CSE371 QUIZ 2 SOLUTIONS Spring 2020 (25pts + 15pts extra credit)

PROBLEM 1 (15pts)

S is the following proof system:

$$S = (\mathcal{L}_{\{\Rightarrow,\cup,\neg\}}, \mathcal{F}, LA = \{(A \Rightarrow (A \cup B))\} (r1), (r2))$$

Rules of inference:

$$(r1) \frac{A; B}{(A \cup \neg B)}, \qquad (r2) \frac{A; (A \cup B)}{B}$$

1. (5pt) Verify whether S is sound/not sound under **classical** semantics.

Solution

- (1pt) The Logical Axiom is a BASIC TAUTOLOGY (you can also prove it by contradiction)
- (1pt) The rule (r1) is sound because for any v, if $v^*(A) = T$,

then
$$v^*((A \cup \neg B)) = v^*(A) \cup v^*(B) = T \cup v^*(B) = T$$
, for all formulas B.

(3pt) The rule (r1) is not sound

Take any v such that it evaluates A = T and B = F. The premiss $(A \cup B)$ of the rule (r2) is T and the conclusion B is F.

The system is **not sound**

2. (5pts) Find a **formal proof** in S of the formula $\neg (A \Rightarrow (A \cup B))$, i. e. show that

$$\vdash_S \neg (A \Rightarrow (A \cup B))$$

Solution The proof is as follows

 B_1 : $(A \Rightarrow (A \cup B))$, (axiom)

 B_2 : $(A \Rightarrow (A \cup B))$, (axiom)

 B_3 : $((A \Rightarrow (A \cup B)) \cup \neg (A \Rightarrow (A \cup B)))$, (rule (r1) application to B_1 and B_2)

 B_4 : $\neg (A \Rightarrow (A \cup B))$, (rule (r2) application to B_1 and B_3).

3. (5pt) Does above point **2.** prove that $\models \neg (A \Rightarrow (A \cup B))$?

Solution

- (**3pts**) We proved that the proof system *S* is **not sound**, so existence of a proof does not guarantee that what we proved is a tautology.
- (2pts) Moreover, the proof of $\neg (A \Rightarrow (A \cup B))$ used rule (r2) that is not sound!

PROBLEM 2 (15pts)

Let S be the following **proof system** $S = (\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}, \mathcal{F}, \{\mathbf{A1}, \mathbf{A2}\}, \{r1, r2\})$

for the logical axioms and rules of inference defined for any formulas $A, B \in \mathcal{F}$ as follows

Logical Axioms

A1 (LA
$$\cup \neg$$
LA), **A2** (A \Rightarrow LA)

Rules of inference:

$$(r1) \frac{A; B}{(A \cup B)},$$
 $(r2) \frac{A}{\mathbf{L}(A \Rightarrow B)}$

1. (8pts) Show, by constructing a proper formal proof that

$$\vdash_S ((\mathbf{L}b \cup \neg \mathbf{L}b) \cup \mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b)))$$

Write all steps of the **formal proof** with **comments** how each step was obtained.

Solution

Here is the proof B_1, B_2, B_3, B_4

 B_1 : (L $a \cup \neg$ La) Axiom A_1 for A= a

 B_2 : $\mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b)$ rule r2 for B=b applied to B_1

 B_3 : (**L** $b \cup \neg$ **L**Ab) Axiom A_1 for A=b

 B_4 : $((\mathbf{L}b \cup \neg \mathbf{L}b) \cup \mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b))$ r1 applied to B_3 and B_2

2. (7pts) Does the above point **1.** PROVE that $\models_{\mathbf{M}} ((\mathbf{L}b \cup \neg \mathbf{L}b) \cup \mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b)))$? for the semantics **M** defined below JUSTIFY, in detail your answer.

