cse371/math371
LOGIC

Professor Anita Wasilewska
LECTURE 3e
Chapter 3 REVIEW
Some Definitions and Problems
SOME DEFINITIONS: Part One

There are some basic **Definitions** and sample **Questions** with Solutions from **Chapter 3**

Study them them for **MIDTERM**

Knowing all basic **Definitions** is the first step for understanding the material and solve **Problems**

Solutions are very carefully written - so you could understand them step by step and hence correctly write yours, which do not need to be that detailed
DEFINITIONS: Propositional Extensional Semantics

Definition 1

Given a propositional language $\mathcal{L}_{	ext{CON}}$ for the set $\text{CON} = C_1 \cup C_2$, where C_1, C_2 are respectively the sets of unary and binary connectives.

Let V be a non-empty set of logical values.

Connectives $\triangledown \in C_1$, $\circ \in C_2$ are called extensional iff their semantics is defined by respective functions

\[\triangledown : V \to V \] and \[\circ : V \times V \to V \]
DEFINITIONS: Propositional Extensional Semantics

Definition 2

Formal definition of a propositional extensional semantics for a given language \mathcal{L}_{CON} consists of providing definitions of the following four main components:

1. Logical Connectives
2. Truth Assignment
3. Satisfaction, Model, Counter-Model
4. Tautology
CLASSICAL PROPOSITIONAL SEMANTICS
DEFINITIONS: Truth Assignment Extension v^*

Definition 3
The Language: $\mathcal{L} = \mathcal{L}_{\neg, \Rightarrow, \cup, \cap}$

Given the truth assignment $v : \text{VAR} \rightarrow \{T, F\}$ in classical semantics for the language $\mathcal{L} = \mathcal{L}_{\neg, \Rightarrow, \cup, \cap}$, we define its extension v^* to the set \mathcal{F} of all formulas of \mathcal{L} as $v^* : \mathcal{F} \rightarrow \{T, F\}$ such that

(i) for any $a \in \text{VAR}$

$$v^*(a) = v(a)$$

(ii) and for any $A, B \in \mathcal{F}$ we put

$$v^*(\neg A) = \neg v^*(A)$$

$$v^*((A \cap B)) = \cap(v^*(A), v^*(B))$$

$$v^*((A \cup B)) = \cup(v^*(A), v^*(B))$$

$$v^*((A \Rightarrow B)) = \Rightarrow(v^*(A), v^*(B))$$

$$v^*((A \Leftrightarrow B)) = \Leftrightarrow(v^*(A), v^*(B))$$
DEFINITIONS: Truth Assignment Extension v^* Revisited

Notation
For binary connectives (two argument functions) we adopt a convention to write the symbol of the connective (name of the 2 argument function) between its arguments as we do in a case arithmetic operations.

The condition (ii) of the definition of the extension v^* can be hence written as follows:

(ii) and for any $A, B \in \mathcal{F}$ we put

\[
\begin{align*}
 v^*(\neg A) &= \neg v^*(A); \\
 v^*((A \cap B)) &= v^*(A) \cap v^*(B); \\
 v^*((A \cup B)) &= v^*(A) \cup v^*(B); \\
 v^*((A \Rightarrow B)) &= v^*(A) \Rightarrow v^*(B); \\
 v^*((A \Leftrightarrow B)) &= v^*(A) \Leftrightarrow v^*(B)
\end{align*}
\]
DEFINITIONS: Satisfaction Relation

Definition 4 Let $v : VAR \rightarrow \{T, F\}$
We say that v satisfies a formula $A \in \mathcal{F}$ iff $v^*(A) = T$

Notation: $v \models A$
We say that v does not satisfy a formula $A \in \mathcal{F}$ iff $v^*(A) \neq T$

Notation: $v \not\models A$
DEFINITIONS: Model, Counter-Model, Classical Tautology

Definition 5
Given a formula $A \in \mathcal{F}$ and $v: \text{VAR} \rightarrow \{T, F\}$
We say that
v is a model for A iff $v \models A$
v is a counter-model for A iff $v \not\models A$

Definition 6
A is a tautology iff for any $v: \text{VAR} \rightarrow \{T, F\}$ we have that $v \models A$

Notation
We write symbolically $\models A$ to denote that A is a classical tautology
DEFINITIONS: Restricted Truth Assignments

Notation: for any formula A, we denote by VAR_A a set of all variables that appear in A.

