cse371/mat371 LOGIC

Professor Anita Wasilewska

LECTURE 3d

Chapter 3 REVIEW (1) Some Definitions and Problems

DEFINITIONS: Part One

There are some basic **DEFINITIONS** from Chapter 3

You have to prepare them for Quiz

I will ask you to **WRITE** down a full, correct text of 1-3 of them - in EXACTLY the same form as they are presented here

Knowing all basic **Definitions** is the first step to understanding the material

DEFINITIONS: Propositional Extensional Semantics

Definition 1

Given a propositional language \mathcal{L}_{CON} for the set $CON = C_1 \cup C_2$, where C_1, C_2 are respectively the sets of unary and binary connectives

Let V be a non-empty set of logical values

Connectives $\nabla \in C_1$, $o \in C_2$ are called **extensional** iff their semantics is defined by respective functions

 $\forall: V \longrightarrow V \text{ and } \circ: V \times V \longrightarrow V$

DEFINITIONS: Propositional Extensional Semantics

Definition 2

Formal definition of a **propositional extensional semantics** for a given language \mathcal{L}_{CON} consists of providing **definitions** of the following four main components:

- 1. Logical Connectives
- 2. Truth Assignment
- 3. Satisfaction, Model, Counter-Model
- 4. Tautology

CLASSICAL PROPOSITIONAL SEMANTICS

DEFINITIONS: Truth Assignment Extension *v**

Definition 3

The Language: $\mathcal{L} = \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$

Given the truth assignment $v: VAR \longrightarrow \{T, F\}$ in classical semantics for the language $\mathcal{L} = \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$

We define its **extension** v^* to the set \mathcal{F} of all formulas of \mathcal{L} as $v^* : \mathcal{F} \longrightarrow \{T, F\}$ such that

(i) for any $a \in VAR$

$$v^*(a) = v(a)$$

(ii) and for any $A, B \in \mathcal{F}$ we put

$$v^*(\neg A) = \neg v^*(A);$$

$$v^*((A \cap B)) = \bigcap (v^*(A), v^*(B));$$

$$v^*((A \cup B)) = \bigcup (v^*(A), v^*(B));$$

$$v^*((A \Rightarrow B)) = \Rightarrow (v^*(A), v^*(B));$$

$$v^*((A \Leftrightarrow B)) = \Leftrightarrow (v^*(A), v^*(B))$$

Notation

For binary connectives (two argument functions) we adopt a convention to write the symbol of the connective (name of the 2 argument function) between its arguments as we do in a case arithmetic operations

The **condition (ii)** of the definition of the extension v^* can be hence **written** as follows

(ii) and for any $A, B \in \mathcal{F}$ we put

$$v^*(\neg A) = \neg v^*(A);$$

$$v^*((A \cap B)) = v^*(A) \cap v^*(B);$$

$$v^*((A \cup B)) = v^*(A) \cup v^*(B);$$

$$v^*((A \Rightarrow B)) = v^*(A) \Rightarrow v^*(B);$$

$$v^*((A \Leftrightarrow B)) = v^*(A) \Leftrightarrow v^*(B)$$

DEFINITIONS: Satisfaction Relation

Definition 4 Let $v: VAR \longrightarrow \{T, F\}$

We say that

v satisfies a formula $A \in \mathcal{F}$ iff $v^*(A) = T$

Notation: $v \models A$

We say that

v does not satisfy a formula $A \in \mathcal{F}$ iff $v^*(A) \neq T$

Notation: $v \not\models A$

DEFINITIONS: Model, Counter-Model, Classical Tautology

Definition 5

Given a formula $A \in \mathcal{F}$ and $v : VAR \longrightarrow \{T, F\}$

We say that

v is a **model** for A iff $v \models A$

v is a counter-model for A iff $v \not\models A$

Definition 6

A is a **tautology** iff for any $v : VAR \longrightarrow \{T, F\}$ we have that $v \models A$

Notation

We write symbolically $\models A$ to denote that A is a classical tautology

DEFINITIONS: Restricted Truth Assignments

Notation: for any formula A, we denote by VAR_A a set of all variables that appear in A

Definition 7 Given a formula $A \in \mathcal{F}$, any function

$$v_A: VAR_A \longrightarrow \{T, F\}$$

is called a truth assignment restricted to A

DEFINITIONS: Restricted Model, Counter Model

Notation: for any formula A, we denote by VAR_A a set of all variables that appear in A

