CSE371 EXTRA MIDTERM Fall 2018 (75pts + 10extra pts)

NAME

ID:

Math/CS

THIS IS EXTRA TEST. IF YOU TAKE IT AND SUBMIT IT YOUR MIDTERM POINTS WILL BE THE AVERAGE of the MIDTERM and this TEST.

PROBLEM 1 (25pts)

CREATE YOUR OWN 3 valued extensional semantics **M** for the language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$ by defining the connectives \neg, \cup, \Rightarrow on a set $\{F, \bot, T\}$ of logical values.

You must follow the following assumptions.

Assumption 1: The third logical value value is intermediate between truth and falsity, i.e. the set of logical values is ordered and we have the following $F < \perp < T$ and T is the designated value.

Assumption 2: The semantics has to model the situation in which one "likes" only truth; i.e. in which

$$\mathbf{L}T = T, \quad \mathbf{L} \perp = F, \quad \mathbf{L}F = F$$

Assumption 3: The connectives \neg , \cup , \Rightarrow can be defined as you wish, but you have to define them in such a way as to make sure that

 $\models_{\mathbf{M}} (\mathbf{L}A \cup \neg \mathbf{L}A)$

Negation :

Part 1 Definition of your M connectives

Write down definition of your logical connectives by "shorthand" ; i.e. by writing functions defining connectives in form of the following "truth tables"

L Connective

_	F	\perp	Т

Implication

Disjunction :

Part 2

Verify **correctness** of your **M** semantics, i.e. verify whether $\models_{\mathbf{M}} (\mathbf{L}A \cup \neg \mathbf{L}A)$ under your semantics - you can use shorthand notation

Part 3

Verify whether a formula $(a \cup (b \Rightarrow (\neg a \cup c)))$ have a **counter model** under your semantics **M**. You can use **shorthand notation**.

Part 4

Verify whether the following set G is M-consistent. You can use shorthand notation

 $\mathbf{G} = \{ \mathbf{L}a, (a \cup \neg \mathbf{L}b), (a \Rightarrow b), b \}$

PROBLEM 2 (20pts)

1. Write the formula

$$A = ((((a \cap \neg c) \Rightarrow \neg b) \cup a) \Rightarrow (c \cup b))$$

as a formula of the language $\mathcal{L}_{\{\neg,\cup\}}$, i.e. as a formula B of $\mathcal{L}_{\{\neg,\cup\}}$, such that $A \equiv B$.

LIST all logical equivalences you need while solving this problem

2. PROVE that $\mathcal{L}_{\{\neg,\cup\}} \equiv \mathcal{L}_{\{\neg,\cap\}}$

PROBLEM 3 (20pts)

 ${\cal S}$ is the following proof system:

$$S = (\mathcal{L}_{\{\Rightarrow,\cup,\neg\}}, \mathcal{F}, LA = \{(A \Rightarrow (A \cup B))\} (r1), (r2))$$

Rules of inference:

$$(r1) \ \frac{A;B}{(A\cup\neg B)}, \qquad (r2) \ \frac{A;(A\cup B)}{B}$$

1. Verify whether S is sound/not sound under classical semantics.

2. Find a formal proof of $\neg(A \Rightarrow (A \cup B))$ in S, i. e. show that $\vdash_S \neg(A \Rightarrow (A \cup B))$

3. Does above point **2.** prove that $\models \neg(A \Rightarrow (A \cup B))$?

PROBLEM 4 (20pts)

 ${\bf 1}\,$ Use the proof system ${\bf RS}$ and its ${\bf Completeness}\,\,{\bf Theorem}$ to prove that

$$\models ((a \cup b) \Rightarrow \neg a) \cup (\neg a \Rightarrow \neg c))$$

2. Use the proof system ${\bf RS}$ to construct a counter model for the formula

$$(((a \Rightarrow b) \cap \neg c) \cup (a \Rightarrow c)).$$