
cse371/mat371
LOGIC

Professor Anita Wasilewska



LECTURE 3e



CHAPTER 3
Classical Tautologies and Logical Equivalences

PART 1: Classical Tautologies

PART2: Classical Logical Equivalence of Formulas

PART3: Classical Logical Equivalence of Languages

PART 4: Semantics M Logical Equivalence of Formulas

Semantics M Logical Equivalence Languages

PART 5: REVIEW (2)



CHAPTER 6
Classical Tautologies and Logical Equivalences

PART 1: Classical Tautologies



Classical Tautologies

We present and discuss here a set of most widely used
classical tautologies and logical equivalences

We introduce a notion of equivalence of propositional
languages under classical and under other semantics

We also discuss the relationship between definability of
connectives the equivalences of languages in classical and
non-classical semantics



Classical Tautologies

We assume that all formulas considered here belong to the
language

L = L{¬, ∪, ∩, ⇒,⇔}

Here is a list of some of the most known classical notions
and tautologies

Modus Ponens known to the Stoics (3rd century B.C)

|= ((A ∩ (A ⇒ B))⇒ B)

Detachment
|= ((A ∩ (A ⇔ B))⇒ B)

|= ((B ∩ (A ⇔ B))⇒ A)



Stoics, 3rd century B.C.

Hypothetical Syllogism

|= (((A ⇒ B) ∩ (B ⇒ C))⇒ (A ⇒ C)),

|= ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C))),

|= ((B ⇒ C)⇒ ((A ⇒ B)⇒ (A ⇒ C))).

Modus Tollendo Ponens

|= (((A ∪ B) ∩ ¬A)⇒ B),

|= (((A ∪ B) ∩ ¬B)⇒ A)



12 to 19 Century

Duns Scotus 12/13 century

|= (¬A ⇒ (A ⇒ B))

Clavius 16th century

|= ((¬A ⇒ A)⇒ A)

Frege 1879

|= (((A ⇒ (B ⇒ C)) ∩ (A ⇒ B))⇒ (A ⇒ C)),

|= ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))

Frege gave the the first formulation of the classical
propositional logic as a formalized axiomatic system



CLASSICAL TAUTOLOGIES

YOU HAVE A VERY EXTENSIVE LIST OF CLASSICAL
TAUTOLOGIES in CHAPTER 2

Read them, memorize and use to solve Hmk Problems listed
in the BOOK and in published tests and quizzes

We will use them freely in the future Chapters assuming that
you remember them



PART 2: Logical Equivalences



Logical Equivalence Definition

Logical equivalence: For any formulas A ,B, we say that
are logically equivalent if they always have the same logical
value
Notation: we write symbolically A ≡ B to denote that A, B
are logically equivalent
Symbolic Definition

A ≡ B iff v∗(A) = v∗(B) for all v : VAR → {T ,F}

The following property follows directly from the definition
Property

A ≡ B if and only if |= (A ⇔ B)

Remember that ≡ is not a logical connective,
it is just a metalanguage symbol for saying ” A, B are
logically equivalent”



Some of Logical Equivalence Laws

Laws of contraposition

(A ⇒ B) ≡ (¬B ⇒ ¬A),

(B ⇒ A) ≡ (¬A ⇒ ¬B),

(¬A ⇒ B) ≡ (¬B ⇒ A),

(A ⇒ ¬B) ≡ (B ⇒ ¬A)

Law of Double Negation

¬¬A ≡ A

Exercise: Prove validity of all of them



CLASSICAL LOGICAL EQUIVALENCES

YOU HAVE A VERY EXTENSIVE LIST OF CLASSICAL
LOGICAL EQUIVALENCES in CHAPTER 3

Read them, memorize and use to solve Hmk Problems listed
in the BOOK and in published tests and quizzes

We will use them freely in the future Chapters assuming that
you remember them



Use of Logical Equivalence

Logical equivalence is a very useful notion when we want to
obtain new formulas, or tautologies, if needed, on a base of
some already known in a way that guarantee preservation of
the logical value of the initial formula.
For example, we easily obtain new Laws of Contraposition
from the one we have and the Law of Double Negation as
follows

