
CSE371 FINAL SOLUTIONS Spring 2020
( 75 pts + 15 pts extra credit)

PROBLEM 1 (20pts)

1. (5pts)

Give a definition and an example a Logical Paradox. Explain why it is paradox.

Solution

Logical Paradoxes, also called Logical Antinomies are paradoxes concerning the notion of a set

Here are three of them

Russel Paradox, 1902, Cantor Paradox, 1899, Burali-Forti Paradox, 1897

Example: Russel paradox.

Consider the set A of all those sets X such that X is not a member of X. Clearly, by definition, A is a member of A
if and only if A is not a member of A. So, if A is a member of A, the A is also not a member of A; and if A is not a
member of A, then A is a member of A. In any case, A is a member of A and A is not a

2. (5pts)

Give a definition and an example a Semantic Paradox. Explain why it is paradox.

Solution

Semantical paradoxes (antinomies) deal with the notion of truth, or provability. They are caused by a collision between
the theory and meta-theory, that is, by inclusion of meta-theoretical statements in the theory.

Example: The Liar Paradox.

A man says: I am lying. If he is lying, then what he says is true, and so he is not lying. If he is not lying, then what
he says is not true, and so he is lying. In any case, he is lying and he is not lying.

3. (5pts)

Give a definition an example of a default reasoning. Explain why it is a correct example.

Solution

Default reasoning is a reasoning in which it is allowed to draw plausible inferences from less-then- conclusive evidence
in the absence of information to the contrary.

Example: Consider a statement Birds fly. Tweety, we are told, is a bird. From this, and the fact that birds fly, we
conclude that Tweety can fly.
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Explanation This conclusion, however is defeasible: Tweety may be an ostrich, a penguin, a bird with a broken wing,
or a bird whose feet have been set in concrete. But as long as we don’t have the evidence to the contrary (Tweedy
has a broken wing) we accept the conclusion that Tweety can fly.

4. (5pts)

Describe a main difference between classical and intuitionists’ mathematics.

Solution

One of the main differences between classical and intuitionists’ mathematics lies in the interpretation of the word
exists.

PROBLEM 2 (20pts)

Write the following natural language statement:

From the fact that each natural number is equal zero we deduce that: it is not possible that Anne is a boy or, if it is
possible that Anne is not a boy, then it is necessary that it is not true that each natural number is equal zero

in the following two ways

1. (10pts)

As a formula A1 ∈ F1 of a language L{¬, �, ♦, ∩, ∪, ⇒}

2. As a formula A2 ∈ F2 of a language L{¬, ∩, ∪, ⇒}

Write a detailed solutions, explaining all steps used.

1. Solution

For the formula A1 ∈ F1 of a language L{¬, �, ♦, ∩, ∪, ⇒}

Propositional Variables: a, b , where

a denotes statement: each natural number is equal zero,

b denotes statement: Sun is swimming

Propositional Modal Connectives: �, ♦

♦ denotes statement: it is possible that, � denotes statement: it is necessary that

The formula A1 is
(a⇒ (¬♦b ∪ (♦¬b⇒ �¬a)))

2. (10pts)

Solution

For the formula A2 ∈ F2 of a language L{¬, ∩, ∪, ⇒}
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Propositional Variables: a, b , c, d where

a denotes statement: each natural number is equal zero,

b denotes statement: possible that Sun is swimming

c denotes statement: possible that Sun is not swimming,

d denotes statement: necessary that it is not true that each natural number is equal zero

Formula A2 is
(a⇒ (¬b ∪ (c⇒ d)))

PROBLEM 3 (15pts)

1. Given a predicate language L(P,F,C) and a structure M = [U, I] such that

U = N and PI : =, gI : ·, aI : 0, where N is the set of natural numbers.

For the following formula A
∀x∃y(P(g(x, y), a)⇒ (P(x, a) ∪ P(y, a)))

decide whether M |= A or not.

Do so by examining the corresponding mathematical statement defined by M.

Solution

The corresponding mathematical statement defined by M (written with logical symbols) is

∀n∃m (nm = 0 ⇒ (n = 0 ∪ m = 0))

It is a TRUE statement in the set N of natural numbers

The mathematical statement can also be written as

∀n∈N∃m∈N (nm = 0 ⇒ (n = 0 ∪ m = 0))

PROBLEM 4 (15pts)

Let S 3 be a 3-valued extentsional semantics for L{¬,∩,∪,⇒} defined as follows.

V3 = {F,⊥,T }, for F ≤⊥≤ T

For any x, y ∈ {F,⊥,T } we put

F ∪ F = F, F ∪ T = T, T ∪ F = T ∪ T = T, and x ∪ y =⊥ otherwise

¬F = T, ¬ ⊥= F, ¬T =⊥, and x ∩ y = min{x, y}, x⇒ y = ¬x ∪ y

Consider the following classical tautologies:

A1 = ((¬a ∪ b) ∪ ¬(a⇒ b)), A2 = (a⇒ (b⇒ a))

1. (8pts)
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Find S 3 counter-models for A1, A2, if exist. Use shorthand notation.

Solution

Here are S 3 Connectives Tables for Disjunction and Negation

∪ F ⊥ T
F F ⊥ T
⊥ ⊥ ⊥ ⊥

T T ⊥ T

¬ F ⊥ T
T F ⊥

Reminder: x ∩ y = min{x, y}, x⇒ y = ¬x ∪ y, for any x, y ∈ {F,⊥,T }

Any v such that v(a) = v(b) =⊥ is a counter-model for both, A1 and A2. couner-model

We evaluate A1
v∗(A1) = (¬ ⊥ ∪ ⊥) ∪ ¬(⊥⇒⊥) =⊥ ∪¬(⊥⇒⊥) =⊥

This is not only counter-model. For example, any v such that v(a) = T is a counter model for A1 and any v such that
v(b) = T is a counter model for A2.