Definition 7 Given a formula $A \in \mathcal{F}$, any function

$$v_A : \text{VAR}_A \rightarrow \{T, F\}$$

is called a truth assignment restricted to A.
DEFINITIONS: Restricted Model, Counter Model

Notation: for any formula A, we denote by VAR_A a set of all variables that appear in A

Definition 8 Given a formula $A \in \mathcal{F}$
Any function

$$w : \ VAR_A \longrightarrow \{T, F\} \text{ such that } w^*(A) = T$$

is called a restricted MODEL for A

Any function

$$w : \ VAR_A \longrightarrow \{T, F\} \text{ such that } w^*(A) \neq T$$

is called a restricted Counter- MODEL for A
DEFINITIONS: Models for Sets of Formulas

Consider $\mathcal{L} = \mathcal{L}\{\neg, \cup, \cap, \Rightarrow\}$ and let $S \neq \emptyset$ be any non empty set of formulas of \mathcal{L}, i.e.

$$S \subseteq \mathcal{F}$$

Definition 9

A truth truth assignment $v : VAR \longrightarrow \{T, F\}$ is a **model for the set** S of formulas if and only if

$$v \models A \text{ for all formulas } A \in S$$

We write

$$v \models S$$

to denote that v is a model for the set S of formulas.
DEFINITIONS: Consistent Sets of Formulas

Definition 10
A non-empty set $G \subseteq \mathcal{F}$ of formulas is called **consistent** if and only if G has a model, i.e. we have that

$G \subseteq \mathcal{F}$ is **consistent** if and only if

there is v such that $v \models G$

Otherwise G is called **inconsistent**
DEFINITIONS: Independent Statements

Definition 11
A formula A is called **independent** from a non-empty set $G \subseteq \mathcal{F}$ if and only if there are truth assignments v_1, v_2 such that

$$v_1 \models G \cup \{A\} \quad \text{and} \quad v_2 \models G \cup \{\neg A\}$$

i.e. we say that a formula A is **independent** if and only if

$$G \cup \{A\} \quad \text{and} \quad G \cup \{\neg A\} \quad \text{are consistent}$$
Many Valued Extensional Semantics M
DEFINITIONS: Semantics M

Definition 11
The extensional semantics M is defined for a non-empty set of V of *logical values of any cardinality*
We only *assume* that the set V of logical values of M always has a special, distinguished logical value which serves to define a notion of tautology
We denote this distinguished value as T

Formal definition of *many valued extensional semantics* M for the language L_{CON} consists of giving *definitions* of the following main components:
1. Logical Connectives under semantics M
2. Truth Assignment for M
3. Satisfaction Relation, Model, Counter-Model under semantics M
4. Tautology under semantics M
Definition of M - Extensional Connectives

Given a propositional language \mathcal{L}_{CON} for the set $CON = C_1 \cup C_2$, where C_1 is the set of all unary connectives, and C_2 is the set of all binary connectives.

Let V be a non-empty set of logical values adopted by the semantics M.

Definition 12

Connectives $\nabla \in C_1$, $\circ \in C_2$ are called M-extensional iff their semantics M is defined by respective functions

$$\nabla : V \to V \quad \text{and} \quad \circ : V \times V \to V$$
DEFINITION: Definability of Connectives under a semantics M

Given a propositional language L_{CON} and its extensional semantics M

We adopt the following definition

Definition 13

A connective $\circ \in CON$ is **definable** in terms of some connectives $\circ_1, \circ_2, ... \circ_n \in CON$ for $n \geq 1$ under the semantics M if and only if the connective \circ is a certain function composition of functions $\circ_1, \circ_2, ... \circ_n$ as they are defined by the semantics M
Definition 14

Given the \(\textbf{M} \) truth assignment \(v : \text{VAR} \rightarrow V \)

We define its \textbf{M extension} \(v^* \) to the set \(F \) of all formulas of \(\mathcal{L} \) as any function \(v^* : F \rightarrow V \), such that the following conditions are satisfied

(i) for any \(a \in \text{VAR} \)

\[v^*(a) = v(a); \]

(ii) For any connectives \(\triangledown \in \mathcal{C}_1, \circ \in \mathcal{C}_2 \) and for any formulas \(A, B \in F \) we put

\[v^*(\triangledown A) = \triangledown v^*(A) \]

\[v^*((A \circ B)) = \circ(v^*(A), v^*(B)) \]
DEFINITION: M Satisfaction, Model, Counter Model, Tautology

Definition 15 Let \(v : \text{VAR} \rightarrow V \)
Let \(T \in V \) be the distinguished logical value
We say that
\(v \models M A \) satisfies a formula \(A \in F \) (\(v \models M A \)) iff
\(v^*(A) = T \)

Definition 16
Given a formula \(A \in F \) and \(v : \text{VAR} \rightarrow V \)
Any \(v \) such that \(v \models M A \) is called a M model for \(A \)
Any \(v \) such that \(v \not\models M A \) is called a M counter model for \(A \)
\(A \) is a M tautology (\(\models M A \)) iff \(v \models M A \), for all \(v : \text{VAR} \rightarrow V \)
CHAPTER 3: Some Sample Questions with Solutions
Chapter 3: Question 1

