
cse371/mat371
LOGIC

Professor Anita Wasilewska

LECTURE 2a

Chapter 2
Introduction to Classical Logic Languages and Semantics

Chapter 2
Introduction to Classical Logic Languages and Semantics

Lecture 2

Part 1: Classical Logic Model

Part 2: Propositional Language

Part 3: Propositional Semantics

Part 4: Examples of Propositional Tautologies

Lecture 2a

Part 5: Predicate Language

Part 6: Predicate Tautologies- Laws for Quantifiers

Chapter 2
Introduction to Classical Logic Languages and Semantics

Part 5: Predicate Language

Predicate Language

We define a predicate language L following the pattern
established by the definitions of symbolic and propositional
language.

The predicate language is much more complicated in its
structure.

Its alphabet A is much richer.

The definition of its set of formulas F is more complicated.

In order to define the set F define an additional set T, called
a set of all terms of the predicate language L.

We single out this set T of terms not only because we need it
for the definition of formulas, but also because of its role in the
development of other notions of predicate logic.

Predicate Language Definition

Definition

By a predicate language L we understand a triple

L = (A, T, F)

where A is a predicate alphabet

T is the set of terms, and F is a set of formulas

Alphabet Components

Alphabet A

The components of A are as follows

1. Propositional connectives

¬, ∩, ∪, ⇒, ⇔

2. Quantifiers ∀, ∃

∀ is the universal quantifier, and ∃ is the existential
quantifier

3. Parenthesis (and)

Alphabet Components

4. Variables

We assume that we have, as we did in the propositional case
a countably infinite set VAR of variables

The variables now have a different meaning than they had in
the propositional case

We hence call them variables, or individual variables

We put
VAR = {x1, x2,}

5. Constants

The constants represent in ”real life” concrete elements of
sets. We assume that we have a countably. infinite set C of
constants

C = {c1, c2, ...}

Alphabet Components

6. Predicate symbols

The predicate symbols represent ”real life” relations

We denote them by P, Q, R, ..., with indices, if necessary

We use symbol P for the set of all predicate symbols

We assume that P is countably infinite and write

P = {P1,P2,P3,}

Alphabet Components

Logic notation

In ”real life” we write symbolically x < y to express that
element x is smaller then element y according to the two
argument relation <

In the predicate language L we represent the relation < as
a two argument predicate P ∈ P

We write P(x, y) as a representation of ”real life” x < y.

The variables x, y in P(x, y) are individual variables from
the set VAR

Mathematical statements n < 0, 1 < 2, 0 < m are
represented in L by P(x, c1), P(c2, c3), P(c1, y),
respectively,

where c1, c2, c3 are any constants and x, y any variables

Alphabet Components

7. Function symbols

The function symbols represent ”real life” functions

We denote function symbols by f , g, h, ..., with indices, if
necessary

We use symbol F for the set of all function symbols

We assume that F is countably infinite and write

F = {f1, f2, f3,}

Set T of Terms

Definition

Terms are expressions built out of function symbols and
variables.

They describe how we build compositions of functions.

We define the set T of all terms recursively as follows.

1. All variables are terms;

2. All constants are terms;

3. For any function symbol f ∈ F representing a function on n
variables, and any terms t1, t2, ..., tn, the expression
f(t1, t2, ..., tn) is a term;

4. The set T of all terms of the predicate language L is the
smallest set that fulfills the conditions 1. - 3.

Example

Example

Here are some terms of L

h(c1), f(g(c, x)), g(f(f(c)), g(x, y)),

f1(c, g(x, f(c))), g(g(x, y), g(x, h(c)))

Observe that to obtain the predicate language
representation of for example x + y we can first write it as
+(x, y) and then replace the addition symbol + by any two
argument function symbol g ∈ F and get the term g(x, y).

Set F of Formulas

Formulas are build out of elements of the alphabet A and
the set T of all terms.

We denote the formulas by A ,B ,C ,, with indices, if
necessary.

We build them, as before in recursive steps.

The first recursive step says:

all atomic formulas are formulas.

The atomic formulas are the simplest formulas, as the
propositional variables were in the case of the propositional
language.

We define the atomic formulas as follows.