Solution

(1pts) Point 1., i.e. the fact that $\vdash_S ((\mathbf{L}b \cup \neg \mathbf{L}b) \cup \mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b)))$ **PROVES** that

 $\models_{\mathbf{M}} ((\mathbf{L}b \cup \neg \mathbf{L}b) \cup \mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b)))$ **ONLY WHEN** the proof system S is sound'

HENCE we have to VERIFY the **soundness** of the system *S*

WE do it in the following STEPS.

s1 We VERIFY if the both logical axioms of S are M tautologies

(1pt) We verify that A1 is M tautology:

$$LT \cup \neg LT = T \cup F = T$$
, $L \perp \cup \neg L \perp = F \cup \neg F = F \cup T = T$, $LF \cup \neg LF = F \cup \neg F = T$

(1pt) We verify that A2 is M tautology in a similar way:

$$(T \Rightarrow \mathbf{L}T) = T$$
, $(F \Rightarrow \mathbf{L}F) = T$, and $(\bot \Rightarrow \mathbf{L} \bot) = T$

s2 We VERIFY if the both rules of inference are sound

- (1pt) Rule r1 is sound because when A = T and B = T we get $A \cup B = T \cup T = T$
- (1pts) Rule r2 is **not sound** because when A = T and B = F (or $B = \bot$) we get $\mathbf{L}(A \Rightarrow B) = \mathbf{L}(T \Rightarrow F) = \mathbf{L}F = F$ or $\mathbf{L}(T \Rightarrow \bot) = \mathbf{L} \bot = F$
- (2pts) ANSWER: No, it doesn't because the system S is not sound

We define a 3 valued extensional semantics **M** for the language $\mathcal{L}_{\{\neg, L, \cup, \Rightarrow\}}$ by **defining the connectives** \neg , \cup , \Rightarrow on a set $\{F, \bot, T\}$ of logical values as follows.

L Connective

Negation :

$$\begin{array}{c|cccc} \mathbf{L} & \mathbf{F} & \bot & \mathbf{T} \\ \hline & \mathbf{F} & \mathbf{F} & \mathbf{T} \end{array}$$

Implication

Disjunction:

$$\begin{array}{c|cccc} \cup & F & \bot & T \\ \hline F & F & \bot & T \\ \bot & \bot & T & T \\ T & T & T & T \end{array}$$

PROBLEM 3 (10pts)

Consider the Hilbert system $H1 = (\mathcal{L}_{\{\Rightarrow\}}, \mathcal{F}, \{A1, A2\}, (MP) \frac{A; (A\Rightarrow B)}{B})$ where for any $A, B \in \mathcal{F}$

A1;
$$(A \Rightarrow (B \Rightarrow A))$$
, A2: $((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$.

1. (5pts) The **Deduction Theorem** holds for H1. Use the **Deduction Theorem** to show that $(A \Rightarrow (C \Rightarrow B)) \vdash_{H1} (C \Rightarrow (A \Rightarrow B))$

Remark: This is not the only solution; it is just the easiest. IF you apply the Deduction Theorem ONCE you get another solution.

Solution

We apply the **Deduction Theorem** twice, i.e. we get

$$(A \Rightarrow (C \Rightarrow B)) \vdash_H (C \Rightarrow (A \Rightarrow B))$$
 if and only if

$$(A \Rightarrow (C \Rightarrow B)), C \vdash_H (A \Rightarrow B)$$
 if and only if

$$(A\Rightarrow (C\Rightarrow B)),\ C,\ A\vdash_H B$$

We now construct a proof of $(A \Rightarrow (C \Rightarrow B)), C, A \vdash_H B$ as follows

 $B_1: (A \Rightarrow (C \Rightarrow B))$ hypothesis

 B_2 : C hypothesis

 B_3 : A hypothesis

 $B_4: (C \Rightarrow B) \quad B_1, B_3 \text{ and } (MP)$

 $B_5: B B_2, B_4 \text{ and } (MP)$

3. (5pts) Let H2 be the proof system obtained from the system H1 by **extending the language** to contain the negation \neg and **adding** one additional axiom:

A3
$$((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B))).$$

Explain why the **Deduction Theorem** holds for H2.

Solution

The proof of the Deduction Theorem for H1 used only axioms A1, A2

Adding axiom A3 (and adding \neg to the language) does not change anything in the proof.

Hence **Deduction Theorem** holds for H2