Question 1
Find a restricted model for formula A, where

$$A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$$

You can’t use short-hand notation
Show each step of solution

Solution
For any formula A, we denote by VAR_A a set of all variables that appear in A
In our case we have $\text{VAR}_A = \{a, b, c\}$
Any function $\nu_A : \text{VAR}_A \rightarrow \{T, F\}$ is called a truth assignment restricted to A
Chapter 3: Question 1

Let \(\nu : \text{VAR} \rightarrow \{T, F\} \) be any truth assignment such that

\[
\nu(a) = \nu_A(a) = T, \quad \nu(b) = \nu_A(b) = T, \quad \nu(c) = \nu_A(c) = F
\]

We evaluate the value of the extension \(\nu^* \) of \(\nu \) on the formula \(A \) as follows

\[
\nu^*(A) = \nu^*((\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c))))
\]

\[
= \nu^*(\neg a) \Rightarrow \nu^*((\neg b \cup (b \Rightarrow \neg c)))
\]

\[
= \neg \nu^*(a) \Rightarrow (\nu^*(\neg b) \cup \nu^*((b \Rightarrow \neg c)))
\]

\[
= \neg \nu(a) \Rightarrow (\neg \nu(b) \cup (\nu(b) \Rightarrow \neg \nu(c)))
\]

\[
= \neg \nu_A(a) \Rightarrow (\neg \nu_A(b) \cup (\nu_A(b) \Rightarrow \neg \nu_A(c)))
\]

\[
(\neg T \Rightarrow (\neg T \cup (T \Rightarrow \neg F))) = F \Rightarrow (F \cup T) = F \Rightarrow T = T, \text{ i.e.}
\]

\[
\nu_A \models A \quad \text{and} \quad \nu \models A
\]
Chapter 3: Question 2

Question 2
Find a restricted model and a restricted counter-model for A, where

$$A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$$

You can use short-hand notation. Show work.

Solution
Notation: for any formula A, we denote by VAR_A a set of all variables that appear in A. In our case we have $\text{VAR}_A = \{a, b, c\}$.

Any function $v_A : \text{VAR}_A \rightarrow \{T, F\}$ is called a truth assignment restricted to A.

We define now $v_A(a) = T$, $v_A(b) = T$, $v_A(c) = F$, in shorthand: $a = T$, $b = T$, $c = F$ and evaluate

$$(\neg T \Rightarrow (\neg T \cup (T \Rightarrow \neg F))) = F \Rightarrow (F \cup T) = F \Rightarrow T = T,$$

i.e.

$$v_A \models A$$
Chapter 3: Question 2

Observe that

\((\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c))) = T\) when \(a = T\) and \(b, c\) any truth values as by definition of implication we have that \(F \Rightarrow \text{anything} = T\)

Hence \(a = T\) gives us 4 models as we have \(2^2\) possible values on \(b\) and \(c\)
Chapter 3: Question 2

We take as a **restricted counter-model**: \(a = F, \ b = T \) and \(c = T \)

Evaluation: observe that
\[
(\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c))) = F \quad \text{if and only if}
\]
\[
\neg a = T \quad \text{and} \quad (\neg b \cup (b \Rightarrow \neg c)) = F \quad \text{if and only if}
\]
\[
a = F, \ \neg b = F \quad \text{and} \quad (b \Rightarrow \neg c) = F \quad \text{if and only if}
\]
\[
a = F, b = T \quad \text{and} \quad (T \Rightarrow \neg c) = F \quad \text{if and only if}
\]
\[
a = F, b = T \quad \text{and} \quad \neg c = F \quad \text{if and only if}
\]
\[
a = F, b = T \quad \text{and} \quad c = T
\]
The above proves also that \(a = F, b = T \) and \(c = T \) is the only **restricted counter-model** for \(A \).
Question 3 Justify whether the following statements true or false

S1 There are more then 3 possible restricted counter-models for A
S2 There are more then 2 possible restricted models of A

Solution

S1 Statement: There are more then 3 possible restricted counter-models for A is false

We have just proved that there is only one possible restricted counter-model for A

S2 Statement: There are more then 2 possible restricted models of A is true

There are 7 possible restricted models for A

Justification: $2^3 - 1 = 7$
Chapter 3: Question 4

Question 4

1. List 3 models for A from Question 2, i.e. for formula

 \[A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c))) \]

 that are extensions to the set VAR of all variables of one of the restricted models that you have found in Questions 1,

2. List 2 counter models for A that are extensions of one of the restricted counter models that you have found in the Questions 1, 2
Chapter 3: Question 4

Solution

1. One of the **restricted models** is, for example a function $\nu_A : \{a, b, c\} \rightarrow \{T, F\}$ such that $\nu_A(a) = T$, $\nu_A(b) = T$, $\nu_A(c) = F$