Definition 8 Given a formula $A \in \mathcal{F}$ Any function

$$w: VAR_A \longrightarrow \{T, F\}$$
 such that $w^*(A) = T$ is called a **restricted MODEL** for A

Any function

$$w: VAR_A \longrightarrow \{T, F\}$$
 such that $w^*(A) \neq T$

is called a restricted Counter- MODEL for A

DEFINITIONS: Models for Sets of Formulas

Consider $\mathcal{L} = \mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}$ and let $\mathcal{S} \neq \emptyset$ be any non empty set of formulas of \mathcal{L} , i.e.

$$S \subseteq \mathcal{F}$$

Definition 9

A truth truth assignment $v: VAR \longrightarrow \{T, F\}$ is a **model for the set** S of formulas if and only if

$$v \models A$$
 for all formulas $A \in S$

We write

$$v \models S$$

to denote that v is a model for the set S of formulas

DEFINITIONS: Consistent Sets of Formulas

Definition 10

A non-empty set $\mathcal{G} \subseteq \mathcal{F}$ of **formulas** is called **consistent** if and only if \mathcal{G} has a model, i.e. we have that

 $\mathcal{G} \subseteq \mathcal{F}$ is **consistent** if and only if **there is** v such that $v \models \mathcal{G}$

Otherwise G is called inconsistent

DEFINITIONS: Independent Statements

Definition 11

A formula A is called **independent** from a non-empty set $\mathcal{G} \subseteq \mathcal{F}$

if and only if there are truth assignments v_1, v_2 such that

$$v_1 \models \mathcal{G} \cup \{A\} \text{ and } v_2 \models \mathcal{G} \cup \{\neg A\}$$

i.e. we say that a formula A is **independent** if and only if

 $G \cup \{A\}$ and $G \cup \{\neg A\}$ are consistent

Many Valued Extensional Semantics M

DEFINITIONS: Semantics M

Definition 11

The extensional semantics **M** is defined for a non-empty set of **V** of **logical values of any cardinality**

We only **assume** that the set V of logical values of M always has a special, distinguished logical value which serves to define a notion of tautology

We denote this distinguished value as T

Formal definition of **many valued extensional semantics M** for the language \mathcal{L}_{CON} consists of giving **definitions** of the following main components:

- 1. Logical Connectives under semantics M
- 2. Truth Assignment for M
- Satisfaction Relation, Model, Counter-Model under semantics M
- 4. Tautology under semantics M

Definition of M - Extensional Connectives

Given a propositional language \mathcal{L}_{CON} for the set $CON = C_1 \cup C_2$, where C_1 is the set of all unary connectives, and C_2 is the set of all binary connectives Let V be a non-empty set of **logical values** adopted by the semantics M

Definition 12

Connectives $\nabla \in C_1$, $o \in C_2$ are called **M** -extensional iff their semantics **M** is defined by respective functions

$$\forall: V \longrightarrow V \text{ and } \circ: V \times V \longrightarrow V$$

DEFINITION: Definability of Connectives under a semantics M

Given a propositional language \mathcal{L}_{CON} and its **extensional** semantics M

We adopt the following definition

Definition 13

A connective $\circ \in CON$ is **definable** in terms of some connectives $\circ_1, \circ_2, ... \circ_n \in CON$ for $n \ge 1$ **under the semantics M** if and only if the connective \circ is a certain function composition of functions $\circ_1, \circ_2, ... \circ_n$ as they are **defined by the semantics M**

DEFINITION: **M** Truth Assignment Extension v^* to \mathcal{F}

Definition 14

Given the M truth assignment $v: VAR \longrightarrow V$

We define its **M extension** v^* to the set \mathcal{F} of all formulas of \mathcal{L} as any function $v^*: \mathcal{F} \longrightarrow V$, such that the following conditions are satisfied

(i) for any $a \in VAR$

$$v^*(a) = v(a);$$

(ii) For any connectives $\nabla \in C_1$, $o \in C_2$ and for any formulas $A, B \in \mathcal{F}$ we put

$$v^*(\nabla A) = \nabla v^*(A)$$
$$v^*((A \circ B)) = \circ (v^*(A), v^*(B))$$

DEFINITION: M Satisfaction, Model, Counter Model, Tautology

```
Definition 15 Let v: VAR \longrightarrow V
Let T \in V be the distinguished logical value
We say that
    M satisfies a formula A \in \mathcal{F} (v \models_{\mathbf{M}} A)
                                                                iff
v^*(A) = T
Definition 16
Given a formula A \in \mathcal{F} and v : VAR \longrightarrow V
Any v such that v \models_{\mathbf{M}} A is called a M model for A
Any v such that v \not\models_{\mathbf{M}} A is called a M counter model for A
A is a M tautology (\models_{\mathbf{M}} A) iff v \models_{\mathbf{M}} A, for all
v \cdot VAR \longrightarrow V
```

