cse371/math371
LOGIC

Professor Anita Wasilewska
LECTURE 3d
CHAPTER 3
Classical Tautologies and Logical Equivalences

PART 1: Classical Tautologies
PART 2: Classical Logical Equivalence of Formulas
PART 3: Classical Logical Equivalence of Languages
PART 4: Semantics Logical Equivalence of Formulas
Semantics Logical Equivalence Languages
We present and discuss here a set of most widely used classical tautologies and logical equivalences.

We introduce a notion of equivalence of propositional languages under classical and under other semantics.

We also discuss the relationship between definability of connectives the equivalences of languages in classical and non-classical semantics.
Classical Tautologies

PART 1: Classical Tautologies
Classical Tautologies

We assume that all formulas considered here belong to the language

\[\mathcal{L} = \mathcal{L}\{\neg, \cup, \cap, \Rightarrow, \Leftrightarrow\} \]

Here is a list of some of the most known classical notions and tautologies

Modus Ponens known to the Stoics (3rd century B.C)

\[\models ((A \cap (A \Rightarrow B)) \Rightarrow B) \]

Detachment

\[\models ((A \cap (A \Leftrightarrow B)) \Rightarrow B) \]

\[\models ((B \cap (A \Leftrightarrow B)) \Rightarrow A) \]
Stoics, 3rd century B.C.

Hypothetical Syllogism

\[\vdash (((A \Rightarrow B) \cap (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)), \]
\[\vdash ((A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))), \]
\[\vdash ((B \Rightarrow C) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))). \]

Modus Tollendo Ponens

\[\vdash (((A \cup B) \cap \neg A) \Rightarrow B), \]
\[\vdash (((A \cup B) \cap \neg B) \Rightarrow A) \]
12 to 19 Century

Duns Scotus 12/13 century

\[\models (\neg A \Rightarrow (A \Rightarrow B)) \]

Clavius 16th century

\[\models ((\neg A \Rightarrow A) \Rightarrow A) \]

Frege 1879

\[\models (((A \Rightarrow (B \Rightarrow C)) \cap (A \Rightarrow B)) \Rightarrow (A \Rightarrow C)), \]
\[\models ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))) \]

Frege gave the first formulation of the classical propositional logic as a formalized axiomatic system.
CLASSICAL TAUTOLOGIES

YOU HAVE A VERY EXTENSIVE LIST OF CLASSICAL TAUTOLOGIES in CHAPTER 2 and in CHAPTER 3

Read them, memorize and use them to solve Hmk Problems listed in the BOOK and in published tests and quizzes

We will use them freely in the future Chapters assuming that you remember them
PART 2: Logical Equivalences
Logical Equivalence Definition

Logical equivalence:
For any formulas A, B, we say that are logically equivalent if and only if they always have the same logical value.

Notation: we write symbolically $A \equiv B$ to denote that A, B are logically equivalent.

Symbolic Definition

$A \equiv B$ if and only if $v^*(A) = v^*(B)$ for all $v : VAR \rightarrow \{T, F\}$
Logical Equivalence Property

The following property follows directly from the definition

Property

\[A \equiv B \quad \text{if and only if} \quad \vdash (A \iff B) \]

Remember
\equiv \text{ is not a logical connective}
\equiv \text{ is just a metalanguage symbol for saying that the formulas } A, B \text{ are logically equivalent}
Some of Logical Equivalence Laws

Laws of contraposition

\[(A \Rightarrow B) \equiv (\neg B \Rightarrow \neg A),\]

\[(B \Rightarrow A) \equiv (\neg A \Rightarrow \neg B),\]

\[(\neg A \Rightarrow B) \equiv (\neg B \Rightarrow A),\]

\[(A \Rightarrow \neg B) \equiv (B \Rightarrow \neg A)\]

Law of Double Negation

\[\neg\neg A \equiv A\]

Exercise: Prove validity of all of them
CLASSICAL LOGICAL EQUIVALENCES

YOU HAVE A VERY EXTENSIVE LIST OF CLASSICAL LOGICAL EQUIVALENCES in CHAPTER 3

Read them, memorize them and use to solve Hmk Problems listed in the BOOK and problems on your TESTS

We will use them freely in the future Chapters assuming that you remember them
Use of Logical Equivalence

Logical equivalence is a very useful notion to use when we want to obtain new formulas, or new tautologies on a base of some already known and we want to do so in a way that guarantee preservation of the logical value of the initial formula.
Use of Logical Equivalence