Atomic Formulas

Definition

An atomic formula is any expression of the form

R(t1, t2, ..., tn),

where R is any n-argument predicate R ∈ P and t1, t2, ..., tn
are terms, i.e. t1, t2, ..., tn ∈ T.

Some atomic formulas of L are:

Q(c), Q(x), Q(g(x1, x2)),

R(c, d), R(x, f(c)), R(g(x, y), f(g(c, z))),

Set F of Formulas

Definition

The set F of formulas of predicate language L is the
smallest set meeting the following conditions.

1. All atomic formulas are formulas;

2. If A ,B are formulas, then
¬A , (A ∩ B), (A ∪ B), (A ⇒ B), (A ⇔ B) are formulas;

3. If A is a formula, then ∀xA , ∃xA are formulas for any
variable x ∈ VAR.

Set F of Formulas

Example

Some formulas of L are:

R(c, d), ∃yR(y, f(c)), R(x, y),

(∀xR(x, f(c))⇒ ¬R(x, y)), (R(c, d) ∩ ∀zR(z, f(c))),

∀yR(y, g(c, g(x, f(c)))), ∀y¬∃xR(x, y)

Set F of Formulas

Let’s look now closer at the following formulas.

R(c1, c2), R(x, y), ((R(y, d)⇒ R(a, z)),

∃xR(x, y), ∀yR(x, y), ∃x∀yR(x, y).

Observations
1. Some formulas are without quantifiers:

R(c1, c2), R(x, y), (R(y, d)⇒ R(a, z)).

A formula without quantifiers is called an open formula

Variables x, y in R(x, y) are called free variables.

The variable y in R(y, d) and z in R(a,z) are also free.

Set F of Formulas

Observations

2. Quantifiers bind variables within formulas.

The variable x is bounded by ∃x in the formula ∃xR(x, y), the
variable y is free.

The variable y is bounded by ∀y in the formula ∀yR(x, y),
the variable x is free.

3. The formula ∃x∀yR(x, y) does not contain any free
variables, neither does the formula R(c1, c2).

4. A formula without any free variables is called a closed
formula or a sentence.

Mathematical Statements

We often use logic symbols, while writing mathematical
statements in a more symbolic way.
For example, mathematicians to say ”all natural numbers are
greater then zero and some integers are equal 1” often write

x ≥ 0, ∀x∈N and ∃y∈Z , y = 1

Some of them who are more ”logic oriented” would write it as

∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1,

or even as
(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1).

Observe that none of the above symbolic statement are
formulas of the predicate language.
These are mathematical statements written with mathematical
and logic symbols. They are written with different degree of
”logical precision”, the last being, from a logician point of view
the most precise.

Mathematical Statements

Our goal now is to ”translate ” mathematical and natural
language statement into correct formulas of the predicate
language L.

Let’s start with some observations.

O1 The quantifiers in ∀x∈N , ∃y∈Z are not the one used in
logic.

O2 The predicate language L admits only quantifiers
∀x, ∃y, for any variables x, y ∈ VAR.

O3 The quantifiers ∀x∈N , ∃y∈Z are called quantifiers with
restricted domain.

The restriction of the quantifier domain can, and often is
given by more complicated statements.

Quantifiers with Restricted Domain

The quantifiers ∀A(x) and ∃A(x) are called quantifiers with
restricted domain , or restricted quantifiers , where
A(x) ∈ F is any formula with a free variable x ∈ VAR.

Definition

∀A(x)B(x) stands for a formula ∀x(A(x)⇒ B(x)) ∈ F .

∃A(x)B(x) stands for a formula ∃x(A(x) ∩ B(x)) ∈ F .

We write it as the following transformations rules for
restricted quantifiers

∀A(x) B(x) ≡ ∀x(A(x)⇒ B(x))

∃A(x) B(x) ≡ ∃x(A(x) ∩ B(x))

Translations to Formulas of L

Given a mathematical statement S written with logical
symbols.

We obtain a formula A ∈ F that is a translation of S into L by
conducting a following sequence of steps.

Step 1 We identify basic statements in S, i.e. mathematical
statements that involve only relations. They are to be
translated into atomic formulas.

We identify the relations in the basic statements and choose
the predicate symbols as their names.