We extend ν_A to the set of all propositional variables VAR to obtain a (non restricted) **models** as follows
Chapter 3: Question 4

Model \(w_1 \) is a function

\[
w_1 : \text{VAR} \rightarrow \{ T, F \}
\]
such that

\[
w_1(a) = v_A(a) = T, \quad w_1(b) = v_A(b) = T, \\
w_1(c) = v_A(c) = F, \quad \text{and} \quad w_1(x) = T, \quad \text{for all} \quad x \in \text{VAR} - \{a, b, c\}
\]

Model \(w_2 \) is defined by a formula

\[
w_2(a) = v_A(a) = T, \quad w_2(b) = v_A(b) = T, \\
w_2(c) = v_A(c) = F, \quad \text{and} \quad w_2(x) = F, \quad \text{for all} \quad x \in \text{VAR} - \{a, b, c\}
\]
Chapter 3: Question 4

Model w_3 is defined by a formula $w_3(a) = v_A(a) = T$, $w_3(b) = v_A(b) = T$, $w_3(c) = v(c) = F$, $w_3(d) = F$ and $w_3(x) = T$ for all $x \in VAR - \{a, b, c, d\}$

There is as many of such models, as extensions of v_A to the set VAR, i.e. as many as real numbers
Chapter 3: Question 4

2. A **counter-model** for a formula
 \[A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)) \] is, by **definition** any function
 \[v : \text{VAR} \rightarrow \{T, F\} \]
 such that \[v^*(A) = F \]
 A **restricted counter-model** for the formula \(A \), the only one, as already proved in is a function
 \[v_A : \{a, b\} \rightarrow \{T, F\} \]
 such that
 \[v_A(a) = F, \quad v_A(b) = T, \quad v_A(c) = T \]
Chapter 3: Question 4

We extend v_A to the set of all propositional variables VAR to obtain (non restricted) some counter-models. Here are two of such extensions.

Counter-model w_1:

- $w_1(a) = v_A(a) = F$
- $w_1(b) = v_A(b) = T$
- $w_1(c) = v(c) = T$
- $w_1(x) = F$ for all $x \in VAR - \{a, b, c\}$

Counter-model w_2:

- $w_2(a) = v_A(a) = T$
- $w_2(b) = v_A(b) = T$
- $w_2(c) = v(c) = T$
- $w_2(x) = T$ for all $x \in VAR - \{a, b, c\}$

There is as many of such counter-models, as extensions of v_A to the set VAR, i.e. as many as real numbers.
Chapter 3: Models for Sets of Formulas

Definition
A truth assignment v is a **model for a set** $G \subseteq \mathcal{F}$ of formulas of a given language $\mathcal{L} = \mathcal{L}\{\neg, \Rightarrow, \cup, \cap\}$ if and only if
\[
v \models B \quad \text{for all} \quad B \in G
\]
We denote it by $v \models G$.

Observe that the set $G \subseteq \mathcal{F}$ can be **finite** or **infinite**.
Chapter 3: Consistent Sets of Formulas

Definition
A set \(G \subseteq F \) of formulas is called **consistent** if and only if \(G \) has a model, i.e. we have that

\[
G \subseteq F \text{ is consistent if and only if there is } v \text{ such that } v \models G
\]

Otherwise \(G \) is called **inconsistent**
Chapter 3: Independent Statements

Definition
A formula A is called **independent** from a set $G \subseteq \mathcal{F}$ if and only if there are truth assignments v_1, v_2 such that

$$v_1 \models G \cup \{A\} \quad \text{and} \quad v_2 \models G \cup \{\neg A\}$$

i.e. we say that a formula A is **independent** if and only if

$$G \cup \{A\} \quad \text{and} \quad G \cup \{\neg A\} \quad \text{are consistent}$$
Chapter 3: Question 5

Question 5
Given a set \(G = \{((a \cap b) \Rightarrow b), (a \cup b), \neg a\} \)
Show that \(G \) is consistent

Solution
We have to find \(v : \text{VAR} \longrightarrow \{T, F\} \) such that \(v \models G \)
It means that we need to find a \(v \) such that

\[
v^*((a \cap b) \Rightarrow b) = T, \quad v^*(a \cup b) = T, \quad v^*(\neg a) = T
\]

We write it in the shorthand notation

\[
((a \cap b) \Rightarrow b) = T, \quad (a \cup b) = T, \quad \neg a = T
\]

We have to find out if it is possible
Chapter 3: Question 5

1. Observe that \(\models ((a \cap b) \Rightarrow b) \), hence we have that
\(v^*((a \cap b) \Rightarrow b) = T \) for any \(v \)

2. Case \(\neg a = T \) holds if and only if \(a = F \)

3. Case \((a \cup b) = T \) holds if and only if \((T \cup b) = T \) as \(a = F \), and this holds if and only if \(b = T \)

