
cse371/math371
LOGIC

Professor Anita Wasilewska

LECTURE 7a

Chapter 7
Introduction to Intuitionistic and Modal Logics

PART 4: Gentzen Sequent System LI

Gentzen Sequent System LI

G. Gentzen formulated in 1935 a first syntactically decidable

(in propositional case) proof systems for classical

and intuitionistic logics

He proved their equivalence with their well established,

respective Hilbert style formalizations

He named his classical system LK (K for Klassisch) and

intuitionistic system LI (I for Intuitionistisch)

Gentzen Sequent System LI

In order to prove the completeness of the system LK and

to prove the adequacy of LI he introduced a special

inference rule, called cut rule that corresponds to the

Modus Ponens rule in Hilbert style proof systems

Then, as the next step he proved the now famous Hauptzatz,

called in English the Cut Elimination Theorem

Gentzen Sequent System LI

Gentzen original proof system LI is a particular case of his

proof system LK for the classical logic

Both of them are presented in chapter 6 together with the

original Gentzen’s proof of the Hauptzatz for both, LK and LI

proof systems

The elimination of the cut rule and the structure of other

rules makes it possible to define effective automatic

procedures for proof search, what is impossible in a case of

the Hilbert style systems

LI Sequents

The Gentzen system LI is defined as follows.

Let
SQ = { Γ −→ ∆ : Γ,∆ ∈ F ∗ }

be the set of all Gentzen sequents built out of the formulas of

the language
L = L{∪,∩,⇒,¬}

and the additional Gentzen arrow symbol −→

We assume that all LI sequents are elements of a following

subset ISQ of the set SQ of all sequents

ISQ = {Γ −→ ∆ : ∆ consists of at most one formula }

The set ISQ is called the set of all intuitionistic sequents;
the LI sequents

Axioms of LI

Logical Axioms of LI consist of any sequent from the set

ISQ which contains a formula that appears on both sides of

the sequent arrow −→ , i.e any sequent of the form

Γ, A , ∆ −→ A

for Γ,∆ ∈ F ∗

Rules of Inference of LI

The set inference rules of LI is divided into two groups : the
structural rules and the logical rules

There are three Structural Rules of LI: Weakening,
Contraction and Exchange

Weakening structural rule

(weak →)
Γ −→ ∆

A , Γ −→ ∆

(→ weak)
Γ −→

Γ −→ A

A is called the weakening formula
Remember that ∆ contains at most one formula

Rules of Inference of LI

Contraction structural rule

(contr →)
A ,A , Γ −→ ∆

A , Γ −→ ∆

A is called the contraction formula

Remember that ∆ contains at most one formula

The rule below is not VALID for LI; we list it as it is used in
the classical case

(→ contr)
Γ −→ ∆, A ,A

Γ −→ ∆, A

Rules of Inference of LI

Exchange structural rule

(exch →)
Γ1, A ,B , Γ2 −→ ∆

Γ1, B ,A , Γ2 −→ ∆

Remember that ∆ contains at most one formula

The rule below is not VALID for LI; we list it as it is used in the

classical case

(→ exch)
∆ −→ Γ1, A ,B , Γ2

∆ −→ Γ1, B ,A , Γ2
.

Rules of Inference of LI

Logical Rules

Conjunction rules

(∩ →)
A ,B , Γ −→ ∆

(A ∩ B), Γ −→ ∆
,

(→ ∩)
Γ −→ A ; Γ −→ B

Γ −→ (A ∩ B)

Remember that ∆ contains at most one formula

Rules of Inference of LI

Disjunction rules

(→ ∪)1
Γ −→ A

Γ −→ (A ∪ B)

(→ ∪)2
Γ −→ B

Γ −→ (A ∪ B)

(∪ →)
A , Γ −→ ∆ ; B , Γ −→ ∆

(A ∪ B), Γ −→ ∆

Remember that ∆ contains at most one formula

Rules of Inference of LI

Implication rules

(→⇒)
A , Γ −→ B

Γ −→ (A ⇒ B)

(⇒→)
Γ −→ A ; B , Γ −→ ∆

(A ⇒ B), Γ −→ ∆

Remember that ∆ contains at most one formula

Gentzen System LI

Negation rules

(¬ →)
Γ −→ A
¬A , Γ −→

(→ ¬)
A , Γ −→

Γ −→ ¬A

We define the Gentzen system LI as

LI = (L, ISQ , LA , Structural rules, Logical rules)

LI Completeness

The completeness of the cut-free LI follows directly from

LI Hauptzatz proved in chapter 6 and the intuitionistic
completeness (Mostowski 1948)

