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PART 5: Introduction to Modal Logics

Algebraic Semantics for modal S4 and S5



Introduction to Modal Logics

The non-classical logics can be divided in two groups:

those that rival classical logic and those which extend it

The Lukasiewicz, Kleene, and intuitionistic logics are in the
first group

The modal logics are in the second group

The rival logics do not differ from classical logic in terms of
the language employed

The rival logics differ in that certain theorems or tautologies
of classical logic are rendered false, or not provable in them



Introduction to Modal Logics

The most notorious example of the rival difference of logics
based on the same language is the law of excluded middle

(A ∪ ¬A)

This is provable in, and is a tautology of classical logic

But is not provable in, and is not tautology of the
intuitionistic logic

It also is not a tautology under any of the extensional logics
semantics we have discussed



Introduction to Modal Logics

Logics which extend classical logic sanction all the theorems
of classical logic but, generally, supplement it in two ways

Firstly, the languages of these non-classical logics are
extensions of those of classical logic

Secondly, the theorems of these non-classical logics
supplement those of classical logic



Introduction to Modal Logics

Modal logics are enriched by the addition of two new
connectives that represent the meaning of expressions ”it is
necessary that” and ” it is possible that”

We use the notation:

I for ” it is necessary that” and

C for ” it is possible that”

Other notations commonly used are:

∇, N, L for ” it is necessary that” and

^, P, M for ” it is possible that”



Introduction to Modal Logics

The symbols N, L, P, M or alike, are often used in computer
science

The symbols ∇ and ^ were first to be used in modal logic
literature

The symbols I, C come from algebraic and topological
interpretation of modal logics

I corresponds to the topological interior of the set and C to
its closure



Introduction to Modal Logics

The idea of a modal logic was first formulated by an
American philosopher, C.I. Lewis in 1918

Lewis has proposed yet another interpretation of lasting
consequences, of the logical implication

He created a notion of a modal truth, which lead to the notion
of modal logic

He did it in an attempt to avoid, what some felt, the
paradoxes of semantics for classical implication which
accepts as true that a false sentence implies any sentence



Introduction to Modal Logics

Lewis’ notions appeal to epistemic considerations and the
whole area of modal logics bristles with philosophical
difficulties and hence the numbers of modal logics have been
created

Unlike the classical connectives, the modal connectives do
not admit of truth-functional interpretation, i.e. do not
accept the extensional semantics

This was the reason for which modal logics were first
developed as proof systems, with intuitive notion of
semantics expressed by the set of adopted axioms



Introduction to Modal Logics

The first definition of modal semantics, and hence the proofs
of the completeness theorems came some 20 years later

It took yet another 25 years for discovery and development of
the second and more general approach to the modal
semantics

These are the two established ways of interpret modal
connectives, i.e. to define the modal semantics



Introduction to Modal Logics

The historically, the first modal semantics is due to Mc
Kinsey and Tarski (1944, 1946)
It is a topological semantics that provides a powerful
mathematical interpretation of some of modal logics, namely
modal S4 and S5

It connects the modal notion of necessity with the
topological notion of the interior of a set, and
the modal notion of possibility with the notion of the closure
of a set

Our choice of symbols I and C for necessity and possibility
connectives comes from this interpretation

The topological interpretation mathematically powerful as it
is, is less universal in providing models for other modal
logics



Introduction to Modal Logics

The most recent and the most general semantics is due to
Kripke (1964). It uses the notion of possible worlds.

Roughly, we say that the formula CA is true if A is true in
some possible world, called actual world

The formula IA is true if A is true in every possible world

We present here a short version of the topological semantics
in a form of algebraic models

We leave the Kripke semantics for the reader to explore
from other, multiple sources



Introduction to Modal Logics

As we have already mentioned, modal logics were first
developed, as was the intuitionistic logic, in a form of proof
systems only

First Hilbert style modal proof system was published by
Lewis and Langford in 1932

They presented a formalization for two modal logics, which
they called S1 and S2

They also outlined three other proof systems, called S3, S4,
and S5



Introduction to Modal Logics

Since then hundreds of modal logics have been created

There are some standard books in the subject

These are, between the others:

Hughes and Cresswell (1969) for philosophical motivation for
various modal logics and intuitionistic logic,

Bowen (1979) for a detailed and uniform study of Kripke
models for modal logics,

Segeberg (1971) for excellent modal logics classification,

Fitting (1983), for extended and uniform studies of automated
proof methods for classes of modal logics



Hilbert Style Modal Proof Systems



Hilbert Style Modal Proof Systems

We present now Hilbert style formalization forS4 and S5
logics due to Mc Kinsey and Tarski (1948) and Rasiowa and
Sikorski (1964)

We also discuss the relationship between S4 and S5 , and
between the intuitionistic logic and S4 modal logic, as first
observed by Gödel

The formalizations stress the connection between S4, S5
and topological spaces which constitute models for them



Modal Language

Modal Language

We add two extra one argument connectives I and C to the
propositional language L{∪,∩,⇒,¬}, i.e. we adopt

L = L{∪,∩,⇒,¬,I,C}

as the modal language. We read a formulas IA , CA as
necessary A and possible A, respectively

The language L{∪,∩,⇒,¬,I,C} is common to all modal logics

Modal logics differ on a choice of axioms and rules of
inference, when studied as proof systems and on a choice of
respective semantics



McKinsey, Tarski Proof Systems

As modal logics extend the classical logic, any modal logic
contains two groups of axioms: classical and modal

McKinsey, Tarski (1948)

AG1 classical axioms

We adopt as classical axioms any complete set of axioms
under classical semantics

AG2 modal axioms

M1 (IA ⇒ A)

M2 (I(A ⇒ B)⇒ (IA ⇒ IB))

M3 (IA ⇒ IIA)

M4 (CA ⇒ ICA)



Modal S4 and S5

Rules of inference

(MP)
A ; (A ⇒ B)

B
, and (I)

A
IA

The modal rule (I) was introduced by Gödel and is referred
to as a necessitation rule

We define modal proof systems S4 and S5 as follows

S4 = ( L, F , classical axioms, M1 −M3, (MP), (I) )

S5 = ( L, F , classical axioms, M1 −M4, (MP), (I) )



Modal S4 and S5

Observe that the axioms of S5 extend the axioms of S4 and
both system share the same inference rules, hence we have
immediately the following

Fact For any formula A ∈ F ,

if `S4 A , then `S5 A



Rasiowa, Sikorski Proof Systems

It is often the case, as it is for S4 and S5, that modal
connectives are definable by each other

We define them as follows

IA = ¬C¬A , and CA = ¬I¬A

Language

We hence assume now that the language L of Rasiowa,
Sikorski modal proof systems contains only one modal
connective

We choose it to be I and adopt the following language

L = L{∩,∪,⇒,¬,I}

There are, as before, two groups of axioms: classical and
modal



Rasiowa, Sikorski Proof Systems

Rasiowa, Sikorski (1964)

AG1 classical axioms

We adopt as classical axioms any complete set of axioms
under classical semantics

AG2 modal axioms

R1 ((IA ∩ IB)⇒ I(A ∩ B))

R2 (IA ⇒ A)

R3 (IA ⇒ IIA)

R4 I(A ∪ ¬A)

R5 (¬I¬A ⇒ I¬I¬A)



Modal RS4 and RS5

Rules of inference

We adopt the Modus Ponens and an additional rule (RI)

(MP)
A ; (A ⇒ B)

B
and (RI)

(A ⇒ B)

(IA ⇒ IB)

We define modal proof systems RS4 and RS5 as follows

RS4 = ( L, F , classical axioms, R1 − R4, (MP), (RI) )

RS5 = ( L, F , classical axioms, R1 − R5, (MP), (RI) )



Modal RS4 and RS5

Observe that the axioms of RS5 extend the axioms of RS4
and both systems share the same inference rules, hence we
have immediately the following

Fact For any formula A ∈ F ,

if `RS4 A , then `RS5 A



Algebraic Semantics for S4 and S5



Algebraic Semantics for S4 and S5

The McKinsey, Tarski proof systems S4, S5 and Rasiowa,
Sikorski proof systems RS4, RS5 are complete with the
respect to both topological semantics, and Kripke semantics

We shortly discuss the topological semantics, and algebraic
completeness theorems

We leave the Kripke semantics for the reader to explore from
other, multiple sources



Algebraic Semantics for S4 and S5

The topological semantics was initiated by McKinsey and
Tarski in 1946, 1948 and consequently developed into a field
of Algebraic Logic

The algebraic approach to logic is presented in detail in now
classic algebraic logic books:

”Mathematics of Metamathematics”, Rasiowa, Sikorski
(1964),

”An Algebraic Approach to Non-Classical Logics”, Rasiowa
(1974)

We want to point out that the first idea of a connection
between modal propositional logic and topology is due to
Tang Tsao -Chen, (1938) and Dugunji (1940)



Algebraic Semantics for S4 and S5

Here are some basic definitions

Boolean Algebra

An abstract algebra B = (B , 1, 0, ⇒, ∩, ∪,¬) is said to
be a Boolean algebra if it is a distributive lattice and every
element a ∈ B has a complement ¬a ∈ B

Topological Boolean algebra

By a topological Boolean algebra we mean an abstract
algebra

B = (B , 1, 0, ⇒, ∩, ∪,¬, I)

where (B , 1, 0, ⇒, ∩, ∪,¬) is a Boolean algebra and,
moreover, the following conditions hold for any a, b ∈ B

I(a ∩ b) = Ia ∩ Ib , Ia ∩ a = Ia, IIa = Ia, and I1 = 1



Algebraic Semantics for S4 and S5

The element Ia is called a interior of a

The element ¬I¬a is called a closure of a and will be
denoted by Ca

Thus the operations I and C are such that

Ca = ¬I¬a and Ia = ¬C¬a

In this case we write the topological Boolean algebra as

B = (B , 1, 0, ⇒, ∩, ∪,¬, I, C )

It is easy to prove that in in any topological Boolean algebra
the following conditions hold for any a, b ∈ B

C(a ∪ b) = Ca ∪ Cb , Ca ∪ a = Ca, CCa = Ca and C0 = 0



Algebraic Semantics for S4 and S5

Example

Let X be a topological space with an interior operation I

Then the family P(X) of all subsets of X is a topological
Boolean algebra with 1 = X , with

the operation ⇒ defined by the formula

Y ⇒ Z = (X − Y) ∪ Z for all subsets Y ,Z of X

and with set-theoretical operations of union, intersection,
complementation, and the interior operation I

Every sub algebra of this algebra is a topological Boolean
algebra, called a topological field of sets or, more precisely, a
topological field of subsets of X



Algebraic Semantics for S4 and S5

Given a topological Boolean algebra

(B , 1, 0, ⇒, ∩, ∪,¬)

The element a ∈ B is said to be open (closed)

if a = Ia (a = Ca)

Clopen Topological Boolean Algebra
A topological Boolean algebra

B = (B , 1, 0, ⇒, ∩, ∪,¬, I, C )

such that every open element is closed and every closed
element is open, i.e. such that for any a ∈ B

CIa = Ia and ICa = Ca

is called a clopen topological Boolean algebra



S4, S5 Tautology

We loosely say that a formula A is a modal S4 tautology

if and only if

any topological Boolean algebra is a model for A

We say that A is a modal S5 tautology

if and only if

any clopen topological Boolean algebra is a model for A

We put it formally as follows



Modal Algebraic Model

Modal Algebraic Model

For any formula A of a modal language L{∪,∩,⇒,¬,I,C} and for
any topological Boolean algebra

