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Introduction to Modal Logics

The non-classical logics can be divided in two groups:

those that rival classical logic and those which extend it

The Lukasiewicz, Kleene, and intuitionistic logics are in the
first group, the modal logics are in the second group

The rival logics do not differ from classical logic in terms of

the language employed

The rival logics differ in that certain theorems or tautologies

of classical logic are rendered false, or not provable in them



Introduction to Modal Logics

The most notorious example of the rival difference of logics

based on the same language is the law of excluded middle

(A ∪ ¬A)

This is provable in, and is a tautology of classical logic

But is not provable in, and is not tautology of the

intuitionistic logic

It also is not a tautology under any of the extensional logics

semantics we have discussed



Introduction to Modal Logics

Logics which extend classical logic sanction all the theorems

of classical logic but, generally, supplement it in two ways

Firstly, the languages of these non-classical logics are

extensions of those of classical logic

Secondly, the theorems of these non-classical logics

supplement those of classical logic



Introduction to Modal Logics

Modal logics are enriched by the addition of two new

connectives that represent the meaning of expressions

”it is necessary that” and ” it is possible that”

We use the notation:

I for ” it is necessary that” and

C for ” it is possible that”

Other notations commonly used are:

∇, N, L for ” it is necessary that” and

^, P, M for ” it is possible that”



Introduction to Modal Logics

The symbols N, L, P, M or alike, are often used in computer

science

The symbols ∇ and ^ were first to be used in modal logic

literature

The symbols I, C come from algebraic and topological

interpretation of modal logics

I corresponds to the topological interior of the set and C

to its closure



Introduction to Modal Logics

The idea of a modal logic was first formulated by an

American philosopher, C.I. Lewis in 1918

Lewis has proposed yet another interpretation of lasting

consequences, of the logical implication

He created a notion of a modal truth, which lead to the notion

of modal logic

He did it in an attempt to avoid, what some felt, the

paradoxes of semantics for classical implication which

accepts as true that a false sentence implies any sentence



Introduction to Modal Logics

Lewis’ notions appeal to epistemic considerations and the

whole area of modal logics bristles with philosophical

difficulties and hence the numbers of modal logics have been

created

Unlike the classical connectives, the modal connectives

do not admit of truth-functional interpretation, i.e.

the modal connectives do not accept the extensional

semantics

This was the reason for which modal logics were first

developed as proof systems, with intuitive notion of

semantics expressed by the set of adopted axioms



Introduction to Modal Logics

The first definition of modal semantics, and hence the proofs

of the completeness theorems came some 20 years later

It took yet another 25 years for discovery and development of

the second and more general approach to the modal

semantics

These are the two established ways to interpret

modal connectives, i.e. to define the modal semantics



Introduction to Modal Logics

The historically, the first modal semantics is due to

Mc Kinsey and Tarski (1948)

It is a topological semantics that provides a powerful

mathematical interpretation of some of modal logics, namely

modal S4 and S5

It connects the modal notion of necessity with the

topological notion of the interior of a set, and

the modal notion of possibility with the notion of the closure

of a set



Introduction to Modal Logics

Our choice of symbols I and C for necessity and

possibility connectives, respectively comes from their

topological interpretation

The topological interpretation mathematically powerful

as it is, is less universal in providing models for other

modal logics



Introduction to Modal Logics

The most recent and the most general modal semantics is

due to Kripke (1964) and uses the notion of possible worlds

Roughly, we say that the formula CA is true if A is true in

some possible world, called actual world

The formula IA is true if A is true in every possible world

We present here a short version of the topological semantics

in a form of algebraic models

We leave the Kripke semantics for the reader to explore

from other, multiple sources



Introduction to Modal Logics

As we have already mentioned, modal logics were first

developed, as was the intuitionistic logic, in a form of

proof systems only

First several Hilbert style formalizations (proof systems) for

modal logics were published by Lewis and Langford in

in 1932

They presented a formalization for two modal logics, which

they called S1 and S2 and outlined three other proof systems,

called S3, S4, and S5



Introduction to Modal Logics

Since then hundreds of modal logics have been and still are
created and investidated
Some standard, important and vidlely used books on Modal
ooks Logics were written by the following authors