(¬A ⇒ B) ≡ (¬B ⇒ ¬¬A) ≡ (¬B ⇒ A), i.e. we proved that

(¬A ⇒ B) ≡ (¬B ⇒ A)

(A ⇒ ¬B) ≡ (¬¬B ⇒ ¬A) ≡ (B ⇒ ¬A), i.e. we proved that

(A ⇒ ¬B) ≡ (B ⇒ ¬A)



Substitution Theorem

The correctness of the above procedure of proving new
equivalences from the known ones is established by the
following theorem

Substitution Theorem Let B1 be obtained from A1 by
substitution of a formula B for one or more occurrences of
a sub-formula A of A1, what we denote as

B1 = A1(A/B)

Then the following holds.

If A ≡ B , then A1 ≡ B1

Proof in the book - but write it as an exercise- and then check
with the book



Example 1

Let A1 be a formula (C ∪ D), i.e.

A1 = (C ∪ D)

and let B = ¬¬C , A = C
We get

B1 = A1(C/B) = A1(C/¬¬C) = (¬¬C ∪ D)

By Double Negation Law

¬¬C ≡ C i.e. A ≡ B

So we get by Substitution Theorem that

(C ∪ D) ≡ (¬¬C ∪ D)



Example 2

Example 2: Transform any formula with implication into a
logically equivalent formula without implication

We use in this type of problems one of the Definability of
Connectives equivalences that concerns the implication:

(A ⇒ B) ≡ (¬A ∪ B)

Remark that it is not the only one equivalence we can use.



Example 2

We transform via the Substitution Theorem a formula

((C ⇒ ¬B)⇒ (B ∪ C))

into its logically equivalent formula as follows

((C ⇒ ¬B)⇒ (B ∪ C)) ≡ (¬(C ⇒ ¬B) ∪ (B ∪ C)))

≡ ¬(¬C ∪ ¬B) ∪ (B ∪ C)) and we get that

((C ⇒ ¬B)⇒ (B ∪ C)) ≡ (¬(¬C ∪ ¬B) ∪ (B ∪ C))

Observe that if the formulas B, C contain⇒ as logical
connective we can continue this process until we obtain a
logically equivalent formula not containing ⇒ at all



PART 3: Definability of Connectives and Equivalences
Equivalence of Languages



Definability of Connectives Equivalences

Chapter 6 contains a large set of logical equivalences, or
corresponding tautologies that deal with the definability of
connectives in classical semantics

Remember they the logical equivalences corresponding to
the definability of connectives property is very strongly
connected with the classical semantics

We leave it as an excellent EXERCISE to verify which of
them (in any) holds in which of our different non-classical
semantics



Definability of Connectives Equivalences

Definability of Implication in terms of negation and
disjunction equivalence

(A ⇒ B) ≡ (¬A ∪ B)

is defined by a a classical tautology

|= ((A ⇒ B)⇔ (¬A ∪ B))

We use the notion of logical equivalence instead of the
tautology notion, as it makes the manipulation of formulas
via Substitution Theorem much easier



Definability of Connectives Equivalences

Here is the

Definability of Implication in terms of negation and
disjunction equivalence

(A ⇒ B) ≡ (¬A ∪ B)

The proof of this logical equivalence, and hence the
corresponding tautology follows directly from definability of
implication connective i n terms of disjunction and negation
connectives already proved for classical semantics, hence the
same name



Proofs of Definability of Connectives Equivalences

We present here the proof of (A ⇒ B) ≡ (¬A ∪ B) as an
example and a pattern to follow while conducting (if needed)
proofs of definability formulas or logical equivalences for other
connectives

PROOF

By definition of logical equivalence we have that
(A ⇒ B) ≡ (¬A ∪ B) holds if and only if
v∗(A ⇒ B) = v∗(¬A ∪ B) for all v : VAR → {T ,F}

Observe that, by definition of v∗ we have that
v∗(A ⇒ B) = v∗(A)⇒v∗(B) = ¬v∗(A)∪v∗(B) where
v∗(A), v∗(B) ∈ {T ,F} and⇒,¬,∪ are functions defined by
classical semantics. We have proved (definability of classical
connectives) that for any x, y ∈ {T ,F} we have that
x ⇒ y = ¬x ∪ y hence v∗(A ⇒ B) = v∗(¬A ∪ B) for all
v : VAR → {T ,F} what ends the proof



Definability of Connectives Equivalences

Definability of Implication equivalence allows us, by the force
of Substitution Theorem to replace any formula of the form
(A ⇒ B) placed anywhere in another formula by a formula
(¬A ∪ B)

Hence it allows us to recursively transform a given formula
containing implication into an logically equivalent formula
that does contain implication but contains negation and
disjunction only



Equivalence of Languages

The Substitution Theorem and the equivalence
(A ⇒ B) ≡ (¬A ∪ B) let us transform a language that
contains implication into a language that does not contain
the implication, but contains negation and disjunction instead
Observe that we use this equivalence recursively, i.e. if the
formulas A, B contain⇒ as logical connective we continue
this process until we obtain a logically equivalent formula not
containing ⇒ at all
Example
The language L1 = L{¬,∩,⇒} becomes a language
L2 = L{¬,∩,∪} such that all its formulas are logically
equivalent to the formulas of the language L1

We write it as the following condition C1

C1: For any formula A of a language L1, there is a formula B
of the language L2, such that A ≡ B.



Example 2

Let now A be a formula

(¬A ∪ (¬A ∪ ¬B))

We use the definability of implication equivalence
(A ⇒ B) ≡ (¬A ∪ B) to eliminate disjunction as follows

(¬A ∪ (¬A ∪ ¬B)) ≡ (¬A ∪ (A ⇒ ¬B))

≡ (A ⇒ (A ⇒ ¬B))

Observe that we can’t always use the equivalence
(A ⇒ B) ≡ (¬A ∪ B) to eliminate disjunction
For example, we can’t use it for a formula

((A ∪ B) ∩ ¬A)

Nevertheless we can eliminate disjunction from it, but we
need a different equivalence



Connectives Elimination

In order to be able to transform any formula of a language
containing disjunction (and some other connectives)

into a language with negation and implication (and some
other connectives),

but without disjunction we need the following logical
equivalence

Definability of Disjunction in terms of negation and
implication

(A ∪ B) ≡ (¬A ⇒ B)



Example 3

Consider a formula C

(A ∪ B) ∩ ¬A)

We transform C into its logically equivalent form not
containing ∪ but containing ⇒ as follows.

((A ∪ B) ∩ ¬A) ≡ ((¬A ⇒ B) ∩ ¬A)

The formula allows us transform for example a language

L2 = L{¬, ∩, ∪} into a language L1 = L{¬,∩,⇒}

with all its formulas being logically equivalent



Equivalence of Languages

We write it as the following condition C2 similar to the
condition

C1: for any formula A of L1 , there is a formula B of L2,
such that A ≡ B.

C2: for any formula C of L2, there is a formula D of L1,
such that C ≡ D

The languages L1 and L2 for which the conditions C1, C2
hold are called logically equivalent.

We denote it by
L1 ≡ L2.

A general, formal definition goes as follows.



Equivalence of Languages Definition

Given two languages: L1 = LCON1 and L2 = LCON2 , for
CON1 , CON2

We say that they are logically equivalent, i.e.

L1 ≡ L2

if and only if the following conditions C1, C2 hold.

C1: for any formula A of L1 , there is a formula B of L2,
such that A ≡ B

C2: for any formula C of L2, there is a formula D of L1,
such that C ≡ D



Example 4

To prove the logical equivalence of the languages

L{¬,∪} ≡ L{¬,⇒}

we need two definability equivalences:

implication in terms of disjunction and negation

(A ⇒ B) ≡ (¬A ∪ B)

and disjunction in terms of implication negation,

(A ∪ B) ≡ (¬A ⇒ B)

and the Substitution Theorem



Example 5

To prove the logical equivalence of the languages

L{¬,∩,∪,⇒} ≡ L{¬,∩,∪}

we need only the definability of implication equivalence

It proves, by Substitution Theorem that

for any formula A of L{¬,∩,∪,⇒} there is a formula B of
L{¬,∩,∪} such that A ≡ B and the condition C1 holds

Observe that any formula A of language L{¬,∩,∪} is also a
formula of the language L{¬,∩,∪,⇒} and of course A ≡ A so
the condition C2 also holds



Example 6

The logical equivalences:

Definability of Conjunction in terms of implication and
negation

(A ∩ B) ≡ ¬(A ⇒ ¬B)

and Definability of Implication in terms of conjunction and
negation

(A ⇒ B) ≡ ¬(A ∩ ¬B)

and the Substitution Theorem prove that

L{¬,∩} ≡ L{¬,⇒}.



Exercise 1

1. Prove that
L{∩,¬} ≡ L{∪,¬}

Solution

True due to the Substitution Theorem and two definability of
connectives equivalences:

(A ∩ B) ≡ ¬(¬A ∪ ¬B), (A ∪ B) ≡ ¬(¬A ∩ ¬B)

They transform recursively any formula from L{∩,¬} into a
formula of L{∪,¬} and vice-versa, respectively



Exercise 1

2. Transform a formula A = ¬(¬(¬a ∩ ¬b) ∩ a) of L{∩,¬}
into a logically equivalent formula B of L{∪,¬}
Solution

¬(¬(¬a ∩ ¬b) ∩ a)

≡ ¬(¬¬(¬¬a ∪ ¬¬b) ∩ a)

≡ ¬((a ∪ b) ∩ a)

≡ ¬(¬(a ∪ b) ∪ ¬a)

The formula B of L{∪,¬} equivalent to A is

B = ¬(¬(a ∪ b) ∪ ¬a)



Exercise 2

Prove by transformation, using proper logical equivalences
that

¬(A ⇔ B) ≡ ((A ∩ ¬B) ∪ (¬A ∩ B))

Solution
¬(A ⇔ B)

≡def¬((A ⇒ B) ∩ (B ⇒ A))

≡de Morgan(¬(A ⇒ B) ∪ ¬(B ⇒ A))

≡neg impl((A ∩ ¬B) ∪ (B ∩ ¬A))

≡commut((A ∩ ¬B) ∪ (¬A ∩ B))



Exercise 2

Prove by transformation, using proper logical equivalences
that

((B ∩ ¬C)⇒ (¬A ∪ B))

≡ ((B ⇒ C) ∪ (A ⇒ B))

Solution
((B ∩ ¬C)⇒ (¬A ∪ B))

≡impl(¬(B ∩ ¬C) ∪ (¬A ∪ B))

≡de Morgan((¬B ∪ ¬¬C) ∪ (¬A ∪ B))

≡neg((¬B ∪ C) ∪ (¬A ∪ B))

≡impl((B ⇒ C) ∪ (A ⇒ B))



PART 4

Semantics M Logical Equivalence of Formulas

Semantics M Logical Equivalence Languages



M - Logical Equivalence of Formulas

Given an extensional semantics M defined for a propositional
language LCON and let V , ∅ be its set set of logical values

Definition

For any formulas A ,B, we say that A ,B are M -logically
equivalent if and only if they always have the same logical
value assigned by the semantics M

Notation: we write A ≡M B to denote that A, B are M-
logically equivalent

Symbolic Definition

A ≡M B iff v∗(A) = v∗(B) for all v : VAR → V

Remember that ≡M is not a logical connective

It is just a metalanguage symbol for saying ” Formulas A, B
are logically equivalent under the semantics M”



M - Logical Equivalence of Languages

Given two languages: L1 = LCON1 and L2 = LCON2 , for
CON1 , CON2

We say that they are M- logically equivalent, i.e.

L1 ≡M L2

if and only if the following conditions C1, C2 hold.

C1: for any formula A of L1, there is a formula B of L2,
such that A ≡M B

C2: for any formula C of L2, there is a formula D of L1,
such that C ≡M D



SHORT REVIEW (2)
Some Problems

)



PROBLEM 1

Definition

Let S3 be a 3-valued semantics for L{¬, ∪, ⇒} defined as
follows:

V = {F ,U,T } is the set of logical values with the
distinguished value T

a ⇒ b = ¬a ∪ b for any a, b ∈ {F ,U,T }

¬F = T , ¬U = F , ¬T = U

and
∪ F U T
F F U T
U U U U
T T U T



PROBLEM 1

Part 1

Consider the following classical tautologies:

A1 = (a ∪ ¬a), A2 = (a ⇒ (b ⇒ a))

Find S3 counter-models for A1,A2, if exist

You can’t use shorthand notation

Solution

Any v such that v(a) = v(b) = U is a counter-model for
both A1 and A2, as

v∗(a ∪ ¬a) = v∗(a) ∪ ¬v∗(b) = U ∪ ¬U = U ∪ F = U , T

v∗(a ⇒ (b ⇒ a)) = v∗(a)⇒ (v∗(b)⇒ v∗(a)) = U ⇒ (U ⇒
U) = U ⇒ U = ¬U ∪ U = F ∪ U = U , T



PROBLEM 1

Part 2
Consider the following classical tautologies:

A1 = (a ∪ ¬a), A2 = (a ⇒ (b ⇒ a))

Define your own 2-valued semantics S2 for L, such that
none of A1,A2 is a S2 tautology
Verify your results. You can use shorthand notation.
Solution
This is not the only solution, but it is the simplest and most
obvious I could think of! Here it is.
We define S2 connectives as follows
¬a = F , a ⇒ b = F a ∪ b = F for all a, b ∈ {F ,T }
Obviously, for any v,

v∗(a ∪ ¬a) = F and v∗(a ⇒ (b ⇒ a)) = F



PROBLEM 2

Problem 2

Prove using proper classical logical equivalences (list them at
each step) that for any formulas A ,B of language L{¬, ∪, ⇒}

¬(A ⇔ B) ≡ ((A ∩ ¬B) ∪ (¬A ∩ B))

Solution

¬(A ⇔ B)≡def¬((A ⇒ B) ∩ (B ⇒ A))

≡deMorgan(¬(A ⇒ B) ∪ ¬(B ⇒ A))

≡negimpl((A ∩ ¬B) ∪ (B ∩ ¬A))≡commut((A ∩ ¬B) ∪ (¬A ∩ B))



PROBLEM 3

Problem 3

Prove using proper classical logical equivalences (list them at
each step) that for any formulas A ,B of language L{¬, ∪, ⇒}

((B ∩ ¬C)⇒ (¬A ∪ B)) ≡ ((B ⇒ C) ∪ (A ⇒ B))

Solution

((B ∩ ¬C)⇒ (¬A ∪ B))

≡impl(¬(B ∩ ¬C) ∪ (¬A ∪ B))

≡deMorgan((¬B ∪ ¬¬C) ∪ (¬A ∪ B))

≡dneg((¬B ∪ C) ∪ (¬A ∪ B))≡impl((B ⇒ C) ∪ (A ⇒ B))



PROBLEM 4

We define Ł connectives for L{¬, ∪, ⇒} as follows

Ł Negation ¬ is a function:

¬ : {T ,⊥,F} −→ {T ,⊥,F}

such that ¬ ⊥=⊥, ¬T = F , ¬F = T

Ł Conjunction ∩ is a function:

∩ : {T ,⊥,F} × {T ,⊥,F} −→ {T ,⊥,F}

such that a ∩ b = min{a, b}

Remember that we assumed: F <⊥< T



PROBLEM 4

Ł Implication ⇒ is a function:

⇒: {T ,⊥,F} × {T ,⊥,F} −→ {T ,⊥,F}

such that

a ⇒ b =

{
¬a ∪ b if a > b
T otherwise

Problem 4

Given a formula ((a ∩ b)⇒ ¬b) ∈ F of L{¬, ∪, ⇒}
Use the fact that v : VAR −→ {F ,⊥,T } is such that

v∗(((a ∩ b)⇒ ¬b)) =⊥ under Ł semantics to evaluate
v∗(((b ⇒ ¬a)⇒ (a ⇒ ¬b)) ∪ (a ⇒ b))

You can use shorthand notation



PROBLEM 4 SOLUTION

Solution

The formula ((a ∩ b)⇒ ¬b) = ⊥ in Ł connectives semantics
in two cases written is the shorthand notation as

C1 (a ∩ b) = ⊥ and ¬b = F

C2 (a ∩ b) = T and ¬b = ⊥.