Completeness of LI

For any sequent Γ −→ ∆ ∈ ISQ ,

`LI Γ −→ ∆ if and only of |=I Γ −→ ∆

In particular, for any formula A ,

`LI A if and only of |=I A

Intuitionistic Disjunction

The particular form the following theorem was stated without

the proof by Gödel in 1931

The theorem proved by Gentzen in 1935 via Hauptzatz and

we follow his proof

Intuitionistically Derivable Disjunction

For any formulas A ,B ∈ F ,

`LI (A ∪ B) if and only if `LI A or `LI B

In particular, a disjunction (A ∪ B) is intuitionistically

provable in any proof system I if and only if either A or B

is intuitionistically provable in I

Intuitionistic Disjunction

Proof of

`LI (A ∪ B) if and only if `LI A or `LI B

Assume `LI (A ∪ B)

This equivalent to `LI −→ (A ∪ B)

The last step in the proof of −→ (A ∪ B) in LI must be the
application of the rule (→ ∪)1 to the sequent −→ A , or the
application of the rule (→ ∪)2 to the sequent −→ B

There is no other possibilities

We have proved that `LI (A ∪ B) implies `LI A or `LI B

The inverse implication is obvious by respective applications
of rules (→ ∪)1 or (→ ∪)2 to the sequents −→ A or −→ B

Decomposition Trees in LI

Decomposition Trees in LI

Search for proofs in LI is a much more complicated

process then the one in classical logic systems RS or GL

defined in chapter 6

Here, as in any other Gentzen style proof system, proof

search procedure consists of building the decomposition

trees

Remark 1

In RS the decomposition tree TA of any formula A is

always unique

Decomposition Trees in LI

Remark 2

In GL the ”blind search” defines, for any formula A a finite

number of decomposition trees,

Nevertheless, it can be proved that the search can be

reduced to examining only one of them, due to the

absence of structural rules

Decomposition Trees in LI

Remark 3

In LI the structural rules play a vital role in the proof

construction and hence, in the proof search

The fact that a given decomposition tree ends with an

non- axiom leaf does not always imply that the proof

does not exist. It might only imply that our search strategy

was not good

The problem of deciding whether a given formula A does,

or does not have a proof in LI becomes more complex

than in the case of Gentzen system for classical logic

Decomposition Trees in LI

Before we define a heuristic method of searching for proof

and deciding whether such a proof exists or not we make

some observations

Observation 1

Logical rules of LI are similar to those in Gentzen type

classical formalizations we already examined in previous

chapters in a sense that each of them introduces a logical

connective

Decomposition Trees in LI

Observation 2

The process of searching for a proof is a decomposition
process in which we use the inverse of logical and structural
rules as decomposition rules

For example the implication rule:

(→⇒)
A , Γ −→ B

Γ −→ (A ⇒ B)

becomes an implication decomposition rule (we use the
same name (→⇒) in both cases)

(→⇒)
Γ −→ (A ⇒ B)

A , Γ −→ B

Decomposition Trees in LI

Observation 3

We write proofs as trees, so the proof search process is a
process of building decomposition trees

To facilitate the process we write the decomposition rules in
a tree decomposition form as follows

Γ −→ (A ⇒ B)

| (→⇒)

A , Γ −→ B

Decomposition Trees in LI

The two premisses rule (⇒→) written as the tree
decomposition rule becomes

(A ⇒ B), Γ −→ ∆∧
(⇒→)

Γ −→ A B , Γ −→ ∆

∆ contains at most one formula

Decomposition Trees in LI

The structural weakening rule written as the decomposition
rule is

(→ weak)
Γ −→ A

Γ −→

We write it in a tree decomposition form as

Γ −→ A

| (→ weak)

Γ −→

Decomposition Trees in LI

We define the notion of decomposable and indecomposable
formulas and sequents as follows

Decomposable formula is any formula of the degree ≥ 1

Decomposable sequent is any sequent that contains a
decomposable formula

Indecomposable formula is any formula of the degree 0
i.e. is any propositional variable

Decomposition Trees in LI

Remark

In a case of formulas written with use of capital letters
A ,B ,C , .. etc , we treat these letters as propositional
variables , i.e. as indecomposable formulas

Indecomposable sequent is a sequent formed from
indecomposable formulas only.

