarrow \neg \neg b) \Rightarrow (\neg b \Rightarrow a))$$

$$|(\rightarrow \Rightarrow)$$

$$(\neg a \Rightarrow \neg \neg b) \longrightarrow (\neg b \Rightarrow a)$$

$$|(\rightarrow \Rightarrow)$$

$$\neg b, (\neg a \Rightarrow \neg \neg b) \longrightarrow a$$

$$|(\rightarrow \neg)$$

$$(\neg a \Rightarrow \neg \neg b) \longrightarrow b, a$$

$$\bigwedge (\Rightarrow \longrightarrow)$$

$$\rightarrow \neg a, b, a$$

$$\neg \neg b \longrightarrow b, a$$

$$|(\rightarrow \neg)$$

$$|(\neg \rightarrow)$$

$ (\rightarrow \neg)$	$\mid (\neg \rightarrow)$
$a \longrightarrow b, a$	$\longrightarrow \neg b, b, a$
axiom	$\mid (\rightarrow \neg)$
	$b \longrightarrow b, a$
	axiom

All leaves of the tree are axioms, hence we have found the proof of A in GL.

a

PROBLEM 5

Prove, by constructing proper decomposition trees that

$$\mathscr{F}_{\mathbf{GL}} \left((b \Rightarrow a) \Rightarrow (\neg a \Rightarrow b) \right)$$

Solution

Observe that for any formula *A*, its decomposition tree $\mathbf{T}_{\rightarrow A}$ in **GL** is not unique. Hence when constructing decomposition trees we have to cover all possible cases.

We construct the decomposition tree for $\longrightarrow A$ as follows.

$\mathbf{T}_{1 \to A}$

$$\rightarrow ((b \Rightarrow a) \Rightarrow (\neg a \Rightarrow b)) | (\rightarrow \Rightarrow) (one choice) (b \Rightarrow a) \rightarrow (\neg a \Rightarrow b) | (\rightarrow \Rightarrow) (first of two choices) \neg a, (b \Rightarrow a) \rightarrow b | (\neg \rightarrow) (one choice) (b \Rightarrow a) \rightarrow a, b \land (\Rightarrow \rightarrow) (one choice) (b ⇒ a) (((b ⇒ a) ((b ⇒ a)$$

 $\longrightarrow b, a, b$ $a \longrightarrow a, b$ non – axiom axiom

The tree contains a non- axiom leaf $\rightarrow b, a, b$, hence it is not a proof in **GL**.

We have only one more tree to construct. Here it is.

$\mathbf{T}_{2 \rightarrow A}$

$$\rightarrow ((b \Rightarrow a) \Rightarrow (\neg a \Rightarrow b)) | (\rightarrow \Rightarrow) (one choice) (b \Rightarrow a) \rightarrow (\neg a \Rightarrow b)$$

 $\bigwedge (\Rightarrow \longrightarrow)$ (second of two choices)

$\longrightarrow (\neg a \Rightarrow b), b$	$a \longrightarrow (\neg a \Rightarrow b)$
$(\longrightarrow \Rightarrow)$	$ \left(\rightarrow\Rightarrow\right)$
(one choice)	(one choice)
$\neg a \longrightarrow b, b$	$a, \neg a \longrightarrow b$
$ (\neg \rightarrow)$	$ (\neg \rightarrow)$
(one choice)	(one choice)
$\longrightarrow a, b, b$	$a \longrightarrow a, b$
non – axiom	axiom

All possible trees end with an non-axiom leave whet proves that

$$\mathcal{F}_{\mathbf{GL}} ((b \Rightarrow a) \Rightarrow (\neg a \Rightarrow b)).$$

PROBLEM 6

Let GL be the Gentzen style proof system for classical logic defined in chapter 6.

