
cse371/mat371
LOGIC

Professor Anita Wasilewska

Fall 2017

LECTURE 6

Chapter 6
Automated Proof Systems for Classical Propositional Logic

PART 1: RS SYSTEM

PART 2: RS1, RS2, RS3 SYSTEMS

PART 3: GENTZEN SYSTEMS

CLASSICAL AUTOMATED PROOF SYSTEMS

Hilbert style systems are easy to define and admit a relatively
simple proofs of the Completeness Theorem but they are
difficult to use

Automated systems are less intuitive then the Hilbert-style
systems, but they will allow us to define effective automatic
procedures for proof search, what is impossible in a case of
the Hilbert-style systems

The first idea of this type was presented by G. Gentzen in
1934

We present in this chapter our version of original Gentzen
system for propositional classical logic

We present the original Gentzen systems for Intuitionistic
and Classical Propositional Logics in Chapter 7

AUTOMATED PROOF SYSTEMS

PART 1: RS System

The automated proof system we presented here is due to
Helena Rasiowa and Roman Sikorski

We present here the propositional version of the original
system and call it RS system for Rasiowa - Sikorski

The propositional RS system extends naturally to predicate
logic QRS system which is presented in Chapter 10

Both systems RS and QRS admit a constructive proof of
Completeness Theorem

First such constructive proofs were given, together with the
formalization of the systems by H. Rasiowa and Sikorski in
1961

AUTOMATED PROOF SYSTEMS

PART 2: RS1, RS2 Systems

We define, as an exercise 2 versions of of the RS System,
discuss their differences and show how the proof of
Completeness Theorem for RS extends to similar proofs for
all 3 systems

AUTOMATED PROOF SYSTEMS

PART 3: GENTZEN Systems - Lecture 6a

We present our modern versions of Gentzen Sequent
systems for propositional classical logic

Both systems extend easily to predicate logic and admit a
constructive proof of Completeness Theorem via
Rasiowa-Sikorski method

We also present the original Gentzen systems LK for classical
propositional logic together with the original Gentzen proof of
Hauptzatz (Cut Elimination Theorem)

PART1:
RS Proof System for Classical Propositional Logic

RS Proof System

Language of RS is

L = L{¬,⇒,∪,∩}

The rules of inference of our system RS operate on finite
sequences of formulas and we adopt

E = F ∗

as the set of expressions of RS

Notation

Elements of E are finite sequences of formulas and we
denote them by

Γ,∆,Σ . . .

with indices if necessary.

RS Proof System

The the intuitive meaning of a sequence Γ ∈ F ∗ is that the
truth assignment v makes it true if and only if it makes the
formula of the form of the disjunction of all formulas of Γ true

For any sequence Γ ∈ F ∗,

Γ = A1,A2, ...,An

we denote
δΓ = A1 ∪ A2 ∪ ... ∪ An

We define as the next step a formal semantics for RS

Formal Semantics for RS

Let v : VAR −→ {T ,F} be a truth assignment and

v∗ its classical semantics extension to the set of formulas F

We formally extend v to the set F ∗ of all finite sequences of
F as follows

v∗(Γ) = v∗(δΓ) = v∗(A1) ∪ v∗(A2) ∪ ... ∪ v∗(An)

The sequence Γ is said to be satisfiable if there is a truth
assignment v : VAR −→ {T ,F} such that v∗(Γ) = T

We write it as
v |= Γ

and call v a model for Γ

Formal Semantics for RS

The sequence Γ is said to be falsifiable if there is a truth
assignment v, such that v∗(Γ) = F

Such a truth assignment v is called a counter-model for Γ

The sequence Γ is said to be a tautology iff v∗(Γ) = T for
all truth assignments v : VAR −→ {T ,F}

We write as always,
|= Γ

to denote that Γ is a tautology

Example

Example

Let Γ be a sequence

a, (b ∩ a),¬b , (b ⇒ a)

The truth assignment v such that

v(a) = F and v(b) = T

falsifies Γ, i.e. is a counter-model for Γ as shows the
following computation

v∗(Γ) = v∗(δΓ) = v∗(a) ∪ v∗(b ∩ a) ∪ v∗(¬b) ∪ v∗(b ⇒ a) =
F ∪ (F ∩ T) ∪ F ∪ (T ⇒ F) = F ∪ F ∪ F ∪ F = F .

Rules of inference

Rules of inference of RS are of the form:

Γ1

Γ
or

Γ1 ; Γ2

Γ

where Γ1, Γ2 are called premisses and Γ is called the
conclusion of the rule

Each rule of inference introduces a new logical connective or
a negation of a logical connective

We name the rule that introduces the logical connective ◦
in the conclusion sequent Γ by (◦)

The notation (¬◦) means that the negation of the logical
connective ◦ is introduced in the conclusion sequence Γ

Rules of inference of system bf RS

Proof System RS contains seven inference rules:

(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬)

Before we define the rules of inference of RS we need to
introduce some definitions.