We evaluate A2
v∗(A2) =⊥⇒ (⊥⇒⊥) = ¬ ⊥ ∪(⊥⇒⊥) = F ∪ (¬ ⊥ ∪ ⊥) = F∪ ⊥=⊥

2. (7pts)

Define a 2-valued extensional semantics S 2 with V2 = {F,T }, for F ≤⊥≤ T for the language L{¬,∩,∪,⇒}, such that none
of A1, A2 is a S 2 tautology. Justify your results. Use shorthand notation.

Solution This is not the only solution, but it is the simplest and most obvious. Here it is.

We define S 2 connectives as follows.

¬x = F, x⇒ y = x ∪ y = F for all x, y ∈ {F,T }

and x ∩ y can be defined in the same, or in any other way, as this connective do not appear in our formulas.

PROBLEM 5 (10pts)

Let S = (L = L{¬,∩,∪,⇒}, F , {A1, A2, A3}, MP A ;(A⇒B)
B ) be a proof system with logical axioms:

A1: (A⇒ (B⇒ A)),

A2: ((A⇒ (B⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))),
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A3: ((¬B⇒ ¬A)⇒ ((¬B⇒ A)⇒ B)).

1. (5pts)

Explain why S is sound under classical semantics.

Solution 1

Axioms A1 − A4 are basic classical tautologies and Modus Ponens is a sound rule of inference

Solution 2

The proof system S is Chapter 5 Hilbert proof system H2 that we proved it to be sound and complete.

2. (5pts)

Show, by constructing a formal proof, that `S ((a⇒ b)⇒ (a⇒ b))

Solution 1

We adopt the formal proof of the formula (A ⇒ A) as presented in Chapter 5 to the case A = (a ⇒ b) and get the
following.

The formal proof of ((a⇒ b)⇒ (a⇒ b)) in S is a sequence

B1, B2, B3, B4, B5

such that

B1 = (((a ⇒ b) ⇒ (((a ⇒ b) ⇒ (a ⇒ b)) ⇒ (a ⇒ b))) ⇒ (((a ⇒ b) ⇒ ((a ⇒ b) ⇒ (a ⇒ b))) ⇒ ((a ⇒ b) ⇒ (a ⇒
b)))),
axiom A2 for A = (a⇒ b), B = ((a⇒ b)⇒ (a⇒ b)), and C = (a⇒ b)

B2 = ((a⇒ b)⇒ (((a⇒ b)⇒ (a⇒ b))⇒ (a⇒ b))),
axiom A1 for A = (a⇒ b), B = ((a⇒ b)⇒ (a⇒ b))

B3 = (((a⇒ b)⇒ ((a⇒ b)⇒ (a⇒ b)))⇒ ((a⇒ b)⇒ (a⇒ b)))),
MP application to B1 and B2

B4 = ((a⇒ b)⇒ ((a⇒ b)⇒ (a⇒ b))),
axiom A1 for A = (a⇒ b), B = (a⇒ b)

B5 = ((a⇒ b)⇒ (a⇒ b))
MP application to B3 and B4

Solution 2

The formula ((a⇒ b)⇒ (a⇒ b)) is a particular case of a formula (A⇒ A), for A = (a⇒ b)
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The formal proof of (A⇒ A) in S , as presented in Chapter 5, is a sequence

B1, B2, B3, B4, B5

as defined below.

B1 = ((A⇒ ((A⇒ A)⇒ A))⇒ ((A⇒ (A⇒ A))⇒ (A⇒ A))),
axiom A2 for A = A, B = (A⇒ A), and C = A

B2 = (A⇒ ((A⇒ A)⇒ A)),
axiom A1 for A = A, B = (A⇒ A)

B3 = ((A⇒ (A⇒ A))⇒ (A⇒ A))),
MP application to B1 and B2

B4 = (A⇒ (A⇒ A)),
axiom A1 for A = A, B = A

B5 = (A⇒ A)
MP application to B3 and B4

PROBLEM 6 (10pts)

Let GL be the Gentzen style proof system for classical logic defined in chapter 6.

Prove, by constructing a proper decomposition tree that

`GL((¬(a ∩ b)⇒ b)⇒ (¬b⇒ (¬a ∪ ¬b)))

Solution

Consider the following tree.

T→A

−→ ((¬(a ∩ b)⇒ b)⇒ (¬b⇒ (¬a ∪ ¬b)))
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| (→⇒)

(¬(a ∩ b)⇒ b) −→ (¬b⇒ (¬a ∪ ¬b))

| (→⇒)

¬b, (¬(a ∩ b)⇒ b) −→ (¬a ∪ ¬b)

| (→ ∪)

¬b, (¬(a ∩ b)⇒ b) −→ ¬a,¬b

| (→ ¬)

b,¬b, (¬(a ∩ b)⇒ b) −→ ¬a

| (→ ¬)

b, a,¬b, (¬(a ∩ b)⇒ b) −→

| (¬ →)

b, a, (¬(a ∩ b)⇒ b) −→ b∧
(⇒→

b, a −→ ¬(a ∩ b), b

| (→ ¬)

b, a, (a ∩ b) −→ b

| (∩ →)

b, a, a, b −→ b

axiom

b, a, b −→ b

axiom

All leaves of the decomposition tree are axioms, hence the proof has been found.
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