
CSE371/math371 Practice Final Fall 2022
(15 pts - extra credit)

Final - December 13, 11:15 am -1:45pm in the classroom.

.

PROBLEM 1

Given a set of formulas
G = {((a⇒ (a ∪ b)), (a ∪ b), ¬b, (c⇒ b)}

1. Show that G is CONSISTENT under classical semantics. Use shorthand notation.

Solution

We find a restricted model for G. The formula ((a ⇒ (a ∪ b)) is a tautology, hence any v is its model. ¬b = T only if
b=F. We evaluate (a ∪ b) = (a ∪ F) = T only if a=T. Consequently, (c ⇒ b) = (c ⇒ F) = T only if c=F. Hence,
any v, such that a=T, b= T, and c= F is a model for G.

2. Find a formula A that is iINDEPENDENT of G. Must prove it. Use shorthand notation.

Solution

THIS IS MY SOLUTION. THERE ARE MANY OTHERS!

Let A be any atomic formula d ∈ VAR − {a, b, c}. Any v, such that a=T, b= T, and c= F, d= T is a model for G ∪ {A}.
Any v, such that a=T, b= T, and c= F, d= F is a model for G ∪ {¬A}.

3. Find an infinite number of formulas that are iINDEPENDENT of G. Justify your answer.

Solution

There is countably infinitely many atomic formulas A=d where d ∈ VAR − {a, b, c}.

PROBLEM 2

Given a language L = L{¬,⇒,∪,∩}.We a define a L4 semantics as follows.

Logical values are F, ⊥1, ⊥2, T and they are ordered: F < ⊥1 < ⊥2 < T.

The connectives are defined as follow

¬⊥1 = ⊥1, ¬⊥2 = ⊥2, ¬F = T, ¬T = F.

For any x, y ∈ {F,⊥1,⊥2,T }, x ∩ y = min{x, y}, x ∪ y = max{x, y}, and

x⇒ y =
{
¬x ∪ y if x > y
T otherwise

1. Write Truth Tables for implication and negation.
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Solution
⇒ F ⊥1 ⊥2 T
F T T T T
⊥1 ⊥1 T T T
⊥2 ⊥2 ⊥2 T T
T F ⊥1 ⊥2 T

¬ F ⊥1 ⊥2 T
T ⊥1 ⊥2 F

2. Prove/disaprove: |=L4
((a⇒ b)⇒ (¬a ∪ b)). Use shorthand notation.

Solution

Let v be a truth assignment such that v(a) = v(b) = ⊥1.
We evaluate v∗((a⇒ b)⇒ (¬a ∪ b)) = ((⊥1 ⇒ ⊥1)⇒ (¬⊥1 ∪ ⊥1)) = (T ⇒ (⊥1 ∪ ⊥1)) = (T ⇒ ⊥1) = ⊥1.

This proves that v is a counter-model for our formula and that 6|=L4 ((a⇒ b)⇒ (¬a ∪ b)).

Observe that there are other counter-models. For example, v such that v(a) = v(b) = ⊥2 is also a counter model, as
v∗((a⇒ b)⇒ (¬a ∪ b)) = ((⊥2 ⇒ ⊥2)⇒ (¬⊥2 ∪ ⊥2)) = (T ⇒ (⊥2 ∪ ⊥2)) = (T ⇒ ⊥2) = ⊥2.

3. Prove that the equivalence defining ∪ in terms of negation and implication in classical logic does not hold under L4,
i.e. prove that (A ∪ B) .L4 (¬A⇒ B).

Solution

Any v such that v∗(A) =⊥2 and v∗(B) =⊥1 is a counter- model. This is not the only counter-model.

PROBLEM 3

Consider the Hilbert system H1 = ( L{⇒}, F , {A1, A2}, (MP) A ; (A⇒B)
B ) where for any A, B ∈ F

A1; (A⇒ (B⇒ A)), A2 : ((A⇒ (B⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))).

1. We have proved that the Deduction Theorem holds for H1.

Use Deduction Theorem to prove (A⇒ (C ⇒ B)) `H (C ⇒ (A⇒ B)).

