CSE/MAT371 QUIZ 1 SOLUTIONS Fall 2018

QUESTION 1

Write the following natural language statement:

From the fact that each natural number is greater than zero we deduce that it is not possible that Anne is a boy or, if it is possible that Anne is not a boy, then it is necessary that it is not true that each natural number is greater than zero

in the following two ways

1. As a formula $A_1 \in \mathcal{F}_1$ of a language $\mathcal{L}_{\{\neg, \Box, \Diamond, \cap, \cup, \Rightarrow\}}$, **2.** As a formula $A_2 \in \mathcal{F}_2$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$

Solution of 1.

Propositional Variables: *a*, *b a* denotes statement: *each natural number is greater than zero*, *b* denotes a statement: *Anne is a boy*

Formula is $(a \Rightarrow (\neg \diamond b \cup (\diamond \neg b \Rightarrow \Box \neg a)))$

Solution of 2.

Propositional Variables: *a*, *b*, *c*, *d*

a denotes statement:each natural number is greater than zero ,b denotes a statement:it is not possible that Anne is a boy ,c denotes a statement:it is possible that Anne is not a boy, andd denotes a statement:it is necessary that it is not true that each natural number is greater than zero

Formula is $(a \Rightarrow (\neg b \cup (c \Rightarrow d)))$

QUESTION 2

Circle formulas that are propositional/ predicate tautologies

 $1. \ S_1 = \{ (A \Rightarrow (A \cup \neg B)), \ (((a \Rightarrow b) \cap (a \Rightarrow c)) \Rightarrow (a \Rightarrow b)), \ ((a \Rightarrow b) \cup (a \cap \neg b)), \ (A \cup (A \Rightarrow B)), \ (a \cup \neg b) \} \} = \{ (A \Rightarrow (A \cup \neg B)), \ (A \cup (A \Rightarrow B)), \ (A \cup (A \to B)), \ (A \to (A \to B)), \ (A \to (A \to B)), \ (A \to (A \to B$

Solution

 $\not\models (a \cup \neg b)$, all other formulas are tautologies

2.
$$S_2 = \{ (\forall x A(x) \Rightarrow \exists x A(x)), (\forall x (\neg P(x, y) \cup P(x, y)) \Rightarrow \exists x P(x, y)), ((\exists xA(x) \cap \exists xB(x)) \Rightarrow \exists x (A(x) \cap B(x))) \} \}$$

Solution

 $\models (\forall x A(x) \Rightarrow \exists x A(x)), \text{ all other formulas are NOT tautologies}$

QUESTION 3

Here is a mathematical statement S:

For all real numbers x the following holds: If x < 0, then there is a natural number n, such that x + n < 0."

- 1. Re-write S as a symbolic mathematical statement SF that only uses mathematical and logical symbols.
- 2. Translate the symbolic statement SF into to a corresponding formula with restricted quantifiers
- 3. Translate your restricted domain quantifiers logical formula into a correct formula A of the predicate language \mathcal{L}

Solution

The statement S is:

"For all real numbers x the following holds: If x < 0, then there is a natural number n, such that x + n < 0."

S becomes a symbolic mathematical statement **SF** $\forall_{x \in R} (x < 0 \Rightarrow \exists_{n \in N} x + n < 0)$

We write R(x) for $x \in R$, N(y) for $n \in N$, a constant c for the number 0

We use $L \in \mathbf{P}$ to denote the relation <, we use $f \in \mathbf{F}$ to denote the function +.

The statement x < 0 becomes an **atomic formula** L(x, c).

The statement x + n < 0 becomes an **atomic formula** L(f(x,y), c).

The symbolic mathematical statement **SF** $\forall_{x \in R} (x < 0 \Rightarrow \exists_{n \in N} x + n < 0)$

becomes a **restricted quantifiers** formula $\forall_{R(x)}(L(x,c) \Rightarrow \exists_{N(y)}L(f(x,y),c)).$

We apply now the **transformation rules** and get a corresponding formula $A \in \mathcal{F}$:

 $\forall x(N(x) \Rightarrow (L(x,c) \Rightarrow \exists y(N(y) \cap L(f(x,y),c))).$

QUESTION 4

Given a formula A : $\forall x \exists y P(f(x, y), c)$ of the predicate language \mathcal{L} , and

two model structures $M_1 = (Z, I_1)$, $M_2 = (N, I_2)$ with the interpretations defined as follows.

 $P_{I_1}:=, f_{I_1}:+, c_{I_1}:0 \text{ and } P_{I_2}:>, f_{I_2}:\cdot, c_{I_2}:0.$

1. Show that $\mathbf{M}_1 \models A$

Solution

 A_{I_1} : $\forall_{x \in Z} \exists_{y \in Z} x + y = 0$ is a **true** statement;

For each $x \in Z$ exists y = -x and $-x \in Z$ and x - x = 0.

2. Show that $\mathbf{M}_2 \not\models A$.

Solution

 A_{I_2} : $\forall_{x \in N} \exists_{y \in N} x \cdot y > 0$ is a **false** statement for x = 0.

QUESTION 5

Given a formula $A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$

and its **restricted model** $v_A : \{a, b, c\} \longrightarrow \{T, F\}, v_A(a) = T, v_A(b) = T, v_A(c) = F$

Extend v_A to the set of all propositional variables VAR to obtain 2 different, non restricted models for A

Solution

Model w_1 is a function

 $w_1 : VAR \longrightarrow \{T, F\}$ such that $w_1(a) = v_A(a) = T$, $w_1(b) = v_A(b) = T$, $w_1(c) = v_A(c) = F$, and $w_1(x) = T$, for all $x \in VAR - \{a, b, c\}$ **Model** w_2 is defined by a formula $w_2(a) = v_A(a) = T$, $w_2(b) = v_A(b) = T$, $w_2(c) = v_A(c) = F$, and $w_2(x) = F$, for all $x \in VAR - \{a, b, c\}$

REMINDER: we define H semantics operations \cup and \cap as $x \cup y = max\{x, y\}$, $x \cap y = min\{x, y\}$

the implication and negation are defined as

$$x \Rightarrow y = \begin{cases} T & \text{if } x \le y \\ y & \text{otherwise} \end{cases}$$
$$\neg x = x \Rightarrow F$$

QUESTION 6

We know that $v : VAR \longrightarrow \{F, \bot, T\}$ is such that $v^*((a \cap \neg b) \Rightarrow (a \Rightarrow c)) = \bot$ under H semantics.

Evaluate $v^*(((b \Rightarrow a) \Rightarrow b))$. You can use SHORTHAND notation.

Solution

The Truth Tables for Implication and Negation are:

H-Implication

H Negation

We KNOW that

 $v^*((a \cap \neg b) \Rightarrow (a \Rightarrow c)) = \bot$ under **H** semantics if and only if (we use shorthand notation)

- iff $(a \cap \neg b) = T$ and $(a \Rightarrow c) = \bot$
- iff a = T, b = F, and $(T \Rightarrow c) = \bot$
- iff a = T, b = F, $c = \bot$

Hence we evaluate

 $v^*(((b \Rightarrow a) \Rightarrow b)) = (F \Rightarrow T) \Rightarrow F) = T \Rightarrow F = F$