QUESTION 1 (20pts)
Write the following natural language statement:

One likes to play bridge, or from the fact that the weather is good we conclude the following: one does not like to play bridge or one likes not to play bridge

as a formula of 2 different languages

1. Formula $A_1 \in F_1$ of a language $L_{\{\neg, L, \cup, \Rightarrow\}}$, where LA represents statement ”one likes A”, ”A is liked”.

Solution We translate our statement into a formula $A_1 \in F_1$ of a language $L_{\{\neg, L, \cup, \Rightarrow\}}$ as follows.

Propositional Variables: a, b

Translation 1
$A_1 = (La \cup (b \Rightarrow (\neg I a \cup L \neg a)))$

2. Formula $A_2 \in F_2$ of a language $L_{\{\neg, \cup, \Rightarrow\}}$.

Solution We translate our statement into a formula $A_2 \in F_2$ of a language $L_{\{\neg, \cup, \Rightarrow\}}$ as follows.

Propositional Variables: a, b, c

Translation 2:
$A_2 = (a \cup (b \Rightarrow (\neg a \cup c)))$

QUESTION 2 (20pts)
Let A be a formula $(((a \cap \neg c) \Rightarrow \neg b) \cup a) \Rightarrow (c \cup b))$.

1. (5pts) A language L_{CON} to which the formula A belongs is:

Solution: The language is $L_{\{\neg, \cap, \Rightarrow\}}$.

2. (5pts) Determine the degree of A and write down all its sub-formulas of the degree 2.

Solution: The degree of A is 7. There is only one sub-formula of the degree 2: $(a \cap \neg c)$.

3. (5pts) Determine whether : $A \in T$. Use ”proof by contradiction” method and shorthand notation.

Solution: of the case $A \in T$.
Assume $(((a \cap \neg c) \Rightarrow \neg b) \cup a) \Rightarrow (c \cup b)) = F$. This is possible if and only if $((a \cap \neg c) \Rightarrow \neg b) \cup a) = T$ and $(c \cup b) = F$. This gives as that $c = F, b = F$. We evaluate $((a \cap \neg F) \Rightarrow \neg F) \cup a) = T$. This is possible for $a = T$.
Any truth assignment such that $a = T, b = F, c = F$ is a counter-model for A, hence $A \notin T$.

1
4. (5pts) Determine whether \(A \in C \).

Solution: any truth assignment such that \(a = T, b = T, c = F \) is a model for \(A \), hence \(A \not\in C \). This is not the only model.

QUESTION 3 (20 pts)

1. (10pts) We define: A set \(G \subseteq F \) is **consistent** if and only if there is a truth assignment \(v \) such that \(v \models G \).

Prove that the set \(G \) below is consistent. Use shorthand notation.

\[
G = \left\{ (a \Rightarrow (a \cup b)), \ (a \cup b), \ \neg b, \ (c \Rightarrow b) \right\}
\]

Solution: We find a restricted model for \(G \) as followas

First observe that the formula \((a \Rightarrow (a \cup b))\), is a tautology, hence any \(v \) is its model. So we have only to see whether two other formulas have a common model. It means we check if it is possible to find \(v \), such that \(v^* (\neg b) = T \), \(v^* ((a \cup b)) = T \), and \(v^* ((c \Rightarrow b)) = T \).

We have that \(\neg b = T \) if and only if \(b = F \).

We evaluate \((a \cup b) = (a \cup F) = T \) if and only if \(a = T \).

Consequently, \((c \Rightarrow b) = (c \Rightarrow F) = T \) if and only if \(c = F \).

Hence, any \(v \), such that \(a = T, b = T, \) and \(c = F \) is a model for \(G \).

Observe that \(a = T, b = T, \) and \(c = F \) is the only restricted model for \(G \).

2. (10pts) We define: a formula \(A \in F \) is called **independent** from a set \(G \subseteq F \) if and only if the sets \(G \cup \{ A \} \) and \(G \cup \{ \neg A \} \) are both consistent.

I.e. when there are truth assignments \(v_1, v_2 \) such that \(v_1 \models G \cup \{ A \} \) and \(v_2 \models G \cup \{ \neg A \} \).

FIND an infinite number of formulas that are independent of a set \(G \). Use shorthand notation.

Solution: We know that \(a = T, b = T, \) and \(c = F \) is the only restricted model for \(G \).

Let \(A \) be any atomic formula \(d \), where \(d \in VAR - \{a, b, c\} \).