Example
We easily obtain new Law of Contraposition from the one we already have and from already known Law of Double Negation as follows

\[(\neg A \Rightarrow B) \equiv (\neg B \Rightarrow \neg \neg A) \equiv (\neg B \Rightarrow A), \text{ i.e. we proved that} \]

\[(\neg A \Rightarrow B) \equiv (\neg B \Rightarrow A)\]

\[(A \Rightarrow \neg B) \equiv (\neg \neg B \Rightarrow \neg A) \equiv (B \Rightarrow \neg A), \text{ i.e. we proved that} \]

\[(A \Rightarrow \neg B) \equiv (B \Rightarrow \neg A)\]
Substitution Theorem

The **correctness** of the above procedure of proving **new** equivalences from already the **known** ones is established by the following theorem

Substitution Theorem

Let B_1 be obtained from A_1 by **substitution** of a formula B for one or more occurrences of a sub-formula A of A_1, what we denote as

$$B_1 = A_1(A/B)$$

Then the following holds.

If $A \equiv B$, then $A_1 \equiv B_1$

Proof in the book - but write it as an exercise- and then check with the book
Example 1

Let A_1 be a formula $(C \cup D)$, i.e. $A_1 = (C \cup D)$ and let $C = \neg \neg C$

We get

$$B_1 = A_1(C/\neg \neg C) = (\neg \neg C \cup D)$$

By Double Negation Law

$$\neg \neg C \equiv C$$

So we get by Substitution Theorem that

$$(C \cup D) \equiv (\neg \neg C \cup D)$$
Example 2

We want to transform any formula with implication into a logically equivalent formula without implication.

We use in this type of problems one of the Definability of Connectives Equivalences that concerns the implication, for example we use

\[(A \Rightarrow B) \equiv (\neg A \cup B)\]

Remark that it is not the only one equivalence we can use.
Example 2

We transform via the **Substitution Theorem** a formula

\[((C \Rightarrow \neg B) \Rightarrow (B \cup C))\]

into its **logically equivalent** formula as follows

\[((C \Rightarrow \neg B) \Rightarrow (B \cup C)) \equiv (\neg(C \Rightarrow \neg B) \cup (B \cup C))\]

\equiv \neg(\neg C \cup \neg B) \cup (B \cup C)\quad \text{and we get that}

\[((C \Rightarrow \neg B) \Rightarrow (B \cup C)) \equiv (\neg(\neg C \cup \neg B) \cup (B \cup C))\]

Observe that if the formulas B, C contain \(\Rightarrow\) as logical connective we can continue this process until we obtain a logically equivalent formula not containing \(\Rightarrow\) at all.
PART 3: Definability of Connectives and Equivalences
Equivalence of Languages
Definability of Connectives Equivalences

Chapter 3 contains a large set of logical equivalences, or corresponding tautologies that deal with the definability of connectives in classical semantics.

Remember they the logical equivalences corresponding to the definability of connectives property is very strongly connected with the classical semantics.

We leave it as an excellent EXERCISE to verify which of them (in any) holds in which of our different non-classical semantics.
Definability of Connectives Equivalences

Definability of Implication in terms of negation and disjunction equivalence

\[(A \Rightarrow B) \equiv (\neg A \cup B)\]

is defined by a **classical tautology**

\[\models ((A \Rightarrow B) \leftrightarrow (\neg A \cup B))\]

We use the notion of **logical equivalence** instead of the **tautology** notion, as it makes the manipulation of formulas via **Substitution Theorem** much easier.
Definability of Connectives Equivalences

Here is the Definability of Implication in terms of negation and disjunction equivalence

\[(A \Rightarrow B) \equiv (\neg A \cup B)\]

The proof of this logical equivalence, and hence the corresponding tautology follows directly from definability of implication connective in terms of disjunction and negation connectives already proved for classical semantics, hence the same name
Proofs of Definability of Connectives Equivalences

We present here the proof of Definability of Implication in terms of negation and disjunction equivalence

\[(A \Rightarrow B) \equiv (\neg A \cup B)\]

as an example of a pattern to follow while conducting the proofs of Definability of Connectives Equivalences for other connectives
Proof of \((A \Rightarrow B) \equiv (\neg A \cup B)\)

By definition of logical equivalence we have that
\((A \Rightarrow B) \equiv (\neg A \cup B)\) holds if and only if

\[v^*(A \Rightarrow B) = v^*(\neg A \cup B)\]

for all \(v : \text{VAR} \rightarrow \{T, F\}\)

Observe that, by definition of \(v^*\) we have that

\[v^*(A \Rightarrow B) = v^*(A) \Rightarrow v^*(B) = \neg v^*(A) \cup v^*(B)\]

where \(v^*(A), v^*(B) \in \{T, F\}\) and \(\Rightarrow, \neg, \cup\) are functions defined by the classical semantics.