This proves that for any \(v : \text{VAR} \rightarrow \{T, F\} \) such that \(v(a) = F, \ v(b) = T \), is a model for \(G \) and so, by definition, that \(G \) is consistent

Moreover, we have proved that it is the only (restricted) model for \(G \)
Chapter 3: Question 6

Question 6
Show that a formula \(A = (\neg a \cap b) \) is not independent of

\[G = \{ ((a \cap b) \Rightarrow b), (a \cup b), \neg a \} \]

Solution
We have to show that it is impossible to construct \(v_1, v_2 \) such that

\[v_1 \models G \cup \{A\} \quad \text{and} \quad v_2 \models G \cup \{\neg A\} \]

Observe that we have just proved that any \(v \) such that \(v(a) = F, \) and \(v(b) = T \) is the only model restricted to the set of variables \(\{a, b\} \) for \(G \) so we have to check now if it is possible that for that formula \(A = (\neg a \cap b), \) \(v \models A \) and \(v \models \neg A \)
Chapter 3: Question 6

We have to evaluate \(v^*(A) \) and \(v^*(\neg A) \) for

\[v(a) = F, \quad \text{and} \quad v(b) = T \]

\[v^*(A) = v^*((\neg a \cap b)) = \neg v(a) \cap v(b) = \neg F \cap T = T \cap T = T \]

and so \(v \models A \)

\[v^*(\neg A) = \neg v^*(A) = \neg T = F \]

and so \(v \not\models \neg A \)

This ends the proof that \(A \) is not independent of \(G \)
Chapter 3: Question 7

Question 7
Find an infinite number of formulas that are independent of

\[G = \{ ((a \land b) \Rightarrow b), (a \lor b), \neg a \} \]

This my solution - there are many others, but this one seemed to me to be the simplest

Solution
We just proved that any \(v \) such that \(v(a) = F, \ v(b) = T \) is the only model restricted to the set of variables \(\{a, b\} \) and so all other possible models for \(G \) must be extensions of \(v \)
We define a countably infinite set of formulas (and their negations) and corresponding extensions of \(v \) (restricted to to the set of variables \(\{a, b\} \)) such that \(v \models G \) as follows.

Observe that all extensions of \(v \) restricted to to the set of variables \(\{a, b\} \) have as domain the infinitely countable set

\[
\text{VAR} - \{a, b\} = \{a_1, a_2, \ldots, a_n, \ldots\}
\]

We take as a set of formulas (to be proved to be independent) the set of atomic formulas

\[
\mathcal{F}_0 = \text{VAR} - \{a, b\} = \{a_1, a_2, \ldots, a_n, \ldots\}
\]
proof of independence of any formula of \mathcal{F}_0

Let $c \in \mathcal{F}_0$

We define truth assignments $v_1, v_2 : \text{VAR} \rightarrow \{T, F\}$ such that

$v_1 \models G \cup \{c\}$ and $v_2 \models G \cup \{\neg c\}$

as follows

$v_1(a) = v(a) = F, \quad v_1(b) = v(b) = T$ and $v_1(c) = T$

for all $c \in \mathcal{F}_0$

$v_2(a) = v(a) = F, \quad v_2(b) = v(b) = T$ and $v_2(c) = F$

for all $c \in \mathcal{F}_0$
CHAPTER 3
Some Extensional Many Valued Semantics
Chapter 3: Question 8

Question 8
We define a 4 valued H_4 logic semantics as follows

The language is $\mathcal{L} = \mathcal{L}\{\neg, \Rightarrow, \cup, \cap\}$

The logical connectives \neg, \Rightarrow, \cup, \cap of H_4 are operations in the set $\{F, \bot_1, \bot_2, T\}$, where $\{F < \bot_1 < \bot_2 < T\}$ and are defined as follows

Conjunction \cap is a function

$\cap : \{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \rightarrow \{F, \bot_1, \bot_2, , T\}$, such that for any $x, y \in \{F, \bot_1, \bot_2, T\}$

$$x \cap y = \min\{x, y\}$$
Chapter 3: Question 8

Disjunction \cup is a function
$\cup : \{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \rightarrow \{F, \bot_1, \bot_2, T\}$, such that for any $x, y \in \{F, \bot_1, \bot_2, T\}$

$$x \cup y = \max\{x, y\}$$

Implication \Rightarrow is a function
$\Rightarrow : \{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \rightarrow \{F, \bot_1, \bot_2, T\}$, such that for any $x, y \in \{F, \bot_1, \bot_2, T\}$,

$$x \Rightarrow y = \begin{cases} T & \text{if } x \leq y \\ y & \text{otherwise} \end{cases}$$

Negation: for any $x, y \in \{F, \bot_1, \bot_2, T\}$

$$\neg x = x \Rightarrow F$$
Chapter 3: Question 8

Part 1 Write Truth Tables for IMPLICATION and NEGATION in H_4

Solution

H_4 Implication

<table>
<thead>
<tr>
<th>\Rightarrow</th>
<th>F</th>
<th>\bot_1</th>
<th>\bot_2</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>\bot_1</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>\bot_2</td>
<td>F</td>
<td>\bot_1</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>\bot_1</td>
<td>\bot_2</td>
<td>T</td>
</tr>
</tbody>
</table>

H_4 Negation

<table>
<thead>
<tr>
<th>\neg</th>
<th>F</th>
<th>\bot_1</th>
<th>\bot_2</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Chapter 3: Question 7

Part 2 Verify whether

$$\models_{H_4} ((a \Rightarrow b) \Rightarrow (\neg a \cup b))$$

Solution
Take any \(v\) such that
\(v(a) = \bot_1\quad v(b) = \bot_2\)

Evaluate
\(v \ast ((a \Rightarrow b) \Rightarrow (\neg a \cup b)) = (\bot_1 \Rightarrow \bot_2) \Rightarrow (\neg \bot_1 \cup \bot_2) = T \Rightarrow (F \cup \bot_2)) = T \Rightarrow \bot_2 = \bot_2\)

This proves that our \(v\) is a counter-model and hence

$$\not\models_{H_4} ((a \Rightarrow b) \Rightarrow (\neg a \cup b))$$
Chapter 3: Question 9

Question 9
Show that (can’t use TTables!)

\[\vdash ((\neg a \cup b) \Rightarrow (((c \cap d) \Rightarrow \neg d) \Rightarrow (\neg a \cup b))) \]

Solution
Denote \(A = (\neg a \cup b) \), and \(B = ((c \cap d) \Rightarrow \neg d) \)

Our formula becomes a substitution of a **basic tautology**

\[(A \Rightarrow (B \Rightarrow A)) \]

and hence is a **tautology**
Chapter 3: Challenge Exercise

1. Define your own propositional language L_{CON} that contains also different connectives that the standard connectives \neg, \cup, \cap, \Rightarrow

Your language L_{CON} does not need to include all (if any!) of the standard connectives \neg, \cup, \cap, \Rightarrow

2. Describe intuitive meaning of the new connectives of your language

3. Give some motivation for your own semantic

4. Define formally your own extensional semantics M for your language L_{CON} - it means write carefully all Steps 1-4 of the definition of your M
Chapter 3: Question 10

Question 10

Definition

Let S_3 be a 3-valued semantics for $L_{\neg, \lor, \Rightarrow}$ defined as follows:

$V = \{F, U, T\}$ is the set of logical values with the distinguished value T

$x \Rightarrow y = \neg x \lor y$ for any $x, y \in \{F, U, T\}$

$\neg F = T$, $\neg U = F$, $\neg T = U$

and

<table>
<thead>
<tr>
<th>\lor</th>
<th>F</th>
<th>U</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>U</td>
<td>T</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
<td>T</td>
</tr>
</tbody>
</table>
Part 1
Consider the following classical tautologies:

\[A_1 = (a \cup \neg a), \quad A_2 = (a \Rightarrow (b \Rightarrow a)) \]

Find \(S_3 \) counter-models for \(A_1, A_2 \), if exist

You can’t use shorthand notation

Solution
Any \(v \) such that \(v(a) = v(b) = U \) is a counter-model for both \(A_1 \) and \(A_2 \), as

\[
\begin{align*}
 v^*(a \cup \neg a) &= v^*(a) \cup \neg v^*(b) = U \cup \neg U = U \cup F = U \neq T \\
 v^*(a \Rightarrow (b \Rightarrow a)) &= v^*(a) \Rightarrow (v^*(b) \Rightarrow v^*(a)) = U \Rightarrow (U \Rightarrow U) = U \Rightarrow U = \neg U \cup U = F \cup U = U \neq T
\end{align*}
\]
Question 10

Part 2
Consider the following classical tautologies:

\[A_1 = (a \cup \neg a), \quad A_2 = (a \Rightarrow (b \Rightarrow a)) \]

Define your own 2-valued semantics \(S_2 \) for \(L \), such that none of \(A_1, A_2 \) is a \(S_2 \) tautology

Verify your results. You can use shorthand notation.

Solution
This is not the only solution, but it is the simplest and most obvious I could think of! Here it is.