Definition

Any propositional variable, or a negation of propositional
variable is called a literal

The set
LT = VAR ∪ {¬a : a ∈ VAR}

is called a set of all propositional literals

The variables are called positive literals

Negations of variables are called negative literals.

Literal

We denote by
Γ
′

, ∆
′

, Σ
′

. . .

finite sequences (empty included) formed out of literals i.e

Γ
′

, ∆
′

, Σ
′

∈ LT∗

We will denote by
Γ, ∆, Σ . . .

the elements of F ∗

Logical Axioms of RS

We adopt as an logical axiom of RS any sequence of
literals which contains a propositional variable and its
negation, i.e any sequence

Γ
′

1, a, Γ
′

2, ¬a, Γ
′

3

Γ
′

1, ¬a, Γ
′

2, a, Γ
′

3

where a ∈ VAR is any propositional variable

We denote by LA the set of all logical axioms of RS

Inference Rules of RS

Disjunction rules

(∪)
Γ
′

, A ,B , ∆

Γ′ , (A ∪ B), ∆
, (¬∪)

Γ
′

, ¬A , ∆ ; Γ
′

, ¬B , ∆

Γ′ , ¬(A ∪ B), ∆

Conjunction rules

(∩)
Γ
′

, A , ∆ ; Γ
′

, B , ∆

Γ′ , (A ∩ B), ∆
, (¬∩)

Γ
′

, ¬A , ¬B , ∆

Γ′ , ¬(A ∩ B), ∆

Inference Rules of RS

Implication rules

(⇒)
Γ
′

, ¬A ,B , ∆

Γ′ , (A ⇒ B), ∆
, (¬ ⇒)

Γ
′

, A , ∆ : Γ
′

, ¬B , ∆

Γ′ , ¬(A ⇒ B), ∆

Negation rule

(¬¬)
Γ
′

, A , ∆

Γ′ , ¬¬A , ∆

where Γ
′

∈ LT∗, ∆ ∈ F ∗, A ,B ∈ F

Proof System RS

Formally we define the system RS as follows

RS = (L{¬,⇒,∪,∩}, F
∗, LA , R)

where the set of inference rules is

R = {(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬)}

and LA is the set of all logical axioms

Proof Trees

Definition

By a proof tree in RS of Γ we understand a tree

TΓ

built out of sequences satisfying the following conditions:

1. The topmost sequence, i.e the root of TΓ is the
sequence Γ

2. all leafs are axioms

2. the nodes are sequences such that each sequence on
the tree follows from the ones immediately preceding it by one
of the inference rules

Proof Trees

We picture, and write our proof trees with the root on the
top, and the leafs on the very bottom,

Additionally we write our proof trees indicating the name of
the inference rule used at each step of the proof

Example

Assume that a proof of a sequence Γ from some three
axioms was obtained by the subsequent use of the rules
(∩), (∪), (∪), (∩), (∪), and (¬¬), (⇒)

We represent it as the following tree

Proof Trees

The tree TΓ

Γ

| (⇒)

conclusion of (¬¬)

| (¬¬)

conclusion of (∪)

| (∪)

conclusion of (∩)∧
(∩)

conclusion of (∩)

| (∪)

axiom

conclusion of (∪)

| (∪)

conclusion of (∩)∧
(∩)

axiom axiom

Proof Trees

The Proof Trees represent a certain visualization for the
proofs

Any formal proof in any proof system can be represented in
a tree form and vice- versa

Any proof tree can be re-written in a linear form as a
previously defined formal proof

Example

The proof tree in RS of the de Morgan Law

A = (¬(a ∩ b)⇒ (¬a ∪ ¬b))

is the as follows

Proof Trees

The tree TA

(¬(a ∩ b)⇒ (¬a ∪ ¬b))

| (⇒)

¬¬(a ∩ b), (¬a ∪ ¬b)

| (¬¬)

(a ∩ b), (¬a ∪ ¬b)∧
(∩)

a, (¬a ∪ ¬b)

| (∪)

a,¬a,¬b

b , (¬a ∪ ¬b)

| (∪)

b ,¬a,¬b

Formal Proof

To obtain a formal proof (written in a vertical form) of A it we
just write down the tree as a sequence, starting from the leafs
and going up (from left to right) to the root

a,¬a,¬b

b ,¬a,¬b

a, (¬a ∪ ¬b)

b , (¬a ∪ ¬b

(a ∩ b), (¬a ∪ ¬b)

¬¬(a ∩ b), (¬a ∪ ¬b)

(¬(a ∩ b)⇒ (¬a ∪ ¬b))

Example

Example

A search for the proof in RS of other de Morgan Law

A = (¬(a ∪ b)⇒ (¬a ∩ ¬b))

consists of building a certain tree and proceeds as follows.

Example

The tree TA

(¬(a ∪ b)⇒ (¬a ∩ ¬b))

| (⇒)

¬¬(a ∪ b), (¬a ∩ ¬b)

| (¬¬)

(a ∪ b), (¬a ∩ ¬b)

| (∪)

a, b , (¬a ∩ ¬b)∧
(∩)

a, b ,¬a a, b ,¬b

Example

We construct its formal proof , as before, written in a vertical
manner

Here it is

a, b ,¬b

a, b ,¬a

a, b , (¬a ∩ ¬b)

(a ∪ b), (¬a ∩ ¬b)

¬¬(a ∪ b), (¬a ∩ ¬b)

(¬(a ∪ b)⇒ (¬a ∩ ¬b))

Decomposition Trees

Our GOAL in inventing proof systems like RS is to facilitatee
automatic proof search

The method of such proof search is to generate what is called
the decomposition trees

The decomposition tree for

A = (((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

is built as follows

Decomposition Trees

The tree TA

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c)∧
(∩)

(a ⇒ b), (a ⇒ c)

| (⇒)

¬a, b , (a ⇒ c)

| (⇒)

¬a, b ,¬a, c

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c

RS: DECOMPOSITION RULES
and

DECOMPOSITION TREES

Decomposition Trees

The process of searching for a proof of a formula A ∈ F
in RS consists of building a certain tree TA , called a
decomposition tree

Building a decomposition tree, i.e. a proof search tree
consists in the first step of transforming the RS rules into
corresponding decomposition rules

RS Decomposition Rules

Here are all of RS decomposition rules

Disjunction decomposition rules

(∪)
Γ
′

, (A ∪ B), ∆

Γ′ , A ,B , ∆
, (¬∪)

Γ
′

, ¬(A ∪ B), ∆

Γ′ , ¬A , ∆ ; Γ′ , ¬B , ∆

Conjunction decomposition rules

(∩)
Γ
′

, (A ∩ B), ∆

Γ′ ,A ,∆ ; Γ′ , B ,∆
, (¬∩)

Γ
′

, ¬(A ∩ B), ∆

Γ′ , ¬A ,¬B , ∆

Decomposition Rules

Implication decomposition rules

(⇒)
Γ
′

, (A ⇒ B), ∆

Γ′ , ¬A ,B , ∆
, (¬ ⇒)

Γ
′

, ¬(A ⇒ B), ∆

Γ′ ,A ,∆ ; Γ′ , ¬B , ∆

Negation decomposition rule

(¬¬)
Γ
′

, ¬¬A , ∆

Γ′ , A , ∆

where Γ
′

∈ F ′
∗, ∆ ∈ F ∗, A ,B ∈ F

Tree Decomposition Rules

We write the decomposition rules in a visual tree form as
follows

Tree Decomposition Rules

(∪) rule

Γ
′

, (A ∪ B), ∆

| (∪)

Γ
′

, A ,B , ∆

Tree Decomposition Rules

(¬∪) rule

Γ
′

, ¬(A ∪ B), ∆∧
(¬∪)

Γ
′

, ¬A , ∆ Γ
′

, ¬B , ∆

(∩) rule

Γ
′

, (A ∩ B), ∆∧
(∩)

Γ
′

, A , ∆ Γ
′

, B , ∆

Tree Decomposition Rules

(¬∪) rule

Γ
′

, ¬(A ∩ B), ∆

| (¬∩)

Γ
′

, ¬A ,¬B , ∆

(⇒) rule

Γ
′

, (A ⇒ B), ∆

| (∪)

Γ
′

, ¬A ,B , ∆

Tree Decomposition Rules

(¬ ⇒) rule

Γ
′

, ¬(A ⇒ B), ∆∧
(¬ ⇒)

Γ
′

, A , ∆ Γ
′

, ¬B , ∆

(¬¬) rule

Γ
′

, ¬¬A , ∆

| (¬¬)

Γ
′

, A , ∆

Definitions and Observations

Observe that we use the same names for the inference and
decomposition rules, as once the we have built the
decomposition tree with all leaves being axioms, it
constitutes a proof of A in RS with branches labeled by
the proper inference rules

Now we still need to introduce few standard and useful
definitions and observations.

Definition: Indecomposable Sequence

A sequence Γ
′

built only out of literals, i.e. Γ ∈ F ′∗ is called
an indecomposable sequence

Definitions and Observations

Definition: Indecomposable Sequence

A sequence Γ
′

built only out of literals, i.e. Γ ∈ F ′∗ is called
an indecomposable sequence

Definition: Decomposable Formula

A formula A that is not a literal, i.e. A ∈ F − LT is called a
decomposable formula

Definition: Decomposable Sequence

A sequence Γ that contains a decomposable formula is
called a decomposable sequence

Definitions and Observations

Observation 1

For any decomposable sequence, i.e. for any Γ < LT∗

there is exactly one decomposition rule that can be applied
to it

This rule is determined by the first decomposable formula
in Γ and by the main connective of that formula

Definitions and Observations

Observation 2

If the main connective of the first decomposable formula is
∪,∩, ⇒,

then the decomposition rule determined by it is
(∪), (∩), (⇒), respectively

Observation 3

If the main connective of the first decomposable formula A
is negation ¬

then the decomposition rule is determined by the second
connective of the formula A

The corresponding decomposition rules are
(¬∪), (¬∩), (¬¬), (¬ ⇒)

Decomposition Lemma

Because of the importance of the Observation 1 we re-write
it in a form of the following

Decomposition Lemma

For any sequence Γ ∈ F ∗,

Γ ∈ LT∗ or Γ is in the domain of exactly one of RS
Decomposition Rules

This rule is determined by the first decomposable formula
in Γ and by the main connective of that formula

Decomposition Tree Definition

Definition: Decomposition Tree TA

For each A ∈ F , a decomposition tree TA is a tree build as
follows

Step 1.

The formula A is the root of TA

For any other node Γ of the tree we follow the steps below

Step 2.

If Γ is indecomposable then Γ becomes a leaf of the tree

Decomposition Tree Definition

Step 3.

If Γ is decomposable, then we traverse Γ from left to
right and identify the first decomposable formula B

By the Decomposition Lemma, there is exactly one
decomposition rule determined by the main connective of B

We put its premiss as a node below, or its left and right
premisses as the left and right nodes below, respectively

Step 4.

We repeat Step 2 and Step 3 until we obtain only leaves

Decomposition Theorem

We now prove the following Decomposition Tree Theorem.

This Theorem provides a crucial step in the proof of the
Completeness Theorem for RS

Decomposition Tree Theorem

For any sequence Γ ∈ F ∗ the following conditions hold

1. TΓ is finite and unique

2. TΓ is a proof of Γ in RS if and only if all its leafs are
axioms

3. 0RS Γ if and only if TΓ has a non- axiom leaf

Theorem

Proof

The tree TΓ is unique by the Decomposition Lemma

It is finite because there is a finite number of logical
connectives in Γ and all decomposition rules diminish the
number of connectives

If the tree TΓ has a non- axiom leaf it is not a proof by
definition

By 1. it also means that the proof does not exist

Example

Example

Let’s construct, as an example a decomposition tree TA of
the following formula A

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

The formula A forms a one element decomposable
sequence

The first decomposition rule used is determined by its main
connective

We put a box around it, to make it more visible

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

Example

The first and only decomposition rule to be applied is (∪)

The first segment of the decomposition tree TA is

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

| (∪)

((a ∪ b)⇒ ¬a), (¬a ⇒ ¬c)

Example

Now we decompose the sequence

((a ∪ b)⇒ ¬a), (¬a ⇒ ¬c)

It is a decomposable sequence with the first, decomposable
formula

((a ∪ b)⇒ ¬a)

The next step of the construction of our decomposition tree is
determined by its main connective⇒ and we put the box
around it

((a ∪ b) ⇒ ¬a), (¬a ⇒ ¬c)

Example

The decomposition tree becomes now

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

| (∪)

((a ∪ b) ⇒ ¬a), (¬a ⇒ ¬c)

| (⇒)

¬(a ∪ b),¬a, (¬a ⇒ ¬c)

Example

The next sequence to decompose is

¬(a ∪ b),¬a, (¬a ⇒ ¬c)

with the first decomposable formula

¬(a ∪ b)

Its main connective is ¬, so to find the appropriate rule we
have to examine next connective, which is ∪

The decomposition rule determine by this stage of
decomposition is (¬∪)

Example

Next stage of the construction of the decomposition tree TA
is

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

| (∪)

((a ∪ b) ⇒ ¬a), (¬a ⇒ ¬c)

| (⇒)

¬ (a ∪ b),¬a, (¬a ⇒ ¬c)∧
(¬∪)

¬a,¬a, (¬a ⇒ ¬c) ¬b ,¬a, (¬a ⇒ ¬c)

Example

Finally, the complete TA is

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

| (∪)

((a ∪ b) ⇒ ¬a), (¬a ⇒ ¬c)

| (⇒)

¬ (a ∪ b),¬a, (¬a ⇒ ¬c)∧
(¬∪)

¬a,¬a, (¬a ⇒ ¬c)

| (⇒)

¬a,¬a, ¬¬ a,¬c

| (¬¬)

¬a,¬a, a,¬c

¬b ,¬a, (¬a ⇒ ¬c)

| (⇒)

¬b ,¬a, ¬¬ a,¬c

| (¬¬)

¬b ,¬a, a,¬c

Example

All leaves of TA are axioms

The tree TA is a proof of A in RS, i.e.