We identify all functions and constants (if any) in the basic
statements and choose the function symbols and constant
symbols as their names.

Step 2 We write the basic statements as atomic formulas
of L.

Translations to Formulas of L

Remember that in the predicate language L we write a
function symbol in front of the function arguments not
between them as we write in mathematics.

The same applies to relation symbols.

For example we re-write a basic mathematical statement
x + 2 > y as > (+(x, 2), y)

Then we write it as an atomic formula P(f(x, c), y)

P ∈ P stands for two argument relation >,

f ∈ F stands for two argument function +,

and c ∈ C stands for the number 2.

Translations to Formulas of L

Step 3 We write the statement S a formula with restricted
quantifiers (if needed)

Step 4. We apply the transformations rules for restricted
quantifiers to the formula from Step 3 and obtain a proper
formula A of L as a result, i.e. as a transtlation of the given
mathematical statement S

In case of a translation from mathematical statement written
without logical symbols we add a following step.

Step 0 We identify propositional connectives and quantifiers
and use them to re-write the statement in a form that is as
close to the structure of a logical formula as possible

Translations Examples

Exercise

Given a mathematical statement S written with logical
symbols

(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1)

1. Translate it into a proper logical formula with restricted
quantifiers i.e. into a formula of L that uses the restricted
domain quantifiers.

2. Translate your restricted quantifiers formula into a correct
formula without restricted domain quantifiers, i.e. into a
proper formula of L

A long and detailed solution is given in the book Chapter 2,
pages 43-45.

A short statement of the exercise and a short solution follows

Translations Examples

Exercise
Given a mathematical statement S written with logical symbols

(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1)

Translate it into a proper formula of L.
Short Solution
The basic statements in S are: x ∈ N, x ≥ 0, y ∈ Z , y = 1
The corresponding atomic formulas of L are:
N(x), G(x, c1), Z(y), E(y, c2), for
n ∈ N, x ≥ 0, y ∈ Z , y = 1, respectively.
The statement S becomes restricted quantifiers formula

(∀N(x)G(x, c1) ∩ ∃Z(y) E(y, c2))

By the transformation rules we get A ∈ F :

(∀x(N(x)⇒ G(x, c1)) ∩ ∃y(Z(y) ∩ E(y, c2)))

Translations Examples

Exercise

Here is a mathematical statement S:

”For all real numbers x the following holds: If x < 0, then
there is a natural number n, such that x + n < 0.”

1. Re-write S as a symbolic mathematical statement SF that
only uses mathematical and logical symbols.

2. Translate the symbolic statement SF into to a
corresponding formula A ∈ F of the predicate language L

Translations Examples

Solution

The statement S is:

”For all real numbers x the following holds: If x < 0, then
there is a natural number n, such that x + n < 0.”

S becomes a symbolic mathematical statement SF

∀x∈R(x < 0⇒ ∃n∈N x + n < 0)

We write R(x) for x ∈ R, N(y) for n ∈ N,

We use the constant c for the number 0

We use L ∈ P to denote the relation <

We use f ∈ F to denote the function +

The statement x < 0 becomes an atomic formula L(x, c).

The statement x + n < 0 becomes L(f(x,y), c)

Translations Examples

Solution c.d.

The symbolic mathematical statement SF

∀x∈R(x < 0⇒ ∃n∈N x + n < 0)

becomes a restricted quantifiers formula

∀R(x)(L(x, c)⇒ ∃N(y)L(f(x, y), c))

We apply now the transformation rules and get a
corresponding formula A ∈ F :

∀x(R(x)⇒ (L(x, c)⇒ ∃y(N(y) ∩ L(f(x, y), c)))

PROPOSITIONAL LANGUAGE TRANSLATION

ATTENTION

The TRANSLATION of the same mathematical statement S:

”For all real numbers x the following holds: If x < 0, then
there is a natural number n, such that x + n < 0.”

into a PROPOSITIONAL LANGUAGE is a formula

a

where a is any propositional variable denoting the statement

”For all real numbers x the following holds: If x < 0, then
there is a natural number n, such that x + n < 0.”