We define \(S_2 \) connectives as follows:

\[\neg x = F, \quad x \Rightarrow y = F, \quad x \cup y = F \] for all \(x, y \in \{F, T\} \)

Obviously, for any \(v \),

\[v^*(a \cup \neg a) = F \] and \[v^*(a \Rightarrow (b \Rightarrow a)) = F \]
Chapter 3: Question 11

Question 11
Prove using proper classical logical equivalences (list them at each step) that for any formulas A, B of language $\mathcal{L}_{\{\neg, \lor, \Rightarrow\}}$

$$\neg(A \Leftrightarrow B) \equiv ((A \cap \neg B) \cup (\neg A \cap B))$$

Solution

$$\neg(A \Leftrightarrow B) \equiv^{def} \neg((A \Rightarrow B) \cap (B \Rightarrow A))$$

$$\equiv^{deMorgan} (\neg(A \Rightarrow B) \cup \neg(B \Rightarrow A))$$

$$\equiv^{negimpl} ((A \cap \neg B) \cup (B \cap \neg A)) \equiv^{commut} ((A \cap \neg B) \cup (\neg A \cap B))$$
Question 12

Prove using proper **classical** logical equivalences (list them at each step) that for any formulas A, B of language $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$

$$(((B \cap \neg C) \Rightarrow (\neg A \cup B)) \equiv ((B \Rightarrow C) \cup (A \Rightarrow B))$$

Solution

$$(((B \cap \neg C) \Rightarrow (\neg A \cup B))$$

$\equiv impl((\neg (B \cap \neg C) \cup (\neg A \cup B))$

$\equiv deMorgan(((\neg B \cup \neg C) \cup (\neg A \cup B))$

$\equiv dneg(((\neg B \cup C) \cup (\neg A \cup B)) \equiv impl((B \Rightarrow C) \cup (A \Rightarrow B))$$
We define Ł connectives for \(\mathcal{L}\{\neg, \cup, \Rightarrow\} \) as follows

Ł **Negation** \(\neg \) is a function:

\[
\neg : \{T, \bot, F\} \rightarrow \{T, \bot, F\}
\]

such that \(\neg \bot = \bot, \ \neg T = F, \ \neg F = T \)

Ł **Conjunction** \(\cap \) is a function:

\[
\cap : \{T, \bot, F\} \times \{T, \bot, F\} \rightarrow \{T, \bot, F\}
\]

such that \(x \cap y = \min\{x, y\} \) for all \(x, y \in \{T, \bot, F\} \)

Remember that we assumed: \(F < \bot < T \)
Ł Implication ⇒ is a function:

⇒: \{T, \bot, F\} \times \{T, \bot, F\} \rightarrow \{T, \bot, F\}

such that

\[x \Rightarrow y = \begin{cases}
\neg x \cup y & \text{if } x > y \\
T & \text{otherwise}
\end{cases} \]

Given a formula \(((a \cap b) \Rightarrow \neg b) \in \mathcal{F}\) of \(\mathcal{L}_{\neg, \cup, \Rightarrow}\)

Use the fact that \(v : \text{VAR} \rightarrow \{F, \bot, T\}\) is such that

\[v^*((((a \cap b) \Rightarrow \neg b)) = \bot \] under Ł semantics to evaluate all possible \(v^*((((b \Rightarrow \neg a) \Rightarrow (a \Rightarrow \neg b))) \cup (a \Rightarrow b))\)

You can use shorthand notation
Question 13 Solution

Solution

The formula $((a \cap b) \Rightarrow \neg b) = \bot$ in Ł connectives semantics in two cases written is the shorthand notation as

C1 \((a \cap b) = \bot\) and \(\neg b = F\)

C2 \((a \cap b) = T\) and \(\neg b = \bot\).

Consider case **C1**

\(\neg b = F\), so \(v(b) = T\), and hence \((a \cap T) = v(a) \cap T = \bot\)

if and only if \(v(a) = \bot\)

It means that \(v^*((((a \cap b) \Rightarrow \neg b))) = \bot\) for any \(v\), is such that \(v(a) = \bot\) and \(v(b) = T\)
We now evaluate (in shorthand notation)

\[v^*(((b \Rightarrow \neg a) \Rightarrow (a \Rightarrow \neg b)) \cup (a \Rightarrow b)) \]

\[= (((T \Rightarrow \neg \bot) \Rightarrow (\bot \Rightarrow \neg T)) \cup (\bot \Rightarrow T)) = ((\bot \Rightarrow \bot) \cup T) = T \]

Consider now Case C2

\[\neg b = \bot, \text{ i.e. } b = \bot, \text{ and hence } (a \cap \bot) = T \text{ what is impossible, hence } v \text{ from the Case C1 is the only one} \]
Use the **Definability of Conjunction** in terms of disjunction and negation **Equivalence**

\[(A \cap B) \equiv \neg(\neg A \cup \neg B)\]

to transform a formula

\[A = \neg(\neg(\neg a \cap \neg b) \cap a)\]

of the language \(\mathcal{L}_{\{\cap, \neg}\}\) into a logically equivalent formula \(B\) of the language \(\mathcal{L}_{\{\cup, \neg}\}\)
Question 14

