CSE/MAT371 Q1 SOLUTIONS Spring 2020

QUESTION 1 Write the following natural language statement:

From the fact that each natural number is greater than zero we deduce that it is not possible that 2 + 2 = 5 or, if it is possible that it is not true that 2 + 2 = 5, then it is necessary that it is not true that each natural number is greater than zero

in the following two ways.

1. As a formula $A_1 \in \mathcal{F}_1$ of a language $\mathcal{L}_{\{\neg, \Box, \Diamond, \cap, \cup, \Rightarrow\}}$

Solution

```
Propositional Variables are: a, b

a denotes statement: each natural number is greater than zero,

b denotes a statement: 2 + 2 = 5
```

Formula $A_1 \in \mathcal{F}_1$ is:

 $(a \Rightarrow (\neg \diamond b \cup (\diamond \neg b \Rightarrow \Box \neg a)))$

2. As a formula $A_2 \in \mathcal{F}_2$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$

Solution

```
Propositional Variables are: a, b, c, d
```

```
a denotes statement: each natural number is greater than zero,
b denotes a statement: it is possible that 2 + 2 = 5,
c denotes a statement: it is possible that it is not true that 2 + 2 = 5,
d denotes a statement: it is not true that each natural number is greater than zero
```

```
Formula A_2 \in \mathcal{F}_1 is
```

$$(a \Rightarrow (\neg b \cup (c \Rightarrow d)))$$

QUESTION 2

Circle formulas that are propositional/ predicate tautologies

1. Circle formulas that are propositional tautologies

$$S_1 = \{ (A \Rightarrow (A \cup \neg B)), \quad ((a \Rightarrow b) \cup (a \cap \neg b)), \quad (A \cup (A \Rightarrow B)), \quad (a \cup \neg b) \}$$

Solution Obviously, $\not\models (a \cup \neg b)$, all other formulas are tautologies

2. Circle formulas that are predicate tautologies

 $S_2 = \{ (\forall x \ A(x) \Rightarrow \exists x \ A(x)), \quad (\forall x \ (\neg P(x, y) \cup P(x, y)) \Rightarrow \exists x \ P(x, y)), \quad ((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x \ (A(x) \cap B(x))) \} \}$

Solution Obviously, $\models (\forall x A(x) \Rightarrow \exists x A(x))$, all other formulas are NOT tautologies

QUESTION 3

Here is a mathematical statement S:

For all rational numbers $x \in Q$ the following holds: If x = 0, then there is a natural number $n \in N$, such that x + n = 0

1. Re-write S as a symbolic mathematical statement SM that only uses mathematical and logical symbols.

Solution S becomes a symbolic mathematical statement

SM :
$$\forall_{x \in O} (x = 0 \Rightarrow \exists_{n \in N} x + n = 0)$$

- 2. Translate the symbolic statement SM into to a corresponding formula with restricted quantifiers. Explain your choice of symbols.
- **Solution** We write Q(x) for $x \in Q$, N(y) for $y \in N$, a constant c for the number 0. We use $E \in \mathbf{P}$ to denote the relation =, we use $f \in \mathbf{F}$ to denote the function +.

The statement x = 0 becomes an **atomic formula** E(x, c). The statement x + n = 0 becomes an **atomic formula** E(f(x,y), c).

The symbolic mathematical statement SM becomes a restricted quantifiers formula

$$\forall_{Q(x)}(E(x,c) \Rightarrow \exists_{N(y)}E(f(x,y),c))$$

3. Translate your restricted domain quantifiers logical formula into a correct formula A of the predicate language \mathcal{L}

Solution We apply now the **transformation rules** and get a corresponding formula $A \in \mathcal{F}$:

$$\forall x(Q(x) \Rightarrow (E(x,c) \Rightarrow \exists y(N(y) \cap E(f(x,y),c))))$$

QUESTION 4

Given a formula A : $\forall x \exists y P(f(x, y), c)$ of the predicate language \mathcal{L} , and two **model structures**

$$M_1 = (Z, I_1), \text{ and } M_2 = (N, I_2)$$

with the interpretations defined as follows.

 $P_{I_1}:=, f_{I_1}:+, c_{I_1}:0 \text{ and } P_{I_2}:>, f_{I_2}:\cdot, c_{I_2}:0$

1. Show that $\mathbf{M}_1 \models A$

Solution

 $\mathbf{M}_1 \models A$ because $A_{I_1} : \forall_{x \in Z} \exists_{y \in Z} x + y = 0$ is a **true** mathematical statement as we have that each $x \in Z$ exists y = -x and $-x \in Z$ and x - x = 0

2. Show that $\mathbf{M}_2 \not\models A$

Solution

 $\mathbf{M_2} \not\models A$ because A_{I_2} : $\forall_{x \in N} \exists_{y \in N} x \cdot y > 0$ is a **false** statement for x = 0.

QUESTION 5

Prove that the following formulas $A_1, A_2 \in \mathcal{F}$ are classical tautologies.

You can't use the Truth Tables Method.

Formula $A_1 \in \mathcal{F}$ is

$$((((a \Rightarrow b) \cap \neg c) \Rightarrow ((((a \Rightarrow b) \cap \neg c) \cup \neg d)))$$

Formula $A_2 \in \mathcal{F}$ is

$$(((a \Rightarrow b) \cap \neg c) \cup d) \cap \neg e) \Rightarrow (((a \Rightarrow b) \cap \neg c) \cup d) \cap \neg e) \cup ((a \Rightarrow \neg e)))$$

Solution

Both formulas are tautologies because they are particular cases of the basic **propositional tautology** for any $A, B \in \mathcal{F}$

 $(A \Rightarrow (A \cup B))$

Extra information

If you didn't remember that $\models (A \Rightarrow (A \cup B))$ you could PROVE it by the Proof by Contradiction Method.as follows.

Assume that $\not\models (A \Rightarrow (A \cup B))$

We get that $(A \Rightarrow (A \cup B)) = F$ iff A = T and $(A \cup B) = F$

From above we have that $(T \cup B) = F$

This is **impossible** by the definition of \cup . We got a **contradiction**, hence

$$\models (A \Rightarrow (A \cup B))$$

Remember that as I wrote in my Lectures and told in class- at this stage you can't use the TTables evaluations. IT will result in **0pts** for the problem.