`RS ((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

Example

Example Given a formula A and its decomposition tree TA

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c)∧
(∩)

(a ⇒ b), (a ⇒ c)

| (⇒)

¬a, b , (a ⇒ c)

| (⇒)

¬a, b ,¬a, c

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c

Example

There is a leaf ¬a, b ,¬a, c of the tree TA that is not an
axiom. By the Decomposition Tree Theorem

0RS ((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

It means that the proof in RS of the formula
((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c)) does not exists

Completeness Theorem

Our main goal is to prove the Completeness Theorem for RS

We prove first the following Completeness Theorem for
formulas A ∈ F

Completeness Theorem 1 For any formula A ∈ F

`RS A if and only if |= A

and then we generalize it to the following

Completeness Theorem 2 For any Γ ∈ F ∗,

`RS Γ if and only if |= Γ

Do do so we need to introduce a new notion of a Strong
Soundness and prove that the RS is strongly sound

Strong Soundness of RS

Strong Soundness

Definition

Given a proof system

S = (L, E, LA , R)

Definition

A rule r ∈ R such that the conjunction of all its premisses is
logically equivalent to its conclusion is called strongly
sound

Definition

A proof system S is called strongly sound iff S is sound
and all its rules r ∈ R are strongly sound

Strong Soundness of RS

Theorem
The proof system RS is strongly sound
Proof
We prove as an example the strong soundness of two of
inference rules: (∪) and (¬∪)

Proof for all other rules follows the same patterns and is left
as an exercise
By definition of strong soundness we have to show that
If P1, P2 are premisses of a given rule and C is its
conclusion, then for all v,

v∗(P1) = v∗(C)

in case of one premiss rule and

v∗(P1) ∩ v∗(P2) = v∗(C)

in case of the two premisses rule.

Strong Soundness of RS

Consider the rule (∪)

(∪)
Γ
′

, A ,B , ∆

Γ′ , (A ∪ B), ∆

We evaluate:

v∗(Γ
′

,A ,B ,∆) = v∗(δ{Γ′ ,A ,B ,∆}) = v∗(Γ
′

)∪v∗(A)∪v∗(B)∪v∗(∆)

= v∗(Γ
′

) ∪ v∗(A ∪ B) ∪ v∗(∆) = v∗(δ{Γ′ ,(A∪B),∆})

= v∗(Γ
′

, (A ∪ B),∆)

Strong Soundness of RS

Consider the rule (¬∪)

(¬∪)
Γ
′

, ¬A , ∆ : Γ
′

, ¬B , ∆

Γ′ , ¬(A ∪ B), ∆

We evaluate:

v∗(P1) ∩ v∗(P2) = v∗(Γ
′

,¬A ,∆)∩v∗(Γ
′

,¬B ,∆)

= (v∗(Γ
′

) ∪ v∗(¬A) ∪ v∗(∆))∩(v∗(Γ
′

) ∪ v∗(¬B) ∪ v∗(∆))

= (v∗(Γ
′

,∆) ∪ v∗(¬A))∩(v∗(Γ
′

,∆) ∪ v∗(¬B))

=distrib (v∗(Γ
′

,∆) ∪ (v∗(¬A) ∩ v∗(¬B))

= v∗(Γ
′

) ∪ v∗(∆) ∪ v∗(¬A ∩ ¬B) =deMorgan v∗(δ{Γ′ ,¬(A∪B),∆}

= v∗(Γ
′

, ¬(A ∪ B), ∆) = v∗(C)

Soundness Theorem

Observe that the strong soundness notion implies
soundness (not only by name!). Obviously the LA of RS are
tautologies , hence we have also proved the following

Soundness Theorem for RS

For any Γ ∈ F ∗,

If `RS Γ, then |= Γ

In particular, for any A ∈ F ,

If `RS A , then |= A

Strong Soundness

We proved that all the rules of inference of RS of are
strongly sound, i.e. C ≡ P and C ≡ P1 ∩ P2

Strong soundness of the rules means that if at least one of
premisses of a rule is false, so is its conclusion

Given a formula A, such that its TA has a branch ending with a
non-axiom leaf

By strong soundness, any v that make this non-axiom leaf
false also falsifies all sequences on that branch, and hence
falsifies the the formula A

This means that any v that falsifies a non-axiom leaf is a
counter-model for A

Counter Model Theorem

We have proved the following

Counter Model Theorem

Let A ∈ F be such that its decomposition tree TA contains
a non- axiom leaf LA

Any truth assignment v that falsifies LA is a counter
model for A

Any truth assignment that falsifies a non- axiom leaf is called
a counter-model for A deftermined by the decomposition
tree TA

Counter Model Example

Consider a tree TA

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c)∧
(∩)

(a ⇒ b), (a ⇒ c)

| (⇒)

¬a, b , (a ⇒ c)

| (⇒)

¬a, b ,¬a, c

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c

Counter Model Example

The tree TA has a non-axiom leaf LA : ¬a, b ,¬a, c
We define a truth assignment v : VAR −→ {T ,F} that
falsifies the leaf LA as follows
Observe that v must be such that
v∗(¬a, b ,¬a, c) = v∗(¬a) ∪ v∗(b) ∪ v∗(¬a) ∪ v∗(c) =