Translations from Natural Language

Exercise

Translate a natural language statement

S: ”Any friend of Mary is a friend of John and Peter is not
John’s friend. Hence Peter is not Mary’s friend”

into a formula A ∈ F of the predicate language L.

Solution
1. We identify the basic relations and functions (if any) and
translate them into atomic formulas

We have only one relation of ”being a friend”.

We translate it into an atomic formula F(x, y),

where F(x, y) stands for ”x is a friend of y”

Translations from Natural Language

S: ”Any friend of Mary is a friend of John and Peter is not
John’s friend. Hence Peter is not Mary’s friend”

We use constants m, j, p for Mary, John, and Peter,

respectively

We hence have the following atomic formulas:

F(x, m), F(x, j), F(p, j), where

F(x, m) stands for ”x is a friend of Mary”,

F(x, j) stands for ”x is a friend of John”, and

F(p, j) stands for ”Peter is a friend of John”

Translations from Natural Language

2. Statement ”Any friend of Mary is a friend of John”

translates into a restricted quantifier formula ∀F(x,m) F(x, j)

”Peter is not John’s friend” translates into ¬F(p, j), and

”Peter is not Mary’s friend” translates into ¬F(p,m)
3. Restricted quantifiers formula for S is

((∀F(x,m)F(x, j) ∩ ¬F(p, j))⇒ ¬F(p,m))

and the formula A ∈ F of L is

((∀x(F(x,m)⇒ F(x, j)) ∩ ¬F(p, j))⇒ ¬F(p,m))

Rules of Translations

Rules of translation from natural language to the predicate
language L

1. Identify the basic relations and functions (if any) and
translate them into atomic formulas

2. Identify propositional connectives and use symbols
¬,∪,∩,⇒,⇔ for them

3. Identify quantifiers: restricted ∀A(x), ∃A(x), and
non-restricted ∀x, ∃x

4. Use the symbols from 1. - 3. and restricted quantifiers
transformation rules to write A ∈ F of the predicate
language L

Translation Example

Exercise

Given a natural language statement

S: ”For any bird one can find some birds that white”

Show that the translation of S into a formula of the predicate
language L is ∀x(B(x)⇒ ∃x(B(x) ∩W(x)))

Solution

We follow the rules of translation to verify the correctness of
the translation

1. Atomic formulas: B(x), W(x).

B(x) stands for ” x is a bird” and W(x) stands for ” x is white”

2. There is no propositional connectives in S

Translation Example

3. Restricted quantifiers:

∀B(x) for ”any bird ” and

∃B(x) for ”one can find some birds”.

Restricted quantifiers formula for S is

∀B(x)∃B(x) W(x)

4. By the transformation rules we get a required formula of
the predicate language L:

∀x(B(x)⇒ ∃x(B(x) ∩W(x)))

Translation Example

Exercise

Translate into L a natural language statement
S: ” Some patients like all doctors.”

Solution

1. Atomic formulas: P(x), D(x), L(x, y).

P(x) stands for ” x is a patient”,

D(y) stands for ” y is a doctor”, and

L(x,y) stands for ” x likes y”

2. There is no propositional connectives in S

Translation Example

3. Restricted quantifiers:

∃P(x) for ”some patients ” and ∀D(y) for ”all doctors”

Observe that we can’t write L(x, D(y)) for ”x likes doctor y”

D(y) is a predicate, not a term, and hence L(x, D(y)) is not a
formula

We have to express the statement ” x likes all doctors y” in
terms of restricted quantifiers and the predicate L(x,y) only

Translation Example

Observe that the statement ” x likes all doctors y” means
also ” all doctors y are liked by x”

We can re- write it as ”for all doctors y, x likes y” what
translates to a formula ∀D(y)L(x, y)

Hence the statement S translates to

∃P(x)∀D(y)L(x, y)

4. By the transformation rules we get the following translation
of S into L

∃x(P(x) ∩ ∀y(D(y)⇒ L(x, y)))

Chapter 2
Introduction to Classical Logic Languages and Semantics

Part 6: Predicate Tautologies- Laws for Quantifiers

Predicate Tautologies

The notion of predicate tautology is much more complicated

then that of the propositional

We define it formally in later chapters

Predicate tautologies are also called valid formulas, or laws of

quantifiers to distinguish them from the propositional case

We provide here a motivation, examples and an intuitive

definitions

We also list and discuss the most used and useful tautologies

and equational laws of quantifiers

Interpretation

The formulas of the predicate language L have a meaning

only when an interpretation is given for its symbols

We define the interpretation I in a set U , ∅

by interpreting predicate and functional symbols of L as
concrete relations and functions defined in the set U

We interpret constants symbols as elements of the set U

The set U is called the universe of the interpretation I.