Solution

We apply the Deduction Theorem twice, i.e. we get

(A⇒ (C ⇒ B)) `H (C ⇒ (A⇒ B)) if and only if

(A⇒ (C ⇒ B)), C `H (A⇒ B) if and only if

(A⇒ (C ⇒ B)), C, A `H B

We now construct a proof of (A⇒ (C ⇒ B)),C, A `H B as follows

B1 : (A⇒ (C ⇒ B)) hypothesis

B2 : C hypothesis

B3 : A hypothesis

B4 : (C ⇒ B) B1 , B3 and (MP)
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B5 : C B2 , B4 and (MP)

2. Explain why 1. proves that (¬a⇒ ((b⇒ ¬a)⇒ b)) `H ((b⇒ ¬a)⇒ (¬a⇒ b)).

Solution

This is 1. for A = ¬a, C = (b⇒ ¬a), and B = b.

3. H1 is sound under classical semantics. Explain why H1 is not complete.

Solution

The system S is not complete under classical semantics means that not all classical tautologies have a proof in S . We
have proved that one needs negation and one of other connectives ∪,∩,⇒ to express all classical connectives, and
hence all classical tautologies. Our language contains only implication and one can’t express negation in terms
of implication alone and hence we can’t provide a proof of any tautology i.e. its logically equivalent form in our
language L{⇒}.

4. Let H2 be the proof system obtained from the system H1 by extending the language to contain the negation ¬ and
adding one additional axiom:

A3 ((¬B⇒ ¬A)⇒ ((¬B⇒ A)⇒ B))).

Explain shortly why Deduction Theorem holds for H2.

Solution

The proof of the Deduction Theorem for H1 used only axioms A1, A2 so Adding axiom A3 (and adding ¬ to the language
) does not change anything in the proof. Hence Deduction Theorem holds for H2.

5. We know that H2 is complete.

Let H3 be the proof system obtained from the system H2 adding additional axiom

A4 (¬(A⇒ B)⇒ ¬(A⇒ ¬B))

Does Deduction Theorem holds for H3? Justify.

Solution

Does Completeness Theorem holds for H3? Justify.

Solution

No, it does’t. The system H3 is not sound. Axiom A4 is not a tautology.

Any v such that A=T and B=F is a counter model for (¬(A⇒ B)⇒ ¬(A⇒ ¬B)).
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PROBLEM 4

Let GL be the Gentzen style proof system for classical logic defined in chapter 6.

Prove, by constructing a proper decomposition tree that

`GL((¬a⇒ ¬¬b)⇒ (¬b⇒ a))

Solution

By definition we have that

`GL((¬a⇒ ¬¬b)⇒ (¬b⇒ a)) if and only if `GL −→ ((¬a⇒ ¬¬b)⇒ (¬b⇒ a)).

T→A

−→ ((¬a⇒ ¬¬b)⇒ (¬b⇒ a))

| (→⇒)

(¬a⇒ ¬¬b) −→ (¬b⇒ a)

| (→⇒)

¬b, (¬a⇒ ¬¬b) −→ a

| (→ ¬)

(¬a⇒ ¬¬b) −→ b, a∧
(⇒−→)

−→ ¬a, b, a

| (→ ¬)

a −→ b, a

axiom

¬¬b −→ b, a

| (¬ →)

−→ ¬b, b, a

| (→ ¬)

b −→ b, a

axiom

All leaves of the tree are axioms, hence we have found the proof of A in GL.

PROBLEM 5

Prove, by constructing proper decomposition trees that

0GL ((b⇒ a)⇒ (¬a⇒ b))

Solution

4



Observe that for any formula A, its decomposition tree T→A in GL is not unique. Hence when constructing decomposition
trees we have to cover all possible cases.

We construct the decomposition tree for −→ A as follows.

T1→A

−→ ((b⇒ a)⇒ (¬a⇒ b))

| (→⇒)

(one choice)

(b⇒ a) −→ (¬a⇒ b)

| (→⇒)

( f irst o f two choices)

¬a, (b⇒ a) −→ b

| (¬ →)

(one choice)

(b⇒ a) −→ a, b∧
(⇒−→)

(one choice)

−→ b, a, b

non − axiom

a −→ a, b

axiom

The tree contains a non- axiom leaf −→ b, a, b, hence it is not a proof in GL.

We have only one more tree to construct. Here it is.

T2→A

−→ ((b⇒ a)⇒ (¬a⇒ b))

| (→⇒)

(one choice)

(b⇒ a) −→ (¬a⇒ b)
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∧
(⇒−→)

(second o f two choices)

−→ (¬a⇒ b), b

(−→⇒)

(one choice)

¬a −→ b, b

| (¬ →)

(one choice)

−→ a, b, b

non − axiom

a −→ (¬a⇒ b)

| (→⇒)

(one choice)

a,¬a −→ b

| (¬ →)

(one choice)

a −→ a, b

axiom

All possible trees end with an non-axiom leave whet proves that

0GL ((b⇒ a)⇒ (¬a⇒ b)).