CHAPTER 3: Some Questions

Question 1

1. Find a restricted model for formula A, where

$$A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$$

You **can't use** short-hand notation Show each step of solution

Solution

For any formula A, we denote by VAR_A a set of all variables that appear in A

In our case we have $VAR_A = \{a, b, c\}$

Any function $v_A: VAR_A \longrightarrow \{T, F\}$ is called a truth assignment restricted to A

Let $v: VAR \longrightarrow \{T, F\}$ be any truth assignment such that

$$v(a) = v_A(a) = T$$
, $v(b) = v_A(b) = T$, $v(c) = v_A(c) = F$

We evaluate the value of the **extension** v^* of v on the formula A as follows

$$v^{*}(A) = v^{*}((\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c))))$$

$$= v^{*}(\neg a) \Rightarrow v^{*}((\neg b \cup (b \Rightarrow \neg c)))$$

$$= \neg v^{*}(a) \Rightarrow (v^{*}(\neg b) \cup v^{*}((b \Rightarrow \neg c)))$$

$$= \neg v(a) \Rightarrow (\neg v(b) \cup (v(b) \Rightarrow \neg v(c)))$$

$$= \neg v_{A}(a) \Rightarrow (\neg v_{A}(b) \cup (v_{A}(b) \Rightarrow \neg v_{A}(c)))$$

$$(\neg T \Rightarrow (\neg T \cup (T \Rightarrow \neg F))) = F \Rightarrow (F \cup T) = F \Rightarrow T = T, i.e.$$

$$v_{A} \models A \quad \text{and} \quad v \models A$$

Question 2

1. Find a restricted model and a restricted counter-model for **A**, where

$$A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$$

You can use short-hand notation. Show work

Solution

Notation: for any formula A, we denote by VAR_A a set of all variables that appear in A

In our case we have $VAR_A = \{a, b, c\}$

Any function $v_A: VAR_A \longrightarrow \{T, F\}$ is called a truth

assignment restricted to A

We define now $v_A(a) = T$, $v_A(b) = T$, $v_A(c) = F$, in shorthand: a = T, b = T, c = F and evaluate

$$(\neg T \Rightarrow (\neg T \cup (T \Rightarrow \neg F))) = F \Rightarrow (F \cup T) = F \Rightarrow T = T$$
, i.e.

$$v_A \models A$$

Observe that

 $(\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)) = T$ when a = T and b, c any truth values as by definition of implication we have that $F \Rightarrow \text{anything} = T$

Hence a = T gives us 4 models as we have 2^2 possible values on b and c

We take as a restricted counter-model: a=F, b=T and c=T **Evaluation:** observe that $(\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)) = F$ if and only if $\neg a = T$ and $(\neg b \cup (b \Rightarrow \neg c)) = F$ if and only if a = F, $\neg b = F$ and $(b \Rightarrow \neg c) = F$ if and only if a = F, b = T and $(T \Rightarrow \neg c) = F$ if and only if a = F, b = T and $\neg c = F$ if and only if a = F, b = T and c = T

The above proves also that a=F, b=T and c=T is the only restricted counter -model for A

Question 3 Justify whether the following statements **true** or **false**

S1 There are more then 3 possible restricted counter-models for *A*

S2 There are more then 2 possible restricted models of *A* **Solution**

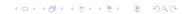
Statement: There are more then 3 possible restricted counter-models for *A* is **false**

We have just proved that there is only one possible restricted counter-model for A

Statement: There are more then 2 possible restricted models of *A* is **true**

There are 7 possible restricted models for A

Justification: $2^3 - 1 = 7$



Question 4

1. List 3 models and 2 counter-models for A from Question 2, i.e. for formula

$$A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$$

that are **extensions** to the set *VAR* of all variables of **one** the restricted models and of **one** of the restricted counter-models that you have found in **Questions 1,2**

Solution

One of the restricted models is, for example a function

$$v_A: \{a,b,c\} \longrightarrow \{T,F\}$$
 such that

$$v_A(a) = T, \ v_A(b) = T, