
cse371/mat371
LOGIC

Professor Anita Wasilewska

LECTURE 3b

Chapter 3
Propositional Semantics: Classical and Many Valued

Many Valued Semantics:
Łukasiewicz, Heyting, Kleene, Bohvar

First Many Valued Logics

The study of many valued logics in general and 3-valued
logics in particular has its beginning in the work of a Polish
mathematician Jan Leopold Łukasiewicz in 1920

Łukasiewicz was the first to define a 3 - valued semantics
for the language

L{¬,∩,∪,⇒}

of classical logic, and called it a logic for short

He left the problem of finding a proper axiomatic proof
system for it open

First Many Valued Logics

The other 3 - valued semantics presented here were also
first called logics and this terminology is still widely used

Nevertheless, as these logics were defined only
semantically, i.e. defined only by providing a semantics for
their languages we call them semantics (for logics to be
developed), not logics

Creating a Logic

Existence of a proper axiomatic proof system for a given
semantics and proving its completeness is always a next
open question to be answered (when it is possible)

A process of creating a logic (based on a given language) is
three fold: we have to

define semantics,

create axiomatic proof system and

prove completeness theorem that establishes a relationship
between semantics and proof system

First Many Valued Logics

We present here some of the first 3-valued extensional
semantics, historically called 3-valued logics

They are named after their authors: Łukasiewicz, Kleene,
Heyting, and Bochvar

We assume that the language of all semantics (logics)
considered here except of Bochvar semantics is

L{¬, ∪, ∩, ⇒}

3-Valued Semantics

All three valued semantics considered here enlist a third
logical value which we denote by ⊥, or m in case of
Bochvar semantics

The third logical value denotes a notion of unknown,
uncertain, undefined, or even the notion of we don’t have a
complete information about depending on the context and
motivation for the semantics (logic)

The symbol ⊥ is the most frequently used for different
concepts of unknown

Many Valued Semantics

The third value ⊥ corresponds also to some notion of
incomplete information, inconsistent information, or to a
notion of being undefined , or unknown

Historically all these semantics, and many others were and
still are called logics

We will also use the name logic for them, instead saying each
time ” logic defined semantically”, or ”semantics for a given
logic”

3 Valued Semantics Assumptions

We assume that the third logical value is intermediate
between truth and falsity, i.e.

the set of logical values is ordered and we have the following

Assumption 1

F <⊥< T , and F < m < T

Assumption 2

We take T as designated value, i.e. T is the value that
defines the notions of satisfiability and tautology

Many Valued Extensional Semantics

Formal definition of all many valued semantics presented
here follows the definition of the extensional semantics M in
general, and the pattern presented in detail for the classical
semantics in particular

It consists of giving definitions of the following main
components:

Step 1: given the language L we define a set of logical
values and its distinguish value T and define all extensional
logical connectives of L

Step 2: we define notions of a truth assignment and its
extension

Step 3: we define notions of satisfaction, model, counter
model

Step 4: we define notions tautology under the semantics M

Łukasiewicz Semantics L

Motivation

Łukasiewicz developed his semantics (called logic) to deal
with future contingent statements

Contingent statements are not just neither true nor false but
are indeterminate in some metaphysical sense

It is not only that we do not know their truth value but rather
that they do not possess one

L Semantics: Language

We define all the steps in case of Łukasiewicz semantics
(logic) to establish a pattern and proper notation and leave
adopting all steps to the case of other semantics as an
exercise

Step 1 The language is L{¬,∩,∪, ⇒}

Observe that the language is the same as in the classical
semantics case

The set F of formulas is defined in a standard way

L Semantics: Connectives

Step 1 Connectives

We assumed: F <⊥< T and we define the connectoves as
follows

Negation ¬ is a function

¬ : {T ,⊥,F} −→ {T ,⊥,F}

such that ¬ ⊥=⊥, ¬T = F , ¬F = T

Conjunction ∩ is a function

∩ : {T ,⊥,F} × {T ,⊥,F} −→ {T ,⊥,F}

such that for any (x, y) ∈ {T ,⊥,F} × {T ,⊥,F}, we put

x ∩ y = min{x, y}

L Semantics: Connectives

Disjunction ∪ is a function

∪ : {T ,⊥,F} × {T ,⊥,F} −→ {T ,⊥,F}

such that for any (a, b) ∈ {T ,⊥,F} × {T ,⊥,F}, we put

x ∪ y = max{x, y}

Implication ⇒ is a function

⇒: {T ,⊥,F} × {T ,⊥,F} −→ {T ,⊥,F}

such that for any (x, y) ∈ {T ,⊥,F} × {T ,⊥,F}, we put

x ⇒ y =

{
¬x ∪ y if x > y
T otherwise

L Connectives Truth Tables

Negation

¬ F ⊥ T
T ⊥ F

Conjunction

∩ F ⊥ T
F F F F
⊥ F ⊥ ⊥

T F ⊥ T

L Connectives Truth Tables

Disjunction

∪ F ⊥ T
F F ⊥ T
⊥ ⊥ ⊥ T
T T T T

Implication

⇒ F ⊥ T
F T T T
⊥ ⊥ T T
T F ⊥ T

L Semantics: Truth Assignment

Step 2 Truth assignment and its extension

Definition

A truth assignment is any function

v : VAR −→ {F , ⊥, T }

Observe that the domain of truth assignment is the set of
propositional variables, i.e. the truth assignment is defined
only for atomic formulas

Truth Assignment Extension v∗

Definition

Given a truth assignment v : VAR −→ {T , ⊥, F}

We define its extension v∗ : F −→ {T , ⊥, F} by the
induction on the degree of formulas as follows

(i) for any a ∈ VAR, v∗(a) = v(a);

(ii) and for any A ,B ∈ F we put

v∗(¬A) = ¬v∗(A);

v∗((A ∩ B)) = v∗(A)∩v∗(B);

v∗((A ∪ B)) = v∗(A)∪v∗(B);

v∗((A ⇒ B)) = v∗(A)⇒v∗(B)

L Semantics: Satisfaction Relation

Step 3 Satisfaction, Model, Counter Model

Definition

Let v : VAR −→ {T , ⊥ F}

We say that a truth assignment v L satisfies a formula
A ∈ F if and only if v∗(A) = T

Notation: v |=L A

Definition

We say that a truth assignment v does not L satisfy a
formula A ∈ F if and only if v∗(A) , T

Notation: v 6|=L A

L Semantics: Model, Counter Model

Model
Any truth assignment v : VAR −→ {F , ⊥, T } such that

v |=L A

is called a L model for A

Counter Model

Any v such that
v 6|=L A

is called a L counter model for the formula A

L Semantics: Tautology

Step 4 Tautology

For any A ∈ F ,

A is a L tautology if and only if v∗(A) = T for all
v : VAR −→ {F ,⊥,T }

We also say that

A is a L tautology if and only if all truth assignments
v : VAR −→ {F ,⊥,T } are L models for A

Notation
|=L A

L Tautologies

We denote the set of all L tautologies by

LT = {A ∈ F : |=L A }

Let LT, T be the sets of all L tautologies and the classical
tautologies, respectively.

Q1 Is the
¯
L logic (defined semantically!) really different

from the classical logic?
It means are theirs sets of tautologies different?

Answer: YES, they are different sets
We know that

|= (¬a ∪ a)

We will show that
6|=L (¬a ∪ a)

Classical and L Tautologies

Consider the formula (¬a ∪ a)

Take a truth assignment v such that

v(a) =⊥

Evaluate

v∗(¬a ∪ a) = v∗(¬a) ∪ v∗(a) = ¬v(a) ∪ v(a)

= ¬ ⊥ ∪ ⊥=⊥ ∪ ⊥= ⊥

This proves that v is a counter-model for (¬a ∪ a), i.e.

6|=L (¬a ∪ a)

and we proved
LT , T

Classical and L Tautologies

Q2 Do the L and classical logics have something more in
common besides the same language?

YES, they also share some tautologies

Q3 Is there relationship (if any) between their sets of
tautologies LT and T?

YES, their sets of tautologies LT and T do have an
interesting relationship

Classical and L Tautologies

Let’s restrict the functions defining L connectives (Truth
Tables for L connectives) to the values T and F

Observe that by doing so we get the Truth Tables for classical
connectives, i.e. the following holds for any A ∈ F

If v∗(A) = T for all v : VAR −→ {F ,⊥,T },

then v∗(A) = T for all v : VAR −→ {F ,T }

We have hence proved that

LT ⊂ T

Exercise

Exercise

Use the fact that v : VAR −→ {F ,⊥,T } is such that

v∗((a ∩ b)⇒ ¬b) =⊥

under L semantics to evaluate

v∗(((b ⇒ ¬a)⇒ (a ⇒ ¬b)) ∪ (a ⇒ b))

Use shorthand notation.

Exercise

Solution

Observe that ((a ∩ b)⇒ ¬b) =⊥ in two cases

c1: (a ∩ b) =⊥ and ¬b = F

c12: (a ∩ b) = T and ¬b =⊥

Consider c1

We have ¬b = F , i.e. b = T

Hence (a ∩ T) =⊥ if and only if a =⊥

We get that v is such that v(a) =⊥ and v(b) = T

Exercise

We got from analyzing case c1 that v is such that v(a) =⊥
and v(b) = T

We evaluate v∗(((b ⇒ ¬a)⇒ (a ⇒ ¬b)) ∪ (a ⇒ b)) =
(((T ⇒ ¬ ⊥)⇒ (⊥⇒ ¬T)) ∪ (⊥⇒ T)) = ((⊥⇒⊥) ∪ T) = T

Consider c2

We have ¬b =⊥, i.e. b =⊥ and (a∩ ⊥) = T , what is
impossible

Hence v from case c1 is the only one and

v∗(((b ⇒ ¬a)⇒ (a ⇒ ¬b)) ∪ (a ⇒ b)) = T

Łukasiewicz Life, Works and Logics

Jan Leopold Łukasiewicz was born on 21 December 1878 in
Lwow, historically a Polish city, at that time the capital of
Austrian Galicia

He died on 13 February 1956 in Ireland and is buried in
Glasnevin Cemetery in Dublin, ” far from dear Lwow and
Poland ”, as his gravestone reads

Here is a very good, interesting and extended entry in
Stanford Encyclopedia of Philosophy about his life,
influences, achievements, and logics

http://plato.stanford.edu/entries/lukasiewicz/index.html

Heyting Semantics H

Motivation and History

We discuss here the Heyting semantics H because of its
connection with intuitionistic logic

The H connectives are defined as operations on the set
{F ,⊥,T } in such a way that they form a 3-element
pseudo-Boolean algebra

Pseudo-Boolean algebras were created by McKinsey and
Tarski in 1948 to provide semantics for the intuitionistic logic

Pseudo-Boolean algebras are often called Heyting algebras

Motivation and History

The intuitionistic logic, was defined by its inventor Brouwer
and his school in 1900s as a proof system only

Heyting provided provided its first axiomatization which
everybody accepted

McKinsey and Tarski proved in 1942 the completeness of
the Heyting axiomatization with respect to their pseudo
Boolean algebras semantics

The pseudo boolean algebras are also called Heyting
algebras in his honor and so is our semantics H

Motivation and History

A formula A is an intuitionistic tautology if and only if it is
true in all pseudo boolean algebras

We prove that the operations defined by H connectives form a
3-element pseudo boolean algebra

Hence, if A is an intuitionistic tautology, it is also a tautology
under the 3- valued Heyting semantics

If A is not a 3- valued Heyting tautology, then it is not an
intuitionistic tautology

It means that the 3-valued Heyting semantics is a good
candidate for a counter model for the formulas that might
not be intuitionistic tautologies

H Logic and Intuitionistic Logic

Denote by IT, HT the sets of all tautologies of the
intuitionistic logic and Heyting 3-valued logic (semantics),
respectively .

We have that
IT ⊂ HT

We conclude that for any formula A ,

If 6|=H A then 6|=I A

It means that if we show that a formula A has an H counter
model, then we have proved that A it is not an intuitionistic
tautology

Kripke Models

The other type of semantics for the intuitionistic logic were
defined by Kripke in 1964

They are called Kripke models

The Kripke models were later proved to be equivalent to the
pseudo boolean algebras models in case of the intuitionistic
logic

Kripke models also provide a general method of defining
semantics for many classes of logics

That includes semantics for various modal logics and new
logics developed and being developed by computer scientists

H Semantics

Language
L{¬,⇒,∪,∩}

Connectives

∪ and ∩ are the same as in the case of Ł semantics, i.e.
for any (x, y) ∈ {T ,⊥,F} × {T ,⊥,F} we put

x ∪ y = max{x, y}, x ∩ y = min{x, y}

where F <⊥< T

H Semantics

Implication

⇒: {T ,⊥,F} × {T ,⊥,F} −→ {T ,⊥,F}

such that for any (x, y) ∈ {T ,⊥,F} × {T ,⊥,F} we put

x ⇒ y =

{
T if x ≤ y
y otherwise

Negation
¬x = x ⇒ F

H Truth Tables

Implication
⇒ F ⊥ T
F T T T
⊥ F T T
T F ⊥ T

Negation
¬ F ⊥ T

T F F

Sets of Tautologies Relationships

HT, T, LT denote the set of all tautologies of the H, classical,
and L semantics, respectively

Relationships
HT , T , LT

HT ⊂ T

Proof of HT , T

For the formula (¬a ∪ a) we have:

|= (¬a ∪ a) and 6|=H (¬a ∪ a)

Sets of Tautologies Relationships

Proof of HT , LT

Take a truth assignment v such that

v(a) = v(b) =⊥

We verify that

6|=H (¬(a ∩ b)⇒ (¬a ∪ ¬b))

and
|=L(¬(a ∩ b)⇒ (¬a ∪ ¬b))

Sets of Tautologies Relationships

Proof of HT ⊂ T

Observe that if we restrict the truth tables for H connectives
to logical values T and F only we get the truth tables for the
classical connectives , i.e. and the following holds for any
formula A

If v∗(A) = T for all v : VAR −→ {F ,⊥,T },

then v∗(A) = T for all v : VAR −→ {F ,T }

All together we have proved that the classical semantics
extends both L and H semantics, i.e.

LT ⊂ T and HT ⊂ T

Kleene Semantics K

Motivation

Kleene’s semantics was originally conceived to accommodate
undecided mathematical statements

It models a situation where the third logical value ⊥ intuitively
represents the notion of ”undecided” , or ”state of partial
ignorance”

A sentence is assigned a value ⊥ just in case it is not
known to be either true or false

Kleene Semantics K

For example imagine a detective trying to solve a murder

He may conjecture that Jones killed the victim

He cannot, at present, assign a truth value T or F to his
conjecture, so we assign the value ⊥

But it is certainly either true or false and hence ⊥
represents our ignorance rather then total unknown

Kleene Semantics K

Language
We adopt the same language as in a case of classical,
Łukasiewicz’s L, and Heyting H semantics, i.e.

L{¬,⇒,∪,∩}

Connectives
We assume, as before, that F <⊥< T
The connectives ¬,∪,∩ of K are defined as in L, H
semantics, i.e.

¬ ⊥=⊥, ¬F = T , ¬T = F

and for any (x, y) ∈ {T ,⊥,F} × {T ,⊥,F} we put

x ∪ y = max{x, y}

x ∩ y = min{x, y}

K Semantics: Connectives

K Implication

Kleene’s implication differ from L and H semantics

The K implication is defined by the same formula as the
classical, i.e. for any (x, y) ∈ {T ,⊥,F} × {T ,⊥,F}

x ⇒ y = ¬x ∪ b

The connectives truth tables for the K negation, disjunction
and conjunction are the same as the tables for L, H

K implication table is

⇒ F ⊥ T
F T T T
⊥ ⊥ ⊥ T
T F ⊥ T

K Semantics: Tautologies

Set of all K tautologies is

KT = {A ∈ F : |=K A }

Relationship between Ł, H, K, and classical semantics is

LT , KT, HT , KT, and KT ⊂ T

Proof Obviously |=L (a ⇒ a) and |= (a ⇒ a) We take v
such that v(a) =⊥ and evaluate in K semantics

v∗(a ⇒ a) = (v(a)⇒ v(a)) = (⊥⇒⊥) = ⊥

This proves that 6|=K (a ⇒ a) and hence

LT , KT and LT , KT

K Tautologies

The third property
KT ⊂ T

follows directly from the the fact that, as in the L , H case, if
we restrict the K connectives definitions functions to the
values T and F only we get the functions defining the
classical connectives

All together we have proved that the classical semantics
extends all three L , H and K semantics, i.e.

LT ⊂ T, HT ⊂ T, and K ⊂ T

L, H, K Decidability

Verification and Decidability

The following theorem justifies the correctness of the truth
table method of tautology verification for for L, H, K
semantics

Theorem 1

For any formula A of L{¬,⇒,∪,∩}, for any M ∈ {L,H,K}

|=M A if and only if vA |=M A

for all vA : VARA −→ {T ,⊥,F}

We also say that

|=M A if and only if all vA are restricted M models for A,

and M ∈ {L,H,K}

L, H, K Decidability

The following theorem proves the decidability of the tautology
verification procedure for L, H, K semantics

Theorem 2

For any formula A of L{¬,⇒,∪,∩}, one has to examine at
most 3VARA truth assignments vA : VARA −→ {F ,⊥,T }
in order to decide whether

|=M A or 6|=M A

i.e. the notion of M tautology is decidable

for any semantics M ∈ {L,H,K}

Proofs of Theorems 1, 2 are carried in the same way as in
case of classical semantics and are left as an exercise