PROBLEM 6

Let GL be the Gentzen style proof system for classical logic defined in chapter 6.

Prove, by constructing a counter-model defined by a proper decomposition tree that

6|= ((a⇒ (¬b ∩ c))⇒ (¬b⇒ (a ∪ ¬c)))

Explain why your counter -model construction is valid

Solution

T→A

−→ ((a⇒ (¬b ∩ c))⇒ (¬b⇒ (a ∪ ¬c)))

| (→⇒)

(a⇒ (¬b ∩ c)) −→ (¬b⇒ (a ∪ ¬c))

| (→⇒))

one o f two choices

¬b, (a⇒ (¬b ∩ c)) −→ (a ∪ ¬c))

| (→ ∪)

one o f two choices
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¬b, (a⇒ (¬b ∩ c)) −→ a,¬c

one o f two choices

| (¬ →)

(a⇒ (¬b ∩ c)) −→ a,¬c, b

one o f two choices

| (→ ¬)

c, (a⇒ (¬b ∩ c)) −→ a, b∧
(⇒−→)

c −→ a, a, b

non − axiom

(¬b ∩ c) −→ a, b

| (∩ −→)

¬b, c −→ a, b

| (¬ −→)

c −→ b, a, b

non − axiom

The counter-model model determined by the non-axiom leaf c −→ a, a, b is any truth assignment that evaluates it to F.

Observe that (we use a shorthand notation) c −→ a, a, b = F if and only if c = T and a = F and b = F.

The counter-model model determined by the non-axiom leaf c −→ b, a, b is any also any truth assignment that

c = T and a = F and b = F.

The counter -model construction is valid because of the strong soundness of GL.

PROBLEM 7

Let LI be the Gentzen system for intuitionistic logic as defined in chapter 7.

Determine whether
`LI −→ ((¬a ∩ ¬c)⇒ ¬(a ∪ c))

This means that you have to construct some, or all decomposition trees of

−→ ((¬a ∩ ¬c)⇒ ¬(a ∪ c))

If you find a decomposition tree such that all its leaves are axioms, you have a proof.

If all possible decomposition trees have a non-axiom leaf, the proof in LI does not exist.
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Solution
Consider the following decomposition tree of

−→ ((¬a ∩ ¬c)⇒ ¬(a ∪ c))

T1

−→ ((¬a ∩ ¬c)⇒ (¬(a ∪ c))

| (−→⇒)

(¬a ∩ ¬c) −→ ¬(a ∪ c)

| (−→ ¬)

(a ∪ c), (¬a ∩ ¬c) −→

| (exch −→)

(¬a ∩ ¬c), (a ∪ c) −→

| (∩ −→)

¬a,¬c, (a ∪ c) −→

| (¬ −→)

¬c, (a ∪ c) −→ a

| (−→ weak)

¬c, (a ∪ c) −→

| (¬ −→)

(a ∪ c) −→ c∧
(∪ −→)

a −→ c

non − axiom

c −→ c

axiom

The tree T1 has a non-axiom leaf, so it does not constitute a proof in LI. But this fact does not yet prove that proof
doesn’t exist, as the decomposition tree in LI is not always unique.

Let’s consider now the following tree.

T2

−→ ((¬a ∩ ¬c)⇒ (¬(a ∪ c))

| (−→⇒)

(¬a ∩ ¬c) −→ ¬(a ∪ c)

| (−→ ¬)
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(a ∪ c), (¬a ∩ ¬c) −→

| (exch −→)

(¬a ∩ ¬c), (a ∪ c) −→

| (∩ −→)

¬a,¬c, (a ∪ c) −→

| (exch −→)

¬a, (a ∪ c),¬c −→

| (exch −→)

(a ∪ c),¬a,¬c −→∧
(∪ −→)

a,¬a,¬c −→

| (exch −→)

¬a, a,¬c −→

| (¬ −→)

a,¬c −→ a

axiom

c,¬a,¬c −→

| (exch −→)

c,¬c,¬a −→

| (exch −→)

¬c, c,¬a −→

| (¬ −→)

c,¬a −→ c

axiom

All leaves of T2 are axioms, what proves that T2 is a proof of A and hence we proved that

`LI −→ ((¬a ∩ ¬c)⇒ ¬(a ∪ c))

Observe that your FIRST tree is T2, you have found the PROOF, so there is no need to examine any other trees
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