We have proved (definability of classical connectives) that for any \(x, y \in \{T, F\}\) we have that \(x \Rightarrow y = \neg x \cup y\)

hence \(v^*(A \Rightarrow B) = v^*(\neg A \cup B)\) for all \(v : \text{VAR} \rightarrow \{T, F\}\)

what **ends** the proof
Definability of Connectives Equivalences

Definability of Implication equivalence allows us, by the force of Substitution Theorem to replace any formula of the form \((A \Rightarrow B)\) placed anywhere in another formula by a formula \((\neg A \cup B)\)

Hence it allows us to recursively transform a given formula containing implication into an logically equivalent formula that does contain implication but contains negation and disjunction only
Equivalence of Languages

The **Substitution Theorem** and the equivalence

\[(A \Rightarrow B) \equiv (\neg A \cup B)\]

let us **transform a language** that contains implication into a language that does not contain the implication, but contains **negation** and **disjunction** instead.

Observe that we use this equivalence **recursively**, i.e. if the formulas \(A, B \) contain \(\Rightarrow \) as logical connective we **continue** this process until we obtain a logically equivalent formula **not containing** \(\Rightarrow \) at all.
Equivalence of Languages

Example
The language $L_1 = L\{\neg, \cap, \Rightarrow\}$ becomes a language $L_2 = L\{\neg, \cap, \cup\}$ such that all its formulas are colorred logically equivalent to the formulas of the language L_1.

We write it as the following condition C1:

C1: For any formula A of a language L_1, there is a formula B of the language L_2, such that $A \equiv B$.
Example 2

Let now A be a formula

$$(\neg A \cup (\neg A \cup \neg B))$$

We can use here the **definability of implication** equivalence

$$(A \Rightarrow B) \equiv (\neg A \cup B)$$

to **eliminate** disjunction as follows

$$(\neg A \cup (\neg A \cup \neg B)) \equiv (\neg A \cup (A \Rightarrow \neg B))$$

$$\equiv (A \Rightarrow (A \Rightarrow \neg B))$$
Example 2

Observe that we can’t always use the equivalence

\[(A \Rightarrow B) \equiv (\neg A \cup B)\]

to eliminate disjunction

For example, we can’t use it for a formula

\[((A \cup B) \cap \neg A)\]

Nevertheless we can eliminate disjunction from it, but we need a different equivalence
Connectives Elimination

In order to be able to transform any formula of a language containing disjunction (and some other connectives) into a language with negation and implication (and some other connectives), but without disjunction we need the following logical equivalence

Definability of Disjunction in terms of negation and implication

\[(A \cup B) \equiv (\neg A \Rightarrow B)\]
Example 3

Consider a formula

\[(A \cup B) \cap \neg A)\]

We use the equivalence

\[(A \cup B) \equiv (\neg A \Rightarrow B)\]

to transform \((A \cup B) \cap \neg A)\) into its logically equivalent form not containing \(\cup\) but containing \(\Rightarrow\) as follows.

\[((A \cup B) \cap \neg A) \equiv ((\neg A \Rightarrow B) \cap \neg A)\]
Equivalence of Languages

The equivalence

\[(A \cup B) \equiv (\neg A \Rightarrow B)\]

allows us to transform a language \(L_2 = L_{\{\neg, \cap, \cup\}}\) into a language \(L_1 = L_{\{\neg, \cap, \Rightarrow\}}\) with all their formulas being logically equivalent.
Equivalence of Languages

We write this property as the following condition C_2 similar to the already adopted condition C_1: for any formula A of L_1, there is a formula B of L_2, such that $A \equiv B$.

C_2: for any formula C of L_2, there is a formula D of L_1, such that $C \equiv D$

We say that the languages L_1 and L_2 for which the conditions C_1, C_2 hold are logically equivalent and we adopt the following definition
Equivalence of Languages Definition

Definition

Given two languages: \(L_1 = L_{\text{CON}_1} \) and \(L_2 = L_{\text{CON}_2} \), for \(\text{CON}_1 \neq \text{CON}_2 \)

We say that they are **logically equivalent**, i.e.

\[
L_1 \equiv L_2
\]

if and only if the following conditions \(\text{C1}, \text{C2} \) hold.

\(\text{C1:} \) for any formula \(A \) of \(L_1 \), there is a formula \(B \) of \(L_2 \), such that \(A \equiv B \)

\(\text{C2:} \) for any formula \(C \) of \(L_2 \), there is a formula \(D \) of \(L_1 \), such that \(C \equiv D \)
Example 4

To prove the logical equivalence of the languages

\[\mathcal{L}_{\neg, \cup} \equiv \mathcal{L}_{\neg, \Rightarrow} \]

we need **two definability equivalences:**

implication in terms of disjunction and negation

\[(A \Rightarrow B) \equiv (\neg A \cup B) \]

and **disjunction in terms of implication** and negation,

\[(A \cup B) \equiv (\neg A \Rightarrow B) \]

and the **Substitution Theorem**
Example 5

To prove the logical equivalence of the languages

\[\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}} \equiv \mathcal{L}_{\{\neg, \cap, \cup\}} \]

we need only the **definability of implication** in terms of disjunction and negation equivalence.

It proves, by **Substitution Theorem** that for any formula \(A\) of \(\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}\) there is a formula \(B\) of \(\mathcal{L}_{\{\neg, \cap, \cup\}}\) such that \(A \equiv B\) and the condition \(C1\) holds.

Observe that any formula \(A\) of language \(\mathcal{L}_{\{\neg, \cap, \cup\}}\) is also a formula of the language \(\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}\) and of course \(A \equiv A\) so the condition \(C2\) also holds.
Example 6

The logical equivalences:

Definability of Conjunction in terms of implication and negation

\[(A \cap B) \equiv \neg(A \Rightarrow \neg B)\]

and **Definability of Implication** in terms of conjunction and negation

\[(A \Rightarrow B) \equiv \neg(A \cap \neg B)\]

and the **Substitution Theorem** prove that

\[\mathcal{L}_{\neg, \cap} \equiv \mathcal{L}_{\neg, \Rightarrow}\].
Exercise 1

Exercise 1 Prove that

\[\mathcal{L}_{\cap, \neg} \equiv \mathcal{L}_{\cup, \neg} \]

Solution

Equivalence holds due to the **Substitution Theorem** and two definability of connectives equivalences:

\[(A \cap B) \equiv \neg(\neg A \cup \neg B), \quad (A \cup B) \equiv \neg(\neg A \cap \neg B) \]

They transform recursively any formula from \(\mathcal{L}_{\cap, \neg} \) into a formula of \(\mathcal{L}_{\cup, \neg} \) and vice-versa, respectively.
Exercise 2

Use the **Definability of Conjunction** in terms of disjunction and negation equivalence to transform a formula

\[A = \neg(\neg(a \land \neg b) \land a) \] of \(\mathcal{L}_{\{\land, \neg}\} \) into a logically equivalent formula \(B \) of \(\mathcal{L}_{\{\lor, \neg}\} \)

Solution

\[
\neg(\neg(a \land \neg b) \land a) \equiv \neg(\neg(\neg(a \land \neg b) \lor \neg a)) \\
\equiv ((\neg a \land \neg b) \lor \neg a) \equiv (\neg(\neg a \lor \neg b) \lor \neg a) \\
\equiv \neg((a \lor b) \lor \neg a)
\]

The formula \(B \) of \(\mathcal{L}_{\{\lor, \neg}\} \) equivalent to \(A \) is

\[B = (\neg(a \lor b) \lor \neg a) \]
Exercise 3

Prove by transformation, using proper logical equivalences that

\[\neg(A \leftrightarrow B) \equiv ((A \cap \neg B) \cup (\neg A \cap B)) \]

Solution

\[\neg(A \leftrightarrow B) \]
\[\equiv^{\text{def}} \neg((A \Rightarrow B) \cap (B \Rightarrow A)) \]
\[\equiv^{\text{de Morgan}} (\neg(A \Rightarrow B) \cup \neg(B \Rightarrow A)) \]
\[\equiv^{\text{neg impl}} ((A \cap \neg B) \cup (B \cap \neg A)) \]
\[\equiv^{\text{commut}} ((A \cap \neg B) \cup (\neg A \cap B)) \]
Exercise 4

Prove by transformation, using proper logical equivalences that

\[(((B \cap \neg C) \Rightarrow (\neg A \cup B)) \equiv ((B \Rightarrow C) \cup (A \Rightarrow B)) \]