B = (B , 1, 0, ⇒, ∩, ∪,¬, I, C)

the algebra B is a model for the formula A and denote it by

B |= A

if and only if v∗(A) = 1 holds for all variables assignments
v : VAR −→ B



S4, S5 Tautology

Definition of S4 Tautology
A formula A is a modal S4 tautology and is denoted by

|=S4 A

if and only if for all topological Boolean algebras B we
have that

B |= A

Definition of S5 Tautology
A formula A is a modal S5 tautology and is denoted by

|=S5 A

if and only if for all clopen topological Boolean algebras B
we have that

B |= A



S4, S5 Completeness Theorem

We write `S4 A and `S5 A do denote provability any
proof system for modal S4, S5 logics and in particular the
proof systems defined here

Completeness Theorem

For any formula A of the modal language L{∪,∩, ⇒, ¬, I,C}

`S4 A if and only if |=S4 A

`S5 A if and only if |=S5 A

The completeness for S4,S4 follows directly from the
following general Algebraic Completeness Theorems



S4 Algebraic Completeness Theorem

S4 Algebraic Completeness Theorem

For any formula A of the modal language L{∪,∩,⇒,¬,I,C} the
following conditions are equivalent

(i) `S4 A

(ii) |=S4 A

(iii) A is valid in every topological field of sets B(X)

(iv) A is valid in every topological Boolean algebra B with
at most 22r

elements, where r is the number of all sub
formulas of A

(iv) v∗(A) = X for every variable assignment v in the
topological field of sets B(X) of all subsets of a dense-in
-itself metric space X , ∅ (in particular of an n-dimensional
Euclidean space X )



S4 Algebraic Completeness Theorem

S5 Algebraic Completeness Theorem

For any formula A of the modal language L{∪,∩,⇒,¬,I,C} the
following conditions are equivalent

(i) `S5 A

(ii) |=S5 A

(iii) A is valid in every clopen topological field of sets
B(X)

(iv) A is valid in every clopen topological Boolean algebra
B with at most 22r

elements, where r is the number of all
sub formulas of A



S4 and S5 Decidability

The equivalence of conditions (i) and (iv) of the Algebraic
Completeness Theorems proves the semantical decidability
of modal S4 and S5
S4, S5 Decidability
Any complete S4, S5 proof system is semantically
decidable, i.e. the following holds

`S4 A if and only if B |= A

for every topological Boolean algebra B with at most 22r

elements, where r is the number of all sub formulas of A
Similarly, we also have

`S5 A if and only if B |= A

for every clopen topological Boolean algebra B with at
most 22r

elements, where r is the number of all sub
formulas of A



S4 and S5 Syntactic Decidability

S4, S5 Syntactic Decidability (Wasilewska 1967,1971)

Rasiowa stated in 1950 an an open problem of providing a
cut-free RS type formalization for modal propositional S4
calculus

Wasilewska solved this open problem in 1967 and presented
the result at the ASL Summer School and Colloquium in
Mathematical Logic, Manchester, August 1969

It appeared in print as A Formalization of the Modal
Propositional S4-Calculus, Studia Logica, North Holland,
XXVII (1971)



S4 and S5 Syntactic Decidability

The paper also contained an algebraic proof of
completeness theorem followed by Gentzen cut-elimination
theorem, the Hauptzatz

The resulting implementation written in LISP-ALGOL was the
first modal logic theorem prover created

It was done with collaboration with B. Waligorski and the
authors didn’t think it to be worth a separate publication

Its existence was only mentioned in the published paper

The S5 Syntactic Decidability follows from the one for S4 and
the following Embedding Theorems



Modal S4 and Modal S5

The relationship between S4 and S5 was first established by
Ohnishi and Matsumoto in 1957-59 and is as follows .

Embedding 1

For any formula A ∈ F ,

|=S4A if and only if |=S5 ICA

`S4 A if and only if `S5 ICA

Embedding 2

For any formula A ∈ F

|=S5A if and only if |=S4ICIA

`S5A if and only if `S4 ICIA



On S4 derivable disjunction

In a classical logic it is possible for the disjunction (A ∪ B) to
be a tautology when neither A nor B is a tautology

This does not hold for the intuitionistic logic. We have a
following theorem similar to the intuitionistic case to the for
modal S4

Theorem McKinsey, Tarski (1948)

A disjunction (IA ∪ IB) is S4 provable if and only if either
A or B S4 provable, i.e.