Hughes and Cresswell (1969) for philosophical motivation for
various modal logics and the intuitionistic logic

Bowen (1979) for a detailed and uniform study of
Kripke models for modal logics

Segeberg (1971) for excellent modal logics classification

Fitting (1983) for extended and uniform studies of automated
proof systems and methods for classes of modal logics



Hilbert Style Modal Proof Systems



Hilbert Style Modal Proof Systems

We present now Hilbert style formalization for S4 and S5

logics that are due to Mc Kinsey and Tarski (1948), and

Rasiowa and Sikorski (1964)

We also discuss the relationship between S4 and S5 , and

between the intuitionistic logic and S4 modal logic, as was

first observed by Gödel

The formalizations stress the connection between S4, S5

and topological spaces which constitute models for them



Modal Language

Modal Language

We add two extra one argument connectives I and C to

the propositional language L{∪,∩,⇒,¬}, i.e. we adopt

L = L{∪,∩,⇒,¬,I,C}

as the modal language and we read formulas IA , CA as

necessary A and possible A, respectively



Modal Language

The Modal Language

L{∪,∩,⇒,¬,I,C}

is common to all modal logics

Modal logics differ on a choice of axioms and rules of

inference, when studied as proof systems and on

a choice of respective semantics



McKinsey, Tarski Proof Systems

As modal logics extend the classical logic, any modal logic
contains two groups of axioms: classical and modal

McKinsey, Tarski Proof System (1948)

Classical Axioms

We adopt as classical axioms any complete set of axioms
under classical semantics

Modal Axioms

M1 (IA ⇒ A)

M2 (I(A ⇒ B)⇒ (IA ⇒ IB))

M3 (IA ⇒ IIA)

M4 (CA ⇒ ICA)



Modal S4 and S5

Rules of inference

(MP)
A ; (A ⇒ B)

B
, and (I)

A
IA

The modal rule (I) was introduced by Gödel and is referred
to as a necessitation rule

We define modal proof systems S4 and S5 as follows

S4 = ( L, F , Classical Axioms, M1 −M3, (MP), (I) )

S5 = ( L, F , Classical Axioms, M1 −M4, (MP), (I) )



Modal S4 and S5

Observe that the axioms of S5 extend the axioms of S4

and both system share the same inference rules, hence

we immediately have the following fact

Fact For any formula A ∈ F ,

if `S4 A , then `S5 A



Rasiowa, Sikorski Proof Systems

Rasiowa, Sikorski Modal Proof System (1964)

It is often the case, as it is for S4 and S5, that modal

connectives are definable by each other and are defined

as follows

IA = ¬C¬A , and CA = ¬I¬A

Language

We hence assume now that the language L of Rasiowa,
Sikorski modal proof systems contains only one modal
connective and we choose it to be I and adopt the following

language

L = L{∩,∪,⇒,¬,I}



Rasiowa, Sikorski Proof Systems

Rasiowa, Sikorski (1964) Axioms

There are, as before, two groups of axioms: Classical

and Modal Axioms

Classical Axioms

We adopt as classical axioms any complete set of axioms
under classical semantics

Modal Axioms

R1 ((IA ∩ IB)⇒ I(A ∩ B))

R2 (IA ⇒ A)

R3 (IA ⇒ IIA)

R4 I(A ∪ ¬A)

R5 (¬I¬A ⇒ I¬I¬A)



Modal RS4 and RS5

Rules of inference

We adopt the Modus Ponens and an additional rule (RI)

(MP)
A ; (A ⇒ B)

B
and (RI)

(A ⇒ B)

(IA ⇒ IB)

We define modal proof systems RS4 and RS5 as follows

RS4 = ( L, F , Classical Axioms, R1 − R4, (MP), (RI) )

RS5 = ( L, F , Classical Axioms, R1 − R5, (MP), (RI) )



Modal RS4 and RS5

Observe that the axioms of RS5 extend the axioms of RS4

and both systems share the same inference rules,

hence we have immediately the following fact

Fact For any formula A ∈ F ,

if `RS4 A , then `RS5 A



Algebraic Semantics for S4 and S5



Algebraic Semantics for S4 and S5

The McKinsey, Tarski proof systems S4, S5 and the

Rasiowa, Sikorski proof systems RS4, RS5 are complete

with respect to both semantics; the topological semantics

and the Kripke semantics

We shortly discuss the topological semantics, and

corresponding algebraic completeness theorems

We leave the Kripke semantics for the reader to explore from

other, multiple sources



Algebraic Semantics for S4 and S5

The investigation of relationship between topology and

modal logics was initiated by McKinsey in 1941

It continued by McKinsey and Tarski in years 1944 - 1948

It culminated in creation of their algebraic semantics and

consequently developed into a field of Algebraic Logic



Algebraic Semantics for S4 and S5

The algebraic approach to logic is presented in detail in

the already classic algebraic logic books:

”Mathematics of Metamathematics”, Rasiowa, Sikorski
(1964),

”An Algebraic Approach to Non-Classical Logics”, Rasiowa
(1974)

We want to point out that the first idea of a connection

between modal propositional logic and topology is due to

Tang Tsao -Chen, (1938) and Dugunji (1940)



Algebraic Semantics for S4 and S5

Here are some basic definitions

Boolean Algebra

An abstract algebra B = (B , 1, 0, ⇒, ∩, ∪,¬) is said to
be a Boolean algebra if it is a distributive lattice and every
element a ∈ B has a complement ¬a ∈ B

Topological Boolean algebra

By a topological Boolean algebra we mean an abstract

algebra
B = (B , 1, 0, ⇒, ∩, ∪,¬, I)

where (B , 1, 0, ⇒, ∩, ∪,¬) is a Boolean algebra and

the following conditions hold for any a, b ∈ B

I(a ∩ b) = Ia ∩ Ib , Ia ∩ a = Ia, IIa = Ia, and I1 = 1



Algebraic Semantics for S4 and S5

The element Ia is called a interior of a

The element ¬I¬a is called a closure of a and will be
denoted by Ca

Thus the operations I and C are such that

Ca = ¬I¬a and Ia = ¬C¬a

In this case we write the topological Boolean algebra as

B = (B , 1, 0, ⇒, ∩, ∪,¬, I, C )

It is easy to prove that in in any topological Boolean algebra
the following conditions hold for any a, b ∈ B

C(a ∪ b) = Ca ∪ Cb , Ca ∪ a = Ca, CCa = Ca and C0 = 0



Algebraic Semantics for S4 and S5

Example

Let X be a topological space with an interior operation I

Then the family P(X) of all subsets of X is a topological
Boolean algebra with 1 = X , with

the operation ⇒ defined by the formula

Y ⇒ Z = (X − Y) ∪ Z for all subsets Y ,Z of X

and with set-theoretical operations of union, intersection,
complementation, and the interior operation I

Every sub algebra of this algebra is a topological Boolean
algebra, called a topological field of sets or, more precisely, a
topological field of subsets of X



Algebraic Semantics for S4 and S5

Given a topological Boolean algebra

(B , 1, 0, ⇒, ∩, ∪,¬)

The element a ∈ B is said to be open (closed)

if a = Ia (a = Ca)

Clopen Topological Boolean Algebra
A topological Boolean algebra

B = (B , 1, 0, ⇒, ∩, ∪,¬, I, C )

such that every open element is closed and every closed
element is open, i.e. such that for any a ∈ B

CIa = Ia and ICa = Ca

is called a clopen topological Boolean algebra



S4, S5 Tautology

We loosely say that a formula A is a modal S4 tautology

if and only if

any topological Boolean algebra is a model for A

We say that A is a modal S5 tautology

if and only if

any clopen topological Boolean algebra is a model for A

We put it formally as follows



Modal Algebraic Model

Modal Algebraic Model

For any formula A of a modal language L{∪,∩,⇒,¬,I,C} and for

any topological Boolean algebra

B = (B , 1, 0, ⇒, ∩, ∪,¬, I, C)

the algebra B is a model for the formula A and is denote by

B |= A

if and only if v∗(A) = 1 holds for all variables assignments

v : VAR −→ B



S4, S5 Tautology

Definition of S4 Tautology
A formula A is a modal S4 tautology and is denoted by

|=S4 A

if and only if for all topological Boolean algebras B
we have that

B |= A

Definition of S5 Tautology
A formula A is a modal S5 tautology and is denoted by

|=S5 A

if and only if for all clopen topological Boolean algebras B
we have that

B |= A



S4, S5 Completeness Theorem

We write `S4 A and `S5 A do denote provability any
proof system for modal S4, S5 logics and in particular the
proof systems defined here