¬v(a) ∪ v(b) ∪ ¬v(a) ∪ v(c) = F , i.e. all components of the
disjunction must be put to F
We hence get that v must be such that

v(a) = T , v(b) = F , v(c) = F

By the Counter Model Theorem, the v determined by the
non-axiom leaf also falsifies the formula A, i.e. we proved
that v is a counter model for A and

6|= (((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

Counter Model

The Counter Model Theorem says that F determined by the
non-axiom leaf ”climbs” the tree TA

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c)) = F

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c) = F∧
(∩)

(a ⇒ b), (a ⇒ c) = F

| (⇒)

¬a, b , (a ⇒ c) = F

| (⇒)

¬a, b ,¬a, c = F

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c

axiom

Counter Model

Observe that the same counter model construction applies
to any other non-axiom leaf, if exists

The other non-axiom leaf defines another F that also ”climbs
the tree” picture, and hence defines another counter- model
for A

By Decomposition Tree Theorem all possible restricted
counter-models for A are those determined by all non-
axioms leaves of the TA

In our case the formula TA has only one non-axiom leaf,
and hence only one restricted counter model

RS Completeness Theorem

RS Completeness Theorem

For any A ∈ F ,

If |= A , then `RS A

We prove instead the opposite implication

RS Completeness Theorem

If 0RS A then 6|= A

Proof of Completeness Theorem

Proof of Completeness Theorem
Assume that A is any formula is such that

0RS A

By the Decomposition Tree Theorem the TA contains a
non-axiom leaf

The non-axiom leaf LA defines a truth assignment v which
falsifies it as follows:

v(a) =


F if a appears in LA

T if ¬a appears in LA

any value if a does not appear in LA

Hence by Counter Model Theorem we have that v also
falsifies A , i.e.

6|= A

PART2:
Proof Systems RS1 and RS2

RS1 Proof System

Language of RS1 is the same as the language of RS, i.e.

L = L{¬,⇒,∪,∩}

The rules of inference of our system RS1 operate as rules of
RS on finite sequences of formulas and we adopt

E = F ∗

as the set of expressions of RS1

Notation

Elements of E are finite sequences of formulas and we
denote them by

Γ,∆,Σ . . .

with indices if necessary.

Rules of inference of RS1

Proof System RS1 contains seven inference rules,
denoted by the same symbols as the rules of RS

(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬)

The inference rules of RS1 are quite similar to the rules of RS

Look at them carefully to see where lies the difference

Reminder

Any propositional variable, or a negation of propositional
variable is called a literal

The set LT = VAR ∪ {¬a : a ∈ VAR} is called a set of all
propositional literals

The variables are called positive literals

Negations of variables are called negative literals.

Literals Notation

We denote, as before, by

Γ
′

, ∆
′

, Σ
′

. . .

finite sequences (empty included) formed out of literals i.e

Γ
′

, ∆
′

, Σ
′

∈ LT∗

We will denote by
Γ, ∆, Σ . . .

the elements of F ∗

Logical Axioms of RS1

We adopt all logical axiom of RS as the axioms of RS1, i.e.

Logical Axioms LA of RS1 are as follows

Γ
′

1, a, Γ
′

2, ¬a, Γ
′

3

Γ
′

1, ¬a, Γ
′

2, a, Γ
′

3

where a ∈ VAR is any propositional variable

Inference Rules of RS1

Disjunction rules

(∪)
Γ, A ,B , ∆

′

Γ, (A ∪ B), ∆′ (¬∪)
Γ, ¬A , ∆

′

; Γ, ¬B , ∆
′

Γ, ¬(A ∪ B), ∆′

Conjunction rules

(∩)
Γ, A , ∆

′

; Γ, B , ∆
′

Γ, (A ∩ B), ∆′ (¬∩)
Γ, ¬A , ¬B , ∆

′

Γ, ¬(A ∩ B), ∆′

Inference Rules of RS1

Implication rules

(⇒)
Γ, ¬A ,B , ∆

′

Γ, (A ⇒ B), ∆′ (¬ ⇒)
Γ, A , ∆

′

: Γ, ¬B , ∆
′

Γ, ¬(A ⇒ B), ∆′

Negation rule

(¬¬)
Γ, A , ∆

′

Γ, ¬¬A , ∆′

where Γ
′

∈ LT∗, ∆ ∈ F ∗, A ,B ∈ F

Proof System RS1

Formally we define the system RS1 as follows

RS1 = (L{¬,⇒,∪,∩}, E, LA , R)

where

R = {(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬)}

for the inference rules is defined above and LA is the set of all
logical axioms (the same as for RS

System RS1

Exercise

E1. Construct a proof in RS1 of a formula

A = (¬(a ∩ b)⇒ (¬a ∪ ¬b))