These two items specify a model structure for L

We write it as a pair M = (U, I)

Model Structure

Given a formula A of L, and the model structure M = (U, I)

We denote by AI a statement written with logical symbols

determined by the formula A and the interpretation I in the

universe U

When A is a sentence, it means it is a formula without free

variables, AI represents a proposition that is true or false

When A is not a sentence, it contains free variables and

may be satisfied (i.e. true) for some values in the universe U

and not satisfied (i.e. false) for the others

Lets look at few simple examples

Examples

Example

Let A be a formula ∃xP(x, c)

Consider a model structure M1 = (N, I1)

The universe of the interpretation I1 is the set N of

natural numbers

We define the interpretation I1 as follows

We interpret the two argument predicate P as a relation =

and the constant c as number 5, i.e we put

PI1 : = and cI1 : 5

Examples

The formula A: ∃xP(x, c) under the interpretation I1
becomes a mathematical statement ∃x x = 5 defined in the
set N of natural numbers

We write it for short

AI1 : ∃x∈N x = 5

AI1 is obviously a true mathematical statement

In this case we say: the formula A: ∃xP(x, c) is true under

the interpretation I1 in the universe of M1, or for short:

A is true int the model structure M1.

We write it symbolically as

M1 |= ∃xP(x, c)

and say: M1 is a model for the formula A

Examples

Example

Consider now a model structure M2 = (N, I2) and the
formula A: ∃xP(x, c).

We interpret now the predicate P as relation < in the set N
of natural numbers and the constant c as number 0

We write it as
PI2 : < and cI2 : 0

Examples

The formula A: ∃xP(x, c) under the interpretation I2
becomes a mathematical statement ∃x x < 0 defined in the

set N of natural numbers

We write it for short

AI2 : ∃x∈N x < 0

AI2 is obviously a false mathematical statement.

We say: the formula A: ∃xP(x, c) is false under the

interpretation I2 in M2, or we say for short: A is false in M2

We write it symbolically as

M2 6|= ∃xP(x, c)

and say that M2 is a counter-model for the formula A

Examples

Example

Consider now a model structure

M3 = (Z , I3) and the formula A: ∃xP(x, c)

We define an interpretation I3 in the set of all integers Z

exactly as the interpretation I1 was defined, i.e. we put

PI3 : < and cI3 : 0

Examples

In this case we get

AI3 : ∃x∈Z x < 0

Obviously AI3 is a true mathematical statement

The formula A is true under the interpretation I3 in M3

(A is satisfied, true in M3)

We write it symbolically as

M3 |= ∃xP(x, c)

M3 is yet another model for the formula A

Examples

When a formula is not a closed (not a sentence) the situation
gets more complicated

Given a model structure M = (U, I),

a formula can be satisfied (i.e. true) for some values in the

universe U and not satisfied (i.e. false) for the others

Examples

Example

Given the formulas:

1. A1 : R(x, y), 2. A2 : ∀yR(x, y), 3. A3 : ∃x∀yR(x, y)

Let M = (N, I) be a model structure

where the predicate R is interpreted as a relation ≤ , i.e.

RI : ≤

1. Consider the formula A1 : R(x, y). Obviously,

A1I : x ≤ y

and A1 : R(x, y) is satisfied in M = (N, I) by all n,m ∈ N

such that n ≤ m

Examples

2. Consider the formula A2 : ∀yR(x, y)

By definition of M = (N, I) we have that

RI : ≤

and hence
A2I : ∀y∈N x ≤ y

and the formula A2 : ∀yR(x, y) is satisfied in the model

structure M = (N, I) by the natural number 0 only

Examples

3. Consider the formula A3 : ∃x∀yR(x, y)

3. A3I : ∃x∈N∀y∈N x ≤ y asserts that there is a smallest natural

number what is a true statement, i.e. M is a model for A3

Observe that changing the universe of M = (N, I) to the set of

all Integers Z, we get a different a model structure M1 = (Z , I).