Solution

\[(((B \cap \neg C) \Rightarrow (\neg A \cup B)) \equiv^{impl} (\neg(B \cap \neg C) \cup (\neg A \cup B)) \]
\[\equiv^{de\ Morgan} (((\neg B \cup \neg C) \cup (\neg A \cup B)) \equiv^{neg} (((\neg B \cup C) \cup (\neg A \cup B)) \equiv^{impl} ((B \Rightarrow C) \cup (A \Rightarrow B)) \]
PART 4

Semantics M Logical Equivalence of Formulas

Semantics M Logical Equivalence Languages
Given an extensional semantics M defined for a propositional language \mathcal{L}_{CON} and let $V \neq \emptyset$ be its set of logical values.

We say that any two formulas A, B of the language \mathcal{L}_{CON} are M-logically equivalent if and only if they always have the same logical value assigned by the semantics M.

Notation

we write symbolically $A \equiv_M B$ to denote that the formulas A, B are M-logically equivalent.
Definition

For any formulas A, B,

$$A \equiv_\mathbf{M} B \text{ if and only if } v^*(A) = v^*(B) \text{ for all } v : VAR \rightarrow V$$

Remember

$\equiv_\mathbf{M}$ is **not** a logical connective

$\equiv_\mathbf{M}$ is just a metalanguage **symbol** for saying

"Formulas A, B are \mathbf{M}-logically equivalent"
M - Logical Equivalence of Languages

Given two languages: \(L_1 = L_{\text{CON}_1} \) and \(L_2 = L_{\text{CON}_2} \), for \(\text{CON}_1 \neq \text{CON}_2 \)

We say that they are \textbf{M-logically equivalent}, i.e.

\[L_1 \equiv_M L_2 \]

if and only if the following conditions \textbf{C1, C2} hold.

\textbf{C1:} for any formula \(A \) of \(L_1 \), there is a formula \(B \) of \(L_2 \), such that \(A \equiv_M B \)

\textbf{C2:} for any formula \(C \) of \(L_2 \), there is a formula \(D \) of \(L_1 \), such that \(C \equiv_M D \)
Exercise 5

Exercise 5

Prove that in classical semantics

\[\mathcal{L}_{\neg, \Rightarrow} \equiv \mathcal{L}_{\neg, \Rightarrow, \cup} \]

Solution

Observe that the condition **C1** holds because any formula of \(\mathcal{L}_{\neg, \Rightarrow} \) is also a formula of \(\mathcal{L}_{\neg, \Rightarrow, \cup} \).

Condition **C2** holds due to the following definability of connectives equivalence

\[(A \cup B) \equiv (\neg A \Rightarrow B) \]

and the **Substitution Theorem**
Exercise 6

Exercise 6

Prove that the equivalence defining \cup in terms of negation and implication in classical logic does not hold under L semantics, i.e. that

$$(A \cup B) \not\equiv_L (\neg A \Rightarrow B)$$

but nevertheless

$${\mathcal L}_{\{\neg, \Rightarrow\}} \equiv_L {\mathcal L}_{\{\neg, \Rightarrow, \cup\}}$$
Exercise 6

Observe that the equivalence

\[(A \cup B) \equiv (\neg A \Rightarrow B)\]

defining \(\cup\) in terms of \(\neg\) and \(\Rightarrow\) seems a valuable candidate for \(L\) semantics as definability as the definition of all \(L\) connectives restricted to the logical values \(T, F\) is the same as in the classical case.

Unfortunately it is not a good one for \(L\) semantics, as any \(v\) such that \(v^*(A) = v^*(B) = \bot\) is counter-model.

But it does not prove that a different definability equivalence does not exist!
Exercise 6

We prove

\[\mathcal{L}_{\{\neg, \Rightarrow\}} \equiv_{\mathcal{L}} \mathcal{L}_{\{\neg, \Rightarrow, \cup\}} \]

as follows

Condition \textbf{C2} holds because the definability of connectives equivalence

\[(A \cup B) \equiv_{\mathcal{L}} ((A \Rightarrow B) \Rightarrow B)\]

Check it by verification as an exercise

\textbf{C1} holds because any formula of \(\mathcal{L}_{\{\neg, \Rightarrow\}}\) is a formula of \(\mathcal{L}_{\{\neg, \Rightarrow, \cup\}}\)

\textbf{Observe} that the equivalence \((A \cup B) \equiv (A \Rightarrow B) \Rightarrow B\)

provides also an alternative proof of \textbf{C2} in classical case