Prove, by constructing a counter-model defined by a proper decomposition tree that

$$\not\models ((a \Rightarrow (\neg b \cap c)) \Rightarrow (\neg b \Rightarrow (a \cup \neg c)))$$

Explain why your counter -model construction is valid

Solution

$\mathbf{T}_{\rightarrow A}$

one of two choices

$$\neg b, (a \Rightarrow (\neg b \cap c)) \longrightarrow a, \neg c$$
one of two choices
$$| (\neg \rightarrow)$$

$$(a \Rightarrow (\neg b \cap c)) \longrightarrow a, \neg c, b$$
one of two choices
$$| (\rightarrow \neg)$$

$$c, (a \Rightarrow (\neg b \cap c)) \longrightarrow a, b$$

$$\bigwedge (\Rightarrow \rightarrow)$$

$$(\neg b \cap c) \longrightarrow a, b$$

$$| (\cap \rightarrow)$$

$$c \longrightarrow a, a, b \qquad (\neg b \cap c) \longrightarrow a, b$$

$$non - axiom \qquad | (\cap \longrightarrow)$$

$$\neg b, c \longrightarrow a, b$$

$$| (\neg \longrightarrow)$$

$$c \longrightarrow b, a, b$$

$$non - axiom$$

The counter-model model determined by the non-axiom leaf $c \rightarrow a, a, b$ is any truth assignment that evaluates it to F. Observe that (we use a shorthand notation) $c \rightarrow a, a, b = F$ if and only if c = T and a = F and b = F. The counter-model model determined by the non-axiom leaf $c \rightarrow b, a, b$ is any also any truth assignment that c = T and a = F and b = F.

The counter -model construction is valid because of the strong soundness of GL.

PROBLEM 7

Let LI be the Gentzen system for intuitionistic logic as defined in chapter 7.

Determine whether

$$\vdash_{\mathbf{LI}} \longrightarrow ((\neg a \cap \neg c) \Rightarrow \neg (a \cup c))$$

This means that you have to construct some, or all decomposition trees of

$$\rightarrow$$
 (($\neg a \cap \neg c$) $\Rightarrow \neg (a \cup c)$)

If you find a decomposition tree such that all its leaves are axioms, you have a proof.

If all possible decomposition trees have a non-axiom leaf, the proof in LI does not exist.

Solution

Consider the following decomposition tree of

$$\longrightarrow ((\neg a \cap \neg c) \Rightarrow \neg (a \cup c))$$

T1

The tree **T1** has a non-axiom leaf, so it does not constitute a proof in **LI**. But this fact does not yet prove that proof doesn't exist, as the decomposition tree in **LI** is not always unique.

Let's consider now the following tree.

T2

$$\longrightarrow ((\neg a \cap \neg c) \Rightarrow (\neg (a \cup c))$$
$$| (\longrightarrow \Rightarrow)$$
$$(\neg a \cap \neg c) \longrightarrow \neg (a \cup c)$$
$$| (\longrightarrow \neg)$$

$$(a \cup c), (\neg a \cap \neg c) \longrightarrow$$
$$|(exch \longrightarrow)$$
$$(\neg a \cap \neg c), (a \cup c) \longrightarrow$$
$$|(\cap \longrightarrow)$$
$$\neg a, \neg c, (a \cup c) \longrightarrow$$
$$|(exch \longrightarrow)$$
$$\neg a, (a \cup c), \neg c \longrightarrow$$
$$|(exch \longrightarrow)$$
$$(a \cup c), \neg a, \neg c \longrightarrow$$
$$\bigwedge (\cup \longrightarrow)$$

$a, \neg a, \neg c \longrightarrow$	$c, \neg a, \neg c \longrightarrow$
$ (exch \longrightarrow)$	$ (exch \longrightarrow)$
$\neg a, a, \neg c \longrightarrow$	$c, \neg c, \neg a \longrightarrow$
$ (\neg \longrightarrow)$	$ (exch \longrightarrow)$
$a, \neg c \longrightarrow a$	$\neg c,c,\neg a \longrightarrow$
axiom	$\mid (\neg \longrightarrow)$
	$c, \neg a \longrightarrow c$
	axiom

All leaves of T2 are axioms, what proves that T2 is a proof of A and hence we proved that

$$\vdash_{\mathbf{LI}} \longrightarrow ((\neg a \cap \neg c) \Rightarrow \neg (a \cup c))$$

Observe that your FIRST tree is T2, you have found the PROOF, so there is no need to examine any other trees