In this case A3I : ∃x∈Z∀y∈Z x ≤ y

asserts that there is a smallest integer and A3 is a false

sentence in M1, i.e. M1 is a counter-model for A3

Predicate Tautology Definition

We want the predicate language tautologies to have the
same property as the propositional, namely to be always true

In this case, we intuitively agree that it means that we want
the predicate tautologies to be formulas that are true under
any interpretation in any possible universe

A rigorous definition of the predicate tautology is provided in
a later chapter on Predicate Logic

Predicate Tautology Definition

We construct the rigorous definition in the following steps.

1. We first define formally the notion of interpretation I of

symbols of L in a set U , ∅, i.e. in the model structure

M = (U, I) for the predicate language L.

2. Then we define formally a notion ” a formula A of L a is
true in M = (U, I)”

We write it symbolically

M |= A

and call the model structure M = (U, I) a model for A

3. We define a notion ”A is a predicate tautology” as follows.

Predicate Tautology Definition

Defintion For any formula A of predicate language L,
A is a predicate tautology (valid formula) if and only if

M |= A

for all model structures M = (U, I) for L

4. Directly from the above definition we get the following
definition of a notion ” A is not a predicate tautology”

Defintion

For any formula A of predicate language L,

A is not a predicate tautology if and only if there is a
model structure M = (U, I) for L , such that

M 6|= A

We call such model structure M a counter-model for A

Predicate Tautology Definition

The definition of a notion ” A is not a predicate tautology” says:

to prove that A is not a predicate tautology one has to show

a counter- model

It means one has to define a non-empty set U and define an

interpretation I, such that we can prove that AI is false

Predicate Tautology Definition

We use terms predicate tautology or valid formula instead

of just saying a tautology in order to distinguish tautologies

belonging to two very different languages

For the same reason we usually reserve the symbol |= for
propositional case

Sometimes we use symbols |=p or |=f to denote predicate

tautologies

p stands for predicate and f stands first order.

The predicate tautologies are also called laws of quantifiers

We will use both names

Predicate Tautologies Examples

Here are some examples of predicate tautologies and
counter models for formulas that are not tautologies.

Example

For any formula A(x) with a free variable x:

|=p (∀x A(x)⇒ ∃x A(x))

Observe that the following formula B

B : (∀x A(x)⇒ ∃x A(x))

represents an infinite number of formulas

Hence the formula B a tautology for any formula A(x) of L

with a free variable x

Predicate Tautologie Examples

The inverse implication to (∀x A(x)⇒ ∃x A(x)) is not a
predicate tautology, i.e.

6|=p (∃x A(x)⇒ ∀x A(x))

To prove it we have to provide an example of a concrete
formula A(x) and construct a counter-model M = (U, I) for
the formula F : (∃x A(x)⇒ ∀x A(x))

Let A(x) be an atomic formula P(x, c)

We define M = (N, I) for N set of natural numbers and
PI : <, cI : 3

The formula F becomes an obviously false mathematical
statement

FI : (∃n∈Nn < 3⇒ ∀n∈Nn < 3)

Restricted Quantifiers Laws

We have to be very careful when we deal with quantifiers with
restricted domain.

For example, the most basic predicate tautology

(∀x A(x)⇒ ∃x A(x)) fails when written with the restricted

domain quantifiers.

Example

We show that 6|=p (∀B(x) A(x)⇒ ∃B(x) A(x)).

To prove this we have to show that corresponding formula of
L obtained by the restricted quantifiers transformations rules
is not a predicate tautology, i.e. to prove:

6|=p (∀x(B(x)⇒ A(x))⇒ ∃x(B(x) ∩ A(x))).