Consider case C1

¬b = F , so v(b) = T , and hence (a ∩ T) = v(a) ∩ T =⊥ iff
v(a) =⊥

It means that v∗(((a ∩ b)⇒ ¬b)) =⊥ for any v, is such that
v(a) =⊥ and v(b) = T



PROBLEM 4 SOLUTION

We now evaluate (in shorthand notation)

v∗(((b ⇒ ¬a)⇒ (a ⇒ ¬b)) ∪ (a ⇒ b))

= (((T ⇒ ¬ ⊥)⇒ (⊥⇒ ¬T))∪ (⊥⇒ T)) = ((⊥⇒⊥)∪T) = T

Consider now Case C2

¬b =⊥, i.e. b =⊥, and hence (a∩ ⊥) = T what is
impossible, hence v from the Case C1 is the only one



PROBLEM 5

Problem 5

Prove that
L{¬,∩} ≡ L{¬,⇒}

Solution

The equivalence of languages holds due to the following two
definability of connectives equivalences, respectively

(A ∩ B) ≡ ¬(A ⇒ ¬B), (A ⇒ B) ≡ ¬(A ∩ ¬B)

and Substitution Theorem



M - Logical Equivalence of Formulas

Given an extensional semantics M defined for a propositional
language LCON and let V , ∅ be its set set of logical values

Definition

For any formulas A ,B, we say that A ,B are M -logically
equivalent if and only if they always have the same logical
value assigned by the semantics M

Notation: we write A ≡M B to denote that A, B are M-
logically equivalent

Symbolic Definition

A ≡M B iff v∗(A) = v∗(B) for all v : VAR → V

Remember that ≡M is not a logical connective

It is just a metalanguage symbol for saying ” Formulas A, B
are logically equivalent under the semantics M”



M - Logical Equivalence of Languages

Given two languages: L1 = LCON1 and L2 = LCON2 , for
CON1 , CON2

We say that they are M- logically equivalent, i.e.

L1 ≡M L2

if and only if the following conditions C1, C2 hold.

C1: for any formula A of L1, there is a formula B of L2,
such that A ≡M B

C2: for any formula C of L2, there is a formula D of L1,
such that C ≡M D



PROBLEM 6

Problem 6

Prove that in classical semantics

L{¬,⇒} ≡ L{¬,⇒,∪}

Solution

OBSERVE that the condition C1 holds because any formula
of L{¬,⇒} is also a formula of L{¬,⇒,∪}
Condition C2 holds due to the following definability of
connectives equivalence

(A ∪ B) ≡ (¬A ⇒ B)

and Substitution Theorem



PROBLEM 7

Problem 7

Prove that the equivalence defining ∪ in terms of negation
and implication in classical logic does not hold under Ł
semantics, i.e. that

(A ∪ B) .L (¬A ⇒ B)

but nevertheless
L{¬,⇒} ≡L L{¬,⇒,∪}



PROBLEM 7 SOLUTION

Observe that the equivalence

(A ∪ B) ≡ (¬A ⇒ B)

defining ∪ in terms of ¬ and⇒ seems a valuable candidate
for L semantics as definability as the definition of all
connectives restricted to T ,F is the same as in the classical
case

Unfortunately it is not a good one for Ł semantics

Any v such that v∗(A) = v∗(B) =⊥ is counter- model

It does not prove that a different definability equivalence does
not exist!



PROBLEM 7 SOLUTION

We prove
L{¬,⇒} ≡L L{¬,⇒,∪}

as follows

Condition C2 holds because the definability of connectives
equivalence

(A ∪ B)≡L((A ⇒ B)⇒ B)

Check it by verification as an exercise

C1 holds because any formula of L{¬,⇒} is a formula of
L{¬,⇒,∪}

Observe that the equivalence (A ∪ B) ≡ (A ⇒ B)⇒ B)
provides also an alternative proof of C2 in classical case


