CSE371 Midterm MAKEUP Fall 2018 75pts + 15extra pts

NAME ID: Math

PART 1 (Extra Credit - 15pts)

DEFINITIONS Write carefully the following definitions.

D1 Given a language $\mathcal{L}_{\{\Rightarrow,\cup,\cap,\neg\}}$ and a formula A of this language and a truth assignment v, Write a definition of $v \models A$

 $\mathbf{D2} \ \text{A non-empty set} \ \mathcal{G} \subseteq \mathcal{F} \ \textbf{inconsistent} \ \textbf{under classical semantics} \ \textbf{ if and only if}$

D3 Given a proof system $S = (\mathcal{L}, \mathcal{E}, LA, \mathcal{R})$ Write the definition of $\vdash_S E$

 $\mathbf{D4} \quad \mathrm{Write \ the \ statements \ of \ } \mathbf{Soundness \ Theorem \ and \ of \ } \mathbf{Completeness \ Theorem \ for \ a \ proof \ system \ S \ and \ semantics \ \mathbf{M} }$

PART 2: PROBLEMS

PROBLEM 1 (15 pts)

We define **H** semantics operations \cup and \cap as follows.

$$a \cup b = max\{a, b\}, \quad a \cap b = min\{a, b\}.$$

The Truth Tables for Implication and Negation are:

H-Implication

\Rightarrow	F	\perp	Т	
F	Т	Т	Т	
\perp	\mathbf{F}	Т	Т	
Т	\mathbf{F}	\perp	Т	

H Negation

$$\begin{array}{c|c|c|c|c|c|c|} \neg & F & \bot & T \\ \hline & T & F & F \\ \hline & & & & F \end{array}$$

1. We know that $v: VAR \longrightarrow \{F, \bot, T\}$ is such that

 $v^*((a \cap b) \Rightarrow (a \Rightarrow c)) = \perp$ under **H** semantics.

Use this information to **evaluate** $v^*(((b \Rightarrow a) \Rightarrow (a \Rightarrow \neg c)) \cup (a \Rightarrow b)).$

You can use shorthand notation.

2. Verify whether $\models_{\mathbf{H}}((a \Rightarrow b) \Rightarrow (\neg a \cup b))$

PROBLEM 2 (15pts)

1. Write the formula

$$A = ((((a \cap \neg c) \Rightarrow \neg b) \cup a) \Rightarrow (c \cup b))$$

as a formula of the language $\mathcal{L}_{\{\neg,\cup\}}$, i.e. as a formula B of $\mathcal{L}_{\{\neg,\cup\}}$, such that $A \equiv B$.

LIST all logical equivalences you need while solving this problem

2. PROVE that $\mathcal{L}_{\{\neg,\cup\}} \equiv \mathcal{L}_{\{\neg,\cap\}}$

PROBLEM 3 (25pts)

S is the following proof system:

$$S = (\mathcal{L}_{\{\Rightarrow,\cup,\neg\}}, \mathcal{F}, LA = \{(A \Rightarrow (A \cup B))\} (r1), (r2))$$

Rules of inference:

$$(r1) \ \frac{A;B}{(A\cup\neg B)}, \qquad (r2) \ \frac{A;(A\cup B)}{B}$$

1. Verify whether S is sound/not sound under classical semantics.

2. Find a formal proof of $\neg(A \Rightarrow (A \cup B))$ in S, i. e. show that $\vdash_S \neg(A \Rightarrow (A \cup B))$

3. Explain whether the above point **2.** proves that $\models \neg(A \Rightarrow (A \cup B))$?

PROBLEM 4 (20pts)

 ${\bf 1}\,$ Use the proof system ${\bf RS}$ and its ${\bf Completeness}\,\,{\bf Theorem}$ to prove that

$$\models ((a \cup b) \Rightarrow \neg a) \cup (\neg a \Rightarrow \neg c))$$

2. Use the proof system ${\bf RS}$ to construct a counter model for the formula

$$(((a \Rightarrow b) \cap \neg c) \cup (a \Rightarrow c)).$$