Solution

\[\neg(\neg(a \cap \neg b) \cap a) \equiv \neg(\neg(a \cap \neg b) \cup \neg a) \]

\[\equiv ((\neg a \cap \neg b) \cup \neg a) \equiv (\neg(a \cup \neg b) \cup \neg a) \]

\[\equiv \neg(a \cup b) \cup \neg a \]

The formula \(B \) of \(\mathcal{L}_{\{\cup, \neg\}} \) equivalent to \(A \) is

\[B = (\neg(a \cup b) \cup \neg a) \]
Equivalence of Languages Definition

Definition

Given two languages: \(L_1 = L_{\text{CON}_1} \) and \(L_2 = L_{\text{CON}_2} \), for \(\text{CON}_1 \neq \text{CON}_2 \)

We say that they are logically equivalent, i.e.

\[L_1 \equiv L_2 \]

if and only if the following conditions \(\textbf{C1}, \textbf{C2} \) hold.

\(\textbf{C1} \): for any formula \(A \) of \(L_1 \), there is a formula \(B \) of \(L_2 \), such that \(A \equiv B \)

\(\textbf{C2} \): for any formula \(C \) of \(L_2 \), there is a formula \(D \) of \(L_1 \), such that \(C \equiv D \)
Question 14

Prove the logical equivalence of the languages

\[L_{\{\neg, \cup\}} \equiv L_{\{\neg, \Rightarrow\}} \]

Solution

We need **two definability equivalences**: implication in terms of disjunction and negation

\[(A \Rightarrow B) \equiv (\neg A \cup B)\]

and disjunction in terms of implication and negation,

\[(A \cup B) \equiv (\neg A \Rightarrow B)\]

and the **Substitution Theorem**
Question 15

Prove the logical equivalence of the languages

\[\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}} \equiv \mathcal{L}_{\{\neg, \cap, \cup\}} \]

Solution

We need only the **definability of implication** in terms of disjunction and negation equivalence

\[(A \Rightarrow B) \equiv (\neg A \cup B) \]

as the **Substitution Theorem** for any formula \(A \) of \(\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}} \)

there is a formula \(B \) of \(\mathcal{L}_{\{\neg, \cap, \cup\}} \) such that \(A \equiv B \) and the condition **C1** holds

Observe that any formula \(A \) of language \(\mathcal{L}_{\{\neg, \cap, \cup\}} \) is also a formula of the language \(\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}} \) and of course \(A \equiv A \) so the condition **C2** also holds
Question 16

Prove that

\[\mathcal{L}_{\neg, \cap} \equiv \mathcal{L}_{\neg, \Rightarrow} \]

Solution

The equivalence of languages holds due to the following two definability of connectives equivalences, respectively

\[(A \cap B) \equiv \neg(A \Rightarrow \neg B), \quad (A \Rightarrow B) \equiv \neg(A \cap \neg B) \]

and Substitution Theorem
Question 17

Prove that in classical semantics

\[\mathcal{L}_{\{\neg, \Rightarrow\}} \equiv \mathcal{L}_{\{\neg, \Rightarrow, \cup\}} \]

Solution

OBSERVE that the condition \textbf{C1} holds because any formula of \(\mathcal{L}_{\{\neg, \Rightarrow\}} \) is also a formula of \(\mathcal{L}_{\{\neg, \Rightarrow, \cup\}} \).

Condition \textbf{C2} holds due to the following definability of connectives equivalence

\[(A \cup B) \equiv (\neg A \Rightarrow B)\]

and \textbf{Substitution Theorem}
Question 18

Prove that the equivalence defining \cup in terms of negation and implication in classical logic does not hold under \mathcal{L} semantics, i.e. that

$$(A \cup B) \neq_{\mathcal{L}} (\neg A \Rightarrow B)$$

but nevertheless

$$\mathcal{L}_{\{\neg, \Rightarrow\}} \equiv_{\mathcal{L}} \mathcal{L}_{\{\neg, \Rightarrow, \cup\}}$$
Question 18

Solution

We prove

$$\mathcal{L}_{\neg,\Rightarrow} \equiv_L \mathcal{L}_{\neg,\Rightarrow,\cup}$$

as follows

Condition **C2** holds because the definability of connectives equivalence

$$(A \cup B) \equiv_L ((A \Rightarrow B) \Rightarrow B)$$

Check it by verification as an exercise

C1 holds because any formula of $\mathcal{L}_{\neg,\Rightarrow}$ is a formula of $\mathcal{L}_{\neg,\Rightarrow,\cup}$

Observe that the equivalence $(A \cup B) \equiv (A \Rightarrow B) \Rightarrow B)$ provides also an alternative proof of **C2** in classical case