K Tautologies Revisited

Exercise

We know that formulas

((a ∩ b)⇒ a), (a ⇒ (a ∪ b)), (a ⇒ (b ⇒ a))

are classical tautologies

Show that none of them is K tautology

Solution

Consider any v such that v(a) = v(b) =⊥

We evaluate (in short hand notation)

v∗(((a ∩ b)⇒ a) = (⊥ ∩ ⊥)⇒⊥=⊥⇒⊥=⊥

K Tautologies Revisited

v∗((a ⇒ (a ∪ b))) =⊥⇒ (⊥ ∪ ⊥) =⊥⇒⊥=⊥ and

v∗((a ⇒ (b ⇒ a))) = (⊥⇒ (⊥⇒⊥) =⊥⇒⊥=⊥

This proves that any v such that

v(a) = v(b) =⊥

is a counter model for all of them

We generalize this example and prove (by induction over the
degree of a formula) that a truth assignment v such that

v(a) =⊥ for all a ∈ VAR

is a counter model for any formula A of L{¬,⇒,∪,∩}

K Tautologies Revisited

We proved the following

Theorem

For any formula A of L{¬,⇒,∪,∩}, 6|=K A

In particular, the set of all K tautologies is empty, i.e.

KT = ∅

Observe that the Theorem does not invalidate relationships

LT , KT, HT , KT, and KT ⊂ T

between Ł, H, K, and classical semantics

They become now perfectly true statements

LT , ∅, T , ∅, and ∅ ⊂ T

K Tautologies Revisited

When we develop a new logic by defining its semantics we
must make sure for the semantics to be such that it has a non
empty set of its tautologies

This is why we adopted (Set 2) the following definition

Definition

Given a language LCON and its semantics M

We say that the semantics M is well defined if and only if
its set MT of all tautologies is non empty, i.e. when

MT , ∅

K Tautologies Revisited

The semantics K is an example of a correctly and carefully
defined semantics that is not well defined in terms of the
above definition

Obviously the semantics L and H are well defined

We write is as a following separate fact

K Tautologies Revisited

Fact

The semantics L and H are well defined, but the Kleene
semantics K is not

K semantics also provides a justification for a need of
introducing a distinction between correctly and well defined
semantics

This is the main reason, beside its historical value, why it is
included here

Bochvar Semantics B

Motivation

Consider a semantic paradox given by a sentence:

this sentence is false.

If it is true it must be false,

if it is false it must be true.

According to Bochvar, such sentences are neither true of false
but rather paradoxical or meaningless

B Semantics

Bochvar’s semantics follows the principle that the third logical
value, denoted now by m (for miningless) is in some sense
”infectious”;

if one component of the formula is assigned the value m
then the formula is also assigned the value m

Bochvar also adds an one assertion operator S that asserts
the logical value of T and F , i.e.

SF = F , ST = T

S also asserts that meaningfulness m is false, i.e

Sm = F

B Semantics: Language

Language: we add a new one argument connective S and
get

LB = L{¬,S,⇒,∪,∩}

We denote by FB the set of all formulas of the language
LB and by F the set of formulas of the language
L{¬,⇒,∪,∩} common to the classical and all 3 valued logics
considered till now.

Observe that directly from the definition we have that

F ⊂ FB

The formula SA reads ”assert A”

B Semantics: Connectives

Negation

¬ F m T
T m F

Conjunction

∩ F m T
F F m F
m m m m
T F m T

B Semantics: Connectives

Disjunction

∪ F m T
F F m T
m m m m
T T m T

Implication

⇒ F m T
F T m T
m m m m
T F m T

B Semantics: Connectives, Tautology

Assertion

S F m T
F F T

For all other steps of definition of B semantics we follow the
standard established for the M semantics, as we did in all
previous cases

In particular the set of all B tautologies is

BT = {A ∈ F : |=B A }

B Semantics: Tautology

We get by easy evaluation that

|=B (Sa ∪ ¬Sa)

This proves that BT , ∅, what means that

B semantics is well defined

B Semantics: Tautology

Observe that not all formulas containing the connective S
are B tautologies, for example we have that

6|=B (a ∪ ¬Sa), 6|=B (Sa ∪ ¬a), 6|=B (Sa ∪ S¬a)

as any truth assignment v such that

v(a) = m

is a counter model for all of them, because

m ∪ x = m for all x ∈ {F ,m,T } and

Sm ∪ S¬m = F ∪ Sm = F ∪ F = F

B Semantics: Tautology

Let A be a formula that do not contain the assertion operator
S, i.e. the formula A ∈ F of the language L{¬,⇒,∪,∩}

Any v, such that v(a) = m for at least one variable in the
formula A ∈ F is a counter-model for that formula, i.e.

T ∩ BT = ∅

Observation

A formula A ∈ FB to be considered to be a B tautology
must contain the connective S in front of each variable
appearing in A