E2. Prove that RS1 is strongly sound

E3. Define in your own words, for any formula A , the
decomposition tree TA in RS1

E4. Prove Completeness Theorem for RS1

System RS1

The decomposition tree TA in RS1 is a proof of A in RS1 as
all leaves are axioms

TA

(¬(a ∩ b)⇒ (¬a ∪ ¬b))

| (⇒)

(¬¬(a ∩ b), (¬a ∪ ¬b)

| (∪)

¬¬(a ∩ b),¬a,¬b

| (¬¬)

(a ∩ b),¬a,¬b∧
(∩)

a,¬a,¬b b ,¬a,¬b

Strong Soundness of RS1

E2. Observe that the system RS1 is obtained from RS by
changing the sequence Γ

′

into Γ and the sequence ∆ into ∆
′

in all of the rules of inference of RS

These changes do not influence the essence of proof of
strong soundness of the rules of RS

One has just to replace the sequence Γ
′

by Γ and ∆ by ∆
′

in the the proof of strong soundness of each rule of RS to
obtain the corresponding proof of strong soundness of
corresponding rule of RS1

We do it, for example for the rule (∪) of RS1 as follows

Strong Soundness of RS1

Consider the rule (∪) of RS1

(∪)
Γ, A ,B , ∆

′

Γ, (A ∪ B), ∆′

We evaluate:

v∗(Γ,A ,B ,∆
′

) = v∗(δ{Γ,A ,B ,∆′ }) = v∗(Γ)∪v∗(A)∪v∗(B)∪v∗(∆
′

)

= v∗(Γ) ∪ v∗(A ∪ B) ∪ v∗(∆
′

) = v∗(δ{Γ,(A∪B),∆
′
})

= v∗(Γ, (A ∪ B),∆
′

)

Decomposition Trees in RS1

E3. The definition of the decomposition tree TA is again, it its
essence similar to the one for RS except for the changes
which reflect the differences in the corresponding rules of
inference

We follow now the following steps

Step 1

Decompose A using a rule defined by its main connective

Step 2

Traverse resulting sequence Γ on the new node of the tree
from right to left and find the first decomposable formula

Step 3

Repeat Step 1 and Step 2 until no more decomposable
formulas

End of Tree Construction

Decomposition Trees in RS1

E4. Observe that directly from the definition of the the
decomposition tree TA we have that the following holds

Fact 1: The decomposition tree TA is a proof iff all leaves
are axioms

Fact 2: The proof does not exist otherwise, i.e.

0RS1 A iff there is a non- axiom leaf on TA

Fact 2 holds because the tree TA is unique

Observe that we need Facts 1, 2 in order to prove
Completeness Theorem by construction of a counter-model
generated by a the a non- axiom leaf

Proof of Completeness Theorem for RS1

Proof of Completeness Theorem

Assume that A is any formula such that

0RS1 A

By Fact 2 the decomposition tree TA contains a non-axiom
leaf LA . We use the non-axiom leaf LA and define a truth
assignment v which falsifies A , as follows:

v(a) =


F if a appears in LA

T if ¬a appears in LA

any value if a does not appear in LA

This proves that
6|= A

System RS2 Definition

Definition

System RS2 is a proof system obtained from RS by changing
the sequences Γ

′

into Γ in all of the rules of inference of RS

The logical axioms LA remind the same

Observe that now the decomposition tree may not be unique

Exercise 1

Construct two decomposition trees in RS2 of the formula

(¬(¬a ⇒ (a ∩ ¬b))⇒ (¬a ∩ (¬a ∪ ¬b)))

RS2 Exercises

T1A

(¬(¬a => (a ∩ ¬b)) => (¬a ∩ (¬a ∪ ¬b)))

| (⇒)

¬¬(¬a => (a ∩ ¬b)), (¬a ∩ (¬a ∪ ¬b))

| (¬¬)

(¬a => (a ∩ ¬b)), (¬a ∩ (¬a ∪ ¬b))

| (⇒)

¬¬a, (a ∩ ¬b), (¬a ∩ (¬a ∪ ¬b))

| (¬¬)

a, (a ∩ ¬b), (¬a ∩ (¬a ∪ ¬b))∧
(∩)

a, a, (¬a ∩ (¬a ∪ ¬b))∧
(∩)

a, a.¬a, (¬a ∪ ¬b)

| (∪)

a, a.¬a,¬a,¬b

axiom

a, a, (¬a ∪ ¬b)

| (∪)

a, a,¬a,¬b

axiom

a,¬b , (¬a ∩ (¬a ∪ ¬b))∧
(∩)

a,¬b ,¬a

axiom a,¬b , (¬a ∪ ¬b)

| (∪)

a,¬b ,¬a,¬b

axiom

RS2 Exercises

T2A

(¬(¬a => (a ∩ ¬b)) => (¬a ∩ (¬a ∪ ¬b)))

| (⇒)

¬¬(¬a => (a ∩ ¬b)), (¬a ∩ (¬a ∪ ¬b))

| (¬¬)

(¬a => (a ∩ ¬b)), (¬a ∩ (¬a ∪ ¬b))∧
(∩)

(¬a => (a ∩ ¬b)),¬a

| (⇒)

(¬¬a, (a ∩ ¬b)),¬a

| (¬¬)

a, (a ∩ ¬b),¬a∧
(∩)

a, a,¬a

axiom

a,¬b ,¬a

axiom

(¬a => (a ∩ ¬b)), (¬a ∪ ¬b)

| (∪)

(¬a => (a ∩ ¬b)),¬a,¬b

| (⇒)

(¬¬a, (a ∩ ¬b),¬a,¬b

| (¬¬)

a, (a ∩ ¬b),¬a,¬b∧
(∩)

a, a,¬a,¬b

axiom

a,¬b ,¬a,¬b

axiom

System RS2

Exercise 2 Explain why the system RS2 is strongly sound.
You can use the Soundness of the system RS

Solution

The only one difference between RS and RS2 is that in RS2
each inference rule has at the beginning a sequence of any
formulas, not only of literals, as in RS

So there are many ways to apply rules as the decomposition
rules while constructing the decomposition tree, but it does
not affect strong soundness, since for all rules of RS2
premisses and conclusions are still logically equivalent as
they were in RS

RS2 Exercises

Consider, for example, RS2 rule

(∪)
Γ,A ,B ,∆

Γ, (A ∪ B),∆

We evaluate

v∗(Γ,A ,B ,∆) = v∗(Γ) ∪ v∗(A) ∪ v∗(B) ∪ v∗(∆) =

v∗(Γ) ∪ v∗(A ∪ B) ∪ v∗(∆) = v∗(Γ, (A ∪ B),∆)

Similarly, as in RS, we show all other rules of RS2 to be
strongly sound, thus RS2 is sound

RS2 Exercises

Exercise 3

Define shortly, in your own words, for any formula A , its
decomposition tree TA in RS2

Justify why your definition is correct

Show that in RS2 the decomposition tree for some formula A
may not be unique

Solution

Given a formula A. The decomposition tree TA can be
defined as follows.

It has A as a root

For each node, if there is a rule of RS2 which conclusion has
the same form as node sequence, i.e. there is a
decomposition rule to be applied, then the node has
children that are premises of the rule

RS2 Exercises

If the node consists only of literals (i.e. no decomposition
rules to be applied), then it does not have any children

The last statement define a termination condition for the tree

This definition correctly defines a decomposition tree for a
formula as it identifies and uses appropriate the
decomposition rules

RS2 Exercises

Since in RS2 all rules of inference have a sequence Γ
instead of Γ′ as it was defined for in RS, the choice of the
decomposition rule for a node may be not unique

For example consider a node (a => b), (b ∪ a)

Γ in the RS2 rules is a sequence of formulas, not literals, so
for this node we can choose as a decomposition rule either
(=>) or (∪)

This leads to a non-unique tree

RS2 Exercises

Exercise 4

Prove the Completeness Theorem for RS2

Solution

We need to prove the completeness part only, as the
Soundness has been already proved, i.e. we have to prove
the implication:

For any formula A , if 0RS2 A then 6|= A

Assume 0RS2 A ,

Then every decomposition tree of A has at least one
non-axiom leaf

Otherwise, there would exist a tree with all axiom leaves and
it would be a proof for A

RS2 Exercises

Let TA be a set of all decomposition trees of A

We choose an arbitrary TA ∈ TA with at least one non-axiom
leaf LA

The non-axiom leaf LA defines a truth assignment v which
falsifies A , as follows:

v(a) =


F if a appears in LA

T if ¬a appears in LA

any value if a does not appear in LA

The value for a sequence that corresponds to the leaf in is F

Since, because of the strong soundness F ”climbs” the tree,
we found a counter-model for A, i.e.

6|= A

RS2 Exercises

Exercise 5 Write a procedure TREEA such that for any
formula A of RS2 it produces its unique decomposition tree

Procedure TREEA (Formula A, Tree T)
{

B = ChoseLeftMostFormula(A) // Choose the left most
formula that is not a literal

c = MainConnective(B) // Find the main connective of B
R = FindRule(c)// Find the rule which conclusion that

has this connective
P = Premises(R)// Get the premises for this rule
AddToTree(A ,P)// add premises as children of A to the

tree
For all p in P // go through all premises

TREEA (p,T) // build subtrees for each premiss
}

RS2 Exercises

Exercise 6

Prove completeness of your Procedure TREEA

Procedure TREEA provides a unique tree, since it always
chooses the most left indecomposable formula for a choice of
a decomposition rule and there is only one such rule

This procedure is equivalent to RS system, since with
thedecomposition rules of RS the most left decomposable
formula is always chosen

RS system is complete, thus this Procedure is complete