Completeness Theorem

For any formula A of the modal language L{∪,∩, ⇒, ¬, I,C}

`S4 A if and only if |=S4 A

`S5 A if and only if |=S5 A

The completeness for S4,S4 follows directly from the
following general Algebraic Completeness Theorems



S4 Algebraic Completeness Theorem

S4 Algebraic Completeness Theorem

For any formula A of the modal language L{∪,∩,⇒,¬,I,C} the
following conditions are equivalent

(i) `S4 A

(ii) |=S4 A

(iii) A is valid in every topological field of sets B(X)

(iv) A is valid in every topological Boolean algebra B with
at most 22r

elements, where r is the number of all sub
formulas of A

(iv) v∗(A) = X for every variable assignment v in the
topological field of sets B(X) of all subsets of a dense-in
-itself metric space X , ∅ (in particular of an n-dimensional
Euclidean space X )



S4 Algebraic Completeness Theorem

S5 Algebraic Completeness Theorem

For any formula A of the modal language L{∪,∩,⇒,¬,I,C} the
following conditions are equivalent

(i) `S5 A

(ii) |=S5 A

(iii) A is valid in every clopen topological field of sets
B(X)

(iv) A is valid in every clopen topological Boolean algebra
B with at most 22r

elements, where r is the number of all
sub formulas of A



S4 and S5 Decidability

The equivalence of conditions (i) and (iv) of the Algebraic
Completeness Theorems proves the semantical decidability
of modal S4 and S5
S4, S5 Decidability
Any complete S4, S5 proof system is semantically
decidable, i.e. the following holds

`S4 A if and only if B |= A

for every topological Boolean algebra B with at most 22r

elements, where r is the number of all sub formulas of A
Similarly, we also have

`S5 A if and only if B |= A

for every clopen topological Boolean algebra B with at
most 22r

elements, where r is the number of all sub
formulas of A



S4 and S5 Syntactic Decidability

S4, S5 Syntactic Decidability (Wasilewska 1967,1971)

Rasiowa stated in 1950 an an open problem of providing a
cut-free RS type formalization for modal propositional S4
calculus

Wasilewska solved this open problem in 1967 and presented
the result at the ASL Summer School and Colloquium in
Mathematical Logic, Manchester, August 1969

It appeared in print as A Formalization of the Modal
Propositional S4-Calculus, Studia Logica, North Holland,
XXVII (1971)



S4 and S5 Syntactic Decidability

The paper also contained an algebraic proof of
completeness theorem followed by Gentzen cut-elimination
theorem, the Hauptzatz

The resulting implementation written in LISP-ALGOL was the
first modal logic theorem prover created

It was done with collaboration with B. Waligorski and the
authors didn’t think it to be worth a separate publication

Its existence was only mentioned in the published paper

The S5 Syntactic Decidability follows from the one for S4 and
the following Embedding Theorems



Modal S4 and Modal S5

The relationship between S4 and S5 was first established by
Ohnishi and Matsumoto in 1957-59 and is as follows .

Embedding 1

For any formula A ∈ F ,

|=S4A if and only if |=S5 ICA

`S4 A if and only if `S5 ICA

Embedding 2

For any formula A ∈ F

|=S5A if and only if |=S4ICIA

`S5A if and only if `S4 ICIA



On S4 derivable disjunction

In a classical logic it is possible for the disjunction (A ∪ B) to
be a tautology when neither A nor B is a tautology

This does not hold for the intuitionistic logic. We have a
following theorem similar to the intuitionistic case to the for
modal S4

Theorem McKinsey, Tarski (1948)

A disjunction (IA ∪ IB) is S4 provable if and only if either
A or B S4 provable, i.e.