`S4 (IA ∪ IB) if and only if `S4A or `S4 B



S4 and Intuitionistic Logic, S5 and Classical Logic



S4 and Intuitionistic Logic

As we have said in the introduction, Gödel was the first to
consider the connection between the intuitionistic logic and a
logic which was named later S4

Gödel’s proof was purely syntactic in its nature, as the
semantics for neither intuitionistic logic nor modal logicS4 had
not been invented yet

The algebraic proof of this fact, was first published by
McKinsey and Tarski in 1948



S4 and Intuitionistic Logic

We define here the Gödel-Tarski mapping establishing the
S4 and intuitionistic logic connection

We refer the reader to Rasiowa, Sikorski book ”Mathematics
of Metamathematics” (i965) for the algebraic proofs of its
properties and respective theorems



S4 and Intuitionistic Logic

Let L be a propositional language of modal logic i.e the
language

L = L{∩,∪,⇒,¬,I}

Let L0 be a language obtained from L by elimination of the
connective I and by the replacement the classical negation
connective ¬ by the intuitionistic negation, which we will
denote here by a symbol ∼

Such obtained language

L0 = L{∩,∪,⇒,∼}

is a propositional language of the intuitionistic logic



S4 and Intuitionistic Logic

In order to establish the connection between the languages

L and L0

and hence between modal and intuitionistic logic, we
consider a mapping f which to every formula A ∈ F0 of
L0 assigns a formula f(A) ∈ F of L

We define the mapping f as follows



Gödel - Tarski Mapping

Definition of Gödel-Tarski mapping

A function
f : F0 → F

such that
f(a) = Ia for any a ∈ VAR

f((A ⇒ B)) = I(f(A)⇒ f(B))

f((A ∪ B)) = (f(A) ∪ f(B))

f((A ∩ B)) = (f(A) ∩ f(B))

f(∼ A) = I¬f(A)

where A ,B are any formulas in L0 is called a Gödel-Tarski
mapping



Example

Example

Let A be a formula

((∼ A ∩ ∼ B)⇒∼ (A ∪ B))

and f be the Gödel-Tarski mapping. We evaluate f(A) as
follows

f((∼ A ∩ ∼ B)⇒∼ (A ∪ B)) =

I(f(∼ A ∩ ∼ B)⇒ f(∼ (A ∪ B)) =

I((f(∼ A) ∩ f(∼ B))⇒ f(∼ (A ∪ B)) =

I((I¬fA ∩ I¬fB)⇒ I¬f(A ∪ B)) =

I((I¬A ∩ I¬B)⇒ I¬(fA ∪ fB)) =

I((I¬A ∩ I¬B)⇒ I¬(A ∪ B))



S4 and Intuitionistic Logic

The following theorem established relationship between
intuitionistic and modal S4 logics

Theorem

Let f be the Gödel-Tarski mapping

For any formula A of intuitionistic language L0,

`I A if and only if `S4 f(A)

where I, S4 denote any proof systems for intuitionistic and
and S4 logic, respectively



Classical Logic and Modal S5

In order to establish the connection between the modal S5
and classical logics we consider the following G’́odel-Tarski
mapping between the modal language L{∩,∪,⇒,¬,I} and its
classical sub-language L{¬,∩,∪,⇒}

With every classical formula A we associate a modal formula
g(A) defined by induction on the length of A as follows:

g(a) = Ia, g((A ⇒ B)) = I(g(A)⇒ g(B),)

g((A ∪ B)) = (g(A) ∪ g(B)), g((A ∩ B)) = (g(A) ∩ g(B)),

g(¬A) = I¬g(A)



Classical Logic and Modal S5

The following theorem establishes relationship between
classical and S5 logics

Theorem
Let g be the Gödel-Tarski mapping between

L{¬,∩,∪,⇒} and L{∩,∪,⇒,¬,I}

For any formula A of L{¬,∩,∪,⇒},

`H A if and only if `S5 g(A)

where H, S5 denote any proof systems for classical and and
S5 modal logic, respectively