Any \(v \), such that \(a = T, b = T, c = F, \) and \(d = T \) is a model for \(G \cup \{ d \} \).

Any \(v \), such that \(a = T, b = T, c = F, \) and \(d = F \) is a model for \(G \cup \{ \neg d \} \).

There is countably infinitely many atomic formulas \(A = d \), where \(d \in VAR - \{a, b, c\} \).

QUESTION 4 (15 pts)

We define a 3 valued extensional semantics \(M \) for the language \(L_\{\neg, \cup, \Rightarrow\} \) by defining the connectives \(\neg, \cup, \Rightarrow \) on a set \(\{F, \bot, T\} \) of logical values by the following truth tables.
1. (5pts) Verify whether \(\models_M (L \cup -L) \). You can use shorthand notation.

Solution

We verify

\[
\begin{array}{c|ccc}
L & F & \bot & T \\
\hline
F & F & F & T \\
\end{array}
\]

2. (5pts) Verify whether your formulas \(A_1 \) and \(A_2 \) from QUESTION 1 have a model/counter model under the semantics \(M \). You can use shorthand notation.

Solution

The formulas are: \(A_1 = (L \cup (b \Rightarrow (¬L \cup ¬L))) \), and \(A_2 = (a \cup (b \Rightarrow (¬a \cup c))) \).

Any \(v \), such that \(v(a) = T \) is a \(M \) model for \(A_1 \) and for \(A_2 \) directly from the definition of \(∪ \).

3. (5pts) Verify whether the following set \(G \) is \(M \)-consistent. You can use shorthand notation

\[
G = \{ L_a, (a \cup -L_b), (a \Rightarrow b), b \}
\]

Solution

Any \(v \), such that \(v(a) = T, v(b) = T \) is a \(M \) model for \(G \) as

\[
\begin{array}{c|ccc}
L & F & \bot & T \\
\hline
F & F & F & T \\
\end{array}
\]

\[
\begin{array}{c|ccc}
\Rightarrow & F & \bot & T \\
\hline
F & T & T & T \\
\end{array}
\]

\[
\begin{array}{c|ccc}
\cup & F & \bot & T \\
\hline
F & F & F & T \\
\end{array}
\]

QUESTION 5 (15pts)

1. (10pts) Given a formula \(A = ((a \cap ¬c) \Rightarrow (¬a \cup b)) \) of a language \(L_{\{¬, \cap, \cup, \Rightarrow\}} \).

Find a formula \(B \) of a language \(L_{\{¬, \Rightarrow\}} \), such that \(A \equiv B \). List all proper logical equivalences used at each step.

Solution

\[
A = ((a \cap ¬c) \Rightarrow (¬a \cup b)) \equiv ((a \cap ¬c) \Rightarrow (a \Rightarrow b)) \equiv (¬(a \Rightarrow ¬c) \Rightarrow (a \Rightarrow b)) \equiv (¬(a \Rightarrow c) \Rightarrow (a \Rightarrow b)) = B
\]

Equivalences used: 1. \((¬A \cup B) \equiv (A \Rightarrow B) \), 2. \((A \cap B) \equiv ¬(A \Rightarrow ¬B) \), 3. \(¬¬A \equiv A \).
2. (5pts) Prove that \(L_{\{\neg, \cap, \cup, \Rightarrow\}} \equiv L_{\{\neg, \Rightarrow\}} \)

Solution We have to prove that \(L_{\{\neg, \Rightarrow\}} \equiv L_{\{\neg, \cap, \cup, \Rightarrow\}} \).

Condition **C1** holds because \(\{\neg, \Rightarrow\} \subseteq \{\neg, \cap, \cup, \Rightarrow\} \).

Condition **C2** holds because of the **Substitution Theorem** and because of the following logical equivalences for any formulas \(A, B \):

\[
(A \cap B) \equiv \neg(A \Rightarrow \neg B) \quad \text{and} \quad (A \cup B) \equiv (\neg A \Rightarrow B)
\]

Reminder We define the **equivalence of languages** as follows:

Given two languages: \(L_1 = L_{CON_1} \) and \(L_2 = L_{CON_2} \), for \(CON_1 \neq CON_2 \), we say that they are **logically equivalent**, i.e. \(L_1 \equiv L_2 \) if and only if the following conditions **C1**, **C2** hold.

C1: For every formula \(A \) of \(L_1 \), there is a formula \(B \) of \(L_2 \), such that \(A \equiv B \).

C2: For every formula \(C \) of \(L_2 \), there is a formula \(D \) of \(L_1 \), such that \(C \equiv D \).