Decomposition Trees in LI

Decomposition Tree Construction (1)

Given a formula A we construct its decomposition tree TA

as follows

Root of the tree TA is the sequent −→ A

Given a node n of the tree we identify a decomposition rule
applicable at this node and write its premisses as the leaves
of the node n

We stop the decomposition process when we obtain an
axiom or all leaves of the tree are indecomposable

Decomposition Trees in LI

Observation 4

The decomposition tree TA obtained by the Construction
(1) most often is not unique

Observation 5

The fact that we find a decomposition tree TA with a
non-axiom leaf does not mean that 0LI A

This is due to the role of structural rules in LI and will be
discussed later

Proof Search Examples

Examples

We perform proof search and decide the existence of proofs
in LI for a given formula A ∈ F by constructing its
decomposition trees TA

We examine here some examples to show the complexity of
the problem

Reminder

In the following and similar examples when building the
decomposition trees for formulas representing general
schemas we treat the capital letters A ,B ,C ,D... as
propositional variables, i.e. as indecomposable formulas

Examples

Example 1

Determine] whether

`LI ((¬A ∩ ¬B)⇒ ¬(A ∪ B))

Observe that

If we find a decomposition tree of A in LI such that all its
leaves are axiom, we have a proof, i.e

`LI A

If all possible decomposition trees have a non-axiom leaf
then the proof of A i n LI does not exist, i.e.

0LI A

Examples

Consider the following decomposition tree T1A

−→ ((¬A ∩ ¬B)⇒ (¬(A ∪ B))

| (−→⇒)

(¬A ∩ ¬B) −→ ¬(A ∪ B)

| (−→ ¬)

(¬A ∩ ¬B), (A ∪ B) −→

| (∩ −→)

¬A , ¬B , (A ∪ B) −→

| (¬ −→)

¬B , (A ∪ B) −→ A

| (−→ weak)

¬B , (A ∪ B) −→

| (¬ −→)

(A ∪ B) −→ B∧
(∪ −→)

A −→ B

non − axiom

B −→ B

axiom

Examples

The tree T1A has a non-axiom leaf, so it does not
constitute a proof in LI

Observe that the decomposition tree in LI is not always
unique

Hence the existence of a non-axiom leaf does not yet prove
that the proof of A does not exist

Consider the following decomposition tree T2A

−→ ((¬A ∩ ¬B)⇒ (¬(A ∪ B))

| (−→⇒)

(¬A ∩ ¬B) −→ ¬(A ∪ B)

| (−→ ¬)

(A ∪ B), (¬A ∩ ¬B) −→

| (exch −→)

(¬A ∩ ¬B), (A ∪ B) −→

| (∩ −→)

¬A ,¬B , (A ∪ B) −→

| (exch −→)

¬A , (A ∪ B),¬B −→

| (exch −→)

(A ∪ B),¬A ,¬B −→∧
(∪ −→)

A ,¬A ,¬B −→

| (exch −→)

¬A ,A ,¬B −→

| (¬ −→)

A ,¬B −→ A

axiom

B ,¬A ,¬B −→

| (exch −→)

B ,¬B ,¬A −→

| (exch −→)

¬B ,B ,¬A −→

| (¬ −→)

B ,¬A −→ B ; axiom

Examples

All leaves of T2A are axioms

This means that the tree T2A is a a proof of A in LI

We hence proved that

`LI ((¬A ∩ ¬B)⇒ ¬(A ∪ B))

Examples

Example 2: Show that

1. `LI (A ⇒ ¬¬A)

2. 0LI (¬¬A ⇒ A)

Solution of 1.

We construct some, or all decomposition trees of

−→ (A ⇒ ¬¬A)

A tree TA that ends with all leaves being axioms is a
proof of A in LI

Examples

We construct TA as follows

−→ (A ⇒ ¬¬A)

| (−→⇒)

A −→ ¬¬A

| (−→ ¬)

¬A ,A −→

| (¬ −→)

A −→ A

axiom

All leaves of TA are axioms so we found the proof

We do not need to construct any other decomposition trees.

Examples

Solution of 2.

In order to prove that

0LI (¬¬A ⇒ A)

we have to construct all decomposition trees of

−→ (¬¬A ⇒ A)

and show that each of them has a non-axiom leaf

Examples

Here is T1A

−→ (¬¬A ⇒ A)

| (−→⇒)

one of 2 choices

¬¬A −→ A

| (−→ weak)

one of 3 choices

¬¬A −→

| (¬ −→)

one of 3 choices

−→ ¬A

| (−→ ¬)

one of 2 choices

A −→

non − axiom

Here is T2A

−→ (¬¬A ⇒ A)

| (−→⇒) one of 2 choices

¬¬A −→ A

| (contr −→) second of 2 choices

¬¬A ,¬¬A −→ A

| (−→ weak) first of 2 choices

¬¬A ,¬¬A −→

| (¬ −→) first of 2 choices

¬¬A −→ ¬A

| (−→ ¬) one of 2 choices

A ,¬¬A −→

| (exch −→) one of 2 choices

¬¬A ,A −→

| (¬ −→)one of 2 choices

A −→ ¬A

| (−→ ¬) first of 2 choices

A ,A −→

non − axiom

Structural Rules

We can see from the above decomposition trees that the
”blind” construction of all possible trees only leads to more
complicated trees