`S4 (IA ∪ IB) if and only if `S4A or `S4 B



S4 and Intuitionistic Logic, S5 and Classical Logic



S4 and Intuitionistic Logic

As we have said in the introduction, Gödel was the first to
consider the connection between the intuitionistic logic and a
logic which was named later S4

Gödel’s proof was purely syntactic in its nature, as the
semantics for neither intuitionistic logic nor modal logicS4 had
not been invented yet

The algebraic proof of this fact, was first published by
McKinsey and Tarski in 1948



S4 and Intuitionistic Logic

We define here the Gödel-Tarski mapping establishing the
S4 and intuitionistic logic connection

We refer the reader to Rasiowa, Sikorski book ”Mathematics
of Metamathematics” (i965) for the algebraic proofs of its
properties and respective theorems



S4 and Intuitionistic Logic

Let L be a propositional language of modal logic i.e the
language

L = L{∩,∪,⇒,¬,I}

Let L0 be a language obtained from L by elimination of the
connective I and by the replacement the classical negation
connective ¬ by the intuitionistic negation, which we will
denote here by a symbol ∼

Such obtained language

L0 = L{∩,∪,⇒,∼}

is a propositional language of the intuitionistic logic



S4 and Intuitionistic Logic

In order to establish the connection between the languages

L and L0

and hence between modal and intuitionistic logic, we
consider a mapping f which to every formula A ∈ F0 of
L0 assigns a formula f(A) ∈ F of L

We define the mapping f as follows



Gödel - Tarski Mapping

Definition of Gödel-Tarski mapping

A function
f : F0 → F

such that
f(a) = Ia for any a ∈ VAR

f((A ⇒ B)) = I(f(A)⇒ f(B))

f((A ∪ B)) = (f(A) ∪ f(B))

f((A ∩ B)) = (f(A) ∩ f(B))

f(∼ A) = I¬f(A)

where A ,B are any formulas in L0 is called a Gödel-Tarski
mapping



Example

Example

Let A be a formula

((∼ A ∩ ∼ B)⇒∼ (A ∪ B))

and f be the Gödel-Tarski mapping. We evaluate f(A) as
follows

f((∼ A ∩ ∼ B)⇒∼ (A ∪ B)) =

I(f(∼ A ∩ ∼ B)⇒ f(∼ (A ∪ B)) =

I((f(∼ A) ∩ f(∼ B))⇒ f(∼ (A ∪ B)) =

I((I¬fA ∩ I¬fB)⇒ I¬f(A ∪ B)) =

I((I¬A ∩ I¬B)⇒ I¬(fA ∪ fB)) =

I((I¬A ∩ I¬B)⇒ I¬(A ∪ B))



S4 and Intuitionistic Logic

The following theorem established relationship between
intuitionistic and modal S4 logics

Theorem

Let f be the Gödel-Tarski mapping

For any formula A of intuitionistic language L0,

`I A if and only if `S4 f(A)

where I, S4 denote any proof systems for intuitionistic and
and S4 logic, respectively



Classical Logic and Modal S5

In order to establish the connection between the modal S5
and classical logics we consider the following G’́odel-Tarski
mapping between the modal language L{∩,∪,⇒,¬,I} and its
classical sub-language L{¬,∩,∪,⇒}

With every classical formula A we associate a modal formula
g(A) defined by induction on the length of A as follows:

g(a) = Ia, g((A ⇒ B)) = I(g(A)⇒ g(B),)

g((A ∪ B)) = (g(A) ∪ g(B)), g((A ∩ B)) = (g(A) ∩ g(B)),

g(¬A) = I¬g(A)



Classical Logic and Modal S5

The following theorem establishes relationship between
classical and S5 logics

Theorem
Let g be the Gödel-Tarski mapping between

L{¬,∩,∪,⇒} and L{∩,∪,⇒,¬,I}

For any formula A of L{¬,∩,∪,⇒},

`H A if and only if `S5 g(A)

where H, S5 denote any proof systems for classical and and
S5 modal logic, respectively