Restricted Quantifiers Laws

We construct a counter-model M for the formula

F : (∀x(B(x)⇒ A(x))⇒ ∃x(B(x) ∩ A(x))) as follows

We take M = (N, I), where N is the set of natural numbers,
we take as B(x),A(x) atomic formulas Q(x, c),P(x, c), and
the interpretation I is defined as QI : <, PI : >, cI : 0

The formula F becomes a mathematical statement

FI : (∀n∈N (x < 0⇒ n > 0)⇒ ∃n∈N(n < 0 ∩ n > 0))

FI is a false because the statement n < 0 is false for all
natural numbers and the implication false ⇒ B is true for any
logical value of B

Hence ∀n∈N (n < 0⇒ n > 0) is a true statement and
∃n∈N(n < 0 ∩ n > 0) is obviously false

Restricted Quantifiers Laws

Restricted Quantifiers Law corresponding to the basic

predicate tautology

(∀x A(x)⇒ ∃x A(x))

is:

|=p (∀B(x) A(x)⇒ (∃x B(x)⇒ ∃B(x) A(x))).

It means that we prove that the corresponding proper formula

of L obtained by the restricted quantifiers transformations

rules is a predicate tautology, i.e. we prove that

|=p (∀x(B(x)⇒ A(x))⇒ (∃x B(x)⇒ ∃x (B(x) ∩ A(x))))

Quantifiers Laws

Another basic predicate tautology called a dictum de omni
law is:

For any formulas A(x),A(y) with free variables x, y ∈ VAR,

|=p (∀x A(x)⇒ A(y))

The corresponding restricted quantifiers law is:

|=p (∀B(x) A(x)⇒ (B(y)⇒ A(y))),

where y ∈ VAR

Quantifiers Laws

The next important laws are the Distributivity Laws
Distributivity of existential quantifier over conjunction holds
only in one direction, namely the following is a predicate
tautology.

|=p (∃x (A(x) ∩ B(x)) ⇒ (∃xA(x) ∩ ∃xB(x))),

where A(x),B(x) are any formulas with a free variable x

The inverse implication is not a predicate tautology, i.e.
we have to find concrete formulas A(x),B(x) ∈ F and
find a model structure M = (U, I) with the interpretation I
of all predicate, functional, and constant symbols in the
formulas A(x),B(x), such that M = (U, I) is counter- model
for the inverse implication

F : ((∃xA(x) ∩ ∃xB(x))⇒ ∃x (A(x) ∩ B(x)))

Quantifiers Laws

Let F be a formula

F : ((∃xA(x) ∩ ∃xB(x))⇒ ∃x (A(x) ∩ B(x)))

Counter - Model for F is as follows

Take M = (R , I) where R is the set of real numbers.

Let A(x),B(x) be atomic formulas Q(x, c), P(x, c)

F : ((∃xQ(x, c) ∩ ∃xP(x, c))⇒ ∃x (Q(x, c) ∩ P(x, c))

We define the interpretation I as QI : >, PI : <, cI : 0.

The formula F becomes an obviously false mathematical
statement

FI : ((∃x∈R x > 0 ∩ ∃x∈R x < 0)⇒ ∃x∈R (x > 0 ∩ x < 0))

Quantifiers Laws

Distributivity of universal quantifier over disjunction holds
only on one direction, namely the following is a predicate
tautology for any formulas A(x),B(x) with a free variable x.

|=p ((∀xA(x) ∪ ∀xB(x))⇒ ∀x (A(x) ∪ B(x))).

The inverse implication is not a predicate tautology, i.e.

there are formulas A(x),B(x) with a free variable x, such that

6|=p (∀x (A(x) ∪ B(x))⇒ (∀xA(x) ∪ ∀xB(x)))

Quantifiers Laws

It means that we have to find concrete formulas

A(x),B(x) ∈ F and a model structure M = (U, I) that is a

counter- model for the formula

F : (∀x (A(x) ∪ B(x))⇒ (∀xA(x) ∪ ∀xB(x))).

Take M = (R , I) where R is the set of real numbers, and
A(x),B(x) are atomic formulas Q(x, c),R(x, c).

We define QI :≥, RI :<, cI : 0.

The formula F becomes an obviously false mathematical

statement

FI : (∀x∈R (x ≥ 0 ∪ x < 0)⇒ (∀x∈R x ≥ 0 ∪ ∀x∈R x < 0)).

Logical Equivalence

The most frequently used laws of quantifiers have a form of a
ogical equivalence, symbolically written as ≡.

Remember that ≡ not a new logical connective.

This is a very useful symbol. It says that two formulas always
have the same logical value, hence it can be used in the same
way we the equality symbol =.

Formally we define it as follows.

Definition

For any formulas A ,B ∈ F of the predicate language L,

A ≡ B if and only if |=p (A ⇔ B).

We have also a similar definition for the propositional
language and propositional tautology.

Equational Laws for Quantifiers

De Morgan

For any formula A(x) ∈ F with a free variable x,

¬∀xA(x) ≡ ∃x¬A(x), ¬∃xA(x) ≡ ∀x¬A(x)

Definability

For any formula A(x) ∈ F with a free variable x,

∀xA(x) ≡ ¬∃x¬A(x), ∃xA(x) ≡ ¬∀x¬A(x)

Equational Laws for Quantifiers

Renaming the Variables

Let A(x) be any formula with a free variable x

and let y be a variable that does not occur in A(x).

Let A(x/y) be a result of replacement of each occurrence of
x by y, then the following holds.

∀xA(x) ≡ ∀yA(y), ∃xA(x) ≡ ∃yA(y)

Alternations of Quantifiers

Let A(x, y) be any formula with a free variables x and y.

∀x∀y (A(x, y) ≡ ∀y∀x (A(x, y),

∃x∃y (A(x, y) ≡ ∃y∃x (A(x, y)

Equational Laws for Quantifiers

Introduction and Elimination Laws

If B is a formula such that B does not contain any free
occurrence of x, then the following logical equivalences hold.

∀x(A(x) ∪ B) ≡ (∀xA(x) ∪ B),

∃x(A(x) ∪ B) ≡ (∃xA(x) ∪ B),

∀x(A(x) ∩ B) ≡ (∀xA(x) ∩ B),

∃x(A(x) ∩ B) ≡ (∃xA(x) ∩ B)

Equational Laws for Quantifiers

Introduction and Elimination Laws

If B is a formula such that B does not contain any free
occurrence of x, then the following logical equivalences hold.

∀x(A(x)⇒ B) ≡ (∃xA(x)⇒ B),

∃x(A(x)⇒ B) ≡ (∀xA(x)⇒ B),

∀x(B ⇒ A(x)) ≡ (B ⇒ ∀xA(x)),

∃x(B ⇒ A(x)) ≡ (B ⇒ ∃xA(x))

Equational Laws for Quantifiers

Distributivity Laws

Let A(x),B(x) be any formulas with afree variable x.

Distributivity of universal quantifier over conjunction.

∀x (A(x) ∩ B(x)) ≡ (∀xA(x) ∩ ∀xB(x))

Distributivity of existential quantifier over disjunction.

∃x (A(x) ∪ B(x)) ≡ (∃xA(x) ∪ ∃xB(x))

Equational Laws for Quantifiers

We also define the notion of logical equivalence ≡ for the
formulas of the propositional language and its semantics

For any formulas A ,B ∈ F of the propositional languageL,

A ≡ B if and only if |= (A ⇔ B)

Moreover, we prove that any substitution of propositional
tautology by a formulas of the predicate language is a
predicate tautology

The same holds for the logical equivalence

Equational Laws for Quantifiers

In particular, we transform the propositional tautologies into
the following corresponding predicate equivalences.

For any formulas A ,B of the predicate language L,

(A ⇒ B) ≡ (¬A ∪ B),

¬¬A ≡ A

We use them to prove the following De Morgan Laws for
restricted quantifiers.

Equational Laws for Quantifiers

Restricted De Morgan

For any formulas A(x),B(x) ∈ F with a free variable x,

¬∀B(x) A(x) ≡ ∃B(x) ¬A(x), ¬∃B(x) A(x) ≡ ∀B(x)¬A(x).

Here is a poof of first equality. The proof of the second one is
similar and is left as an exercise.

¬∀B(x) A(x)≡ ¬∀x (B(x)⇒ A(x))

≡ ¬∀x (¬B(x) ∪ A(x))

≡ ∃x ¬(¬B(x) ∪ A(x)) ≡ ∃x (¬¬B(x) ∩ ¬A(x))

≡ ∃x (B(x) ∩ ¬A(x)) ≡∃B(x) ¬A(x)).