This is due to the presence of structural rules

The ”blind” application of the rule (contr →) gives always
an infinite number of decomposition trees

In order to decide that none of them will produce a proof we
need some extra knowledge about patterns of their
construction, or just simply about the number o useful of
application of structural rules

Structural Rules

In this case we can just make an ”external” observation that
the our first tree T1A is in a sense a minimal one

It means that all other trees would only complicate this one
in an inessential way, i.e. the we will never produce a tree
with all axioms leaves

One can formulate a deterministic procedure giving a finite
number of trees, but the proof of its correctness is needed
and that requires some extra knowledge

Within the scope of this book we accept the ”external
explanation as a sufficient solution

Structural Rules

As we can see from the above examples the structural rules
and especially the (contr −→) rule complicates the proof
searching task.

Both Gentzen type proof systems RS and GL from the
previous chapter don’t contain the structural rules

They also are as we have proved, complete with respect to
classical semantics.

The original Gentzen system LK which does contain the
structural rules is also, as proved by Gentzen, complete

Structural Rules

Hence all three classical proof system RS, GL, LK are
equivalent

This proves that the structural rules can be eliminated
from the system LK

A natural question of elimination of structural rules from
the system LI arises

The following example illustrates the negative answer

Examples

Example 3

We know that for any formula A ∈ F ,

|= A if and only if `I ¬¬A

where |= A means that A is classical tautology

`I A means that A is Intutionistically provable in any
intuitionistically complete proof system I

The system LI is intuitionistically complete so have that for
any formula A ∈ F ,

|= A if and only if `LI ¬¬A

Examples

Obviously |= (¬¬A ⇒ A), so we must have that

`LI ¬¬(¬¬A ⇒ A)

We are going to prove now that the rule (contr −→) is
essential to the existence of the proof ¬¬(¬¬A ⇒ A)

It means that ¬¬(¬¬A ⇒ A) is not provable without the
rule (contr −→)

The following decomposition tree TA is a proof of
¬¬(¬¬A ⇒ A) with use of the rule (contr −→)

Examples

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→

| (contr −→)

¬(¬¬A ⇒ A),¬(¬¬A ⇒ A) −→

| (¬ −→)

¬(¬¬A ⇒ A) −→ (¬¬A ⇒ A)

| (−→⇒)

¬¬A ,¬(¬¬A ⇒ A) −→ A

| (−→ weak)

¬¬A ,¬(¬¬A ⇒ A) −→

| (¬ −→)

¬(¬¬A ⇒ A) −→ ¬A

| (−→ ¬)

A ,¬(¬¬A ⇒ A) −→

| (exch −→)

¬(¬¬A ⇒ A),A −→

| (¬ −→)

A −→ (¬¬A ⇒ A)

| (−→⇒)

¬¬A ,A −→ A

axiom

Contraction Rule

Assume now that the rule (contr −→) is not available. All
possible decomposition trees are as follows
Tree T1A

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→

| (¬ −→)

−→ (¬¬A ⇒ A)

| (−→⇒)

¬¬A −→ A

| (−→ weak)

¬¬A −→

| (¬ −→)

−→ ¬A

| (−→ ¬)

A −→

non − axiom

Contraction Rule

The next is T2A

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→

| (¬ −→)

−→ (¬¬A ⇒ A)

| (−→ weak)

−→

non − axiom

Contraction Rule

The next is T3A

−→ ¬¬(¬¬A ⇒ A)

| (−→ weak)

−→

non − axiom

Contraction Rule

The last one is T4A

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→

| (¬ −→)

−→ (¬¬A ⇒ A)

| (−→⇒)

]

¬¬A −→ A

| (−→ weak)

¬¬A −→

| (¬ −→)

−→ ¬A

| (−→ weak)

−→

non − axiom

Contraction Rule

We have considered all possible decomposition trees that do
not involve the contraction rule (contr −→) and none of
them was a proof

This shows that the formula

¬¬(¬¬A ⇒ A)

is not provable in LI without (contr −→) rule, i.e. that we
proved the following

Fact

The contraction rule (contr −→) can not be eliminated
from LI

Proof Search Heuristic Method

Proof Search Heuristic Method

Before we define a heuristic method of searching for proof in
LI let’s make some additional observations to the already
made observations 1-5

Observation 6

The goal of constructing the decomposition tree is to obtain
axioms or indecomposable leaves

With respect to this goal the use logical decomposition rules
has a priority over the use of the structural rules

We use this information while describing the proof search
heuristic

Proof Search Heuristic Method

Observation 7

All logical decomposition rules (◦ →), where ◦ denotes any
connective, must have a formula we want to decompose as
the first formula at the decomposition node

It means that if we want to decompose a formula ◦A the
node must have a form ◦A , Γ −→ ∆

Remember: order of decomposition is important

Also sometimes it is necessary to decompose a formula
within the sequence Γ first, before decomposing ◦A in order
to find a proof

Proof Search Heuristic Method

For example, consider two nodes

n1 = ¬¬A , (A ∩ B) −→ B

and
n2 = (A ∩ B), ¬¬A −→ B

We are going to see that the results of decomposing n1 and
n2 differ dramatically

Let’s decompose the node n1

Observe that the only way to be able to decompose the
formula ¬¬A is to use the rule (→ weak) as a first step

The two possible decomposition trees that starts at the node
n1 are as follows

Proof Search Heuristic Method

First Tree
T1n1

¬¬A , (A ∩ B) −→ B

| (→ weak)

¬¬A , (A ∩ B) −→

| (¬ →)

(A ∩ B) −→ ¬A

| (∩ →)

A ,B −→ ¬A

| (→ ¬)

A ,A ,B −→

non − axiom

Proof Search Heuristic Method

Second Tree
T2n1

¬¬A , (A ∩ B) −→ B

| (→ weak)

¬¬A , (A ∩ B) −→

| (¬ →)

(A ∩ B) −→ ¬A

| (→ ¬)

A , (A ∩ B) −→

| (∩ →)

A ,A ,B −→

non − axiom

Proof Search Heuristic Method

Let’s now decompose the node n2

Observe that following our Observation 6 we start by
decomposing the formula (A ∩ B) by the use of the rule
(∩ →) as the first step
A decomposition tree that starts at the node n2 is as follows

Tn2

(A ∩ B),¬¬A −→ B

| (∩ →)

A ,B ,¬¬A −→ B

axiom

This proves that the node n2 is provable in LI, i.e.

`LI (A ∩ B),¬¬A −→ B

Proof Search Heuristic Method

Observation 8

The use of structural rules is important and necessary while
we search for proofs

Nevertheless we have to use them on the ”must” basis and
set up some guidelines and priorities for their use

For example, the use of weakening rule discharges the
weakening formula, and hence we might loose an
information that may be essential to finding the proof

We should use the weakening rule only when it is absolutely
necessary for the next decomposition steps

Proof Search Heuristic Method

Hence, the use of weakening rule (→ weak) can, and should
be restricted to the cases when it leads to possibility of the
future use of the negation rule (¬ →)

This was the case of the decomposition tree T1n1

We used the rule (→ weak) as an necessary step, but it
discharged too much information and we didn’t get a proof,
when proof on this node existed

Proof Search Heuristic Method

Here is such a proof

T3n1

¬¬A , (A ∩ B) −→ B

| (exch −→)

(A ∩ B),¬¬A −→ B

| (∩ →)

A ,B ,¬¬A −→ B

axiom

Proof Search Heuristic Method

Method
For any A ∈ F we construct the set of decomposition trees
T→A following the rules below.
1. Use first logical rules where applicable.
2. Use (exch →) rule to decompose, via logical rules, as
many formulas on the left side of −→ as possible
Remember that the order of decomposition matters! so you
have to cover different choices
3. Use (→ weak) only on a ”must” basis and in connection
with the possibility of the future use of the (¬ →) rule
4. Use (contr →) rule as the last recourse and only to
formulas that contain ¬ or⇒ as a main connective
5. Let’s call a formula A to which we apply (contr →) rule a
a contraction formula
6. The only contraction formulas are formulas containing ¬
or⇒ between theirs logical connectives

Proof Search Heuristic Method

7. Within the process of construction of all possible trees use
(contr →) rule only to contraction formulas

8. Let C be a contraction formula appearing on a node n
of the decomposition tree of T→A

For any contraction formula C, any node n, we apply
(contr →) rule to the the formula C at the node n at most as
many times as the number of sub-formulas of C

If we find a tree with all axiom leaves we have a proof, i.e.

`LIA

If all trees (finite number) have a non-axiom leaf we have
proved that proof of A does not exist, i.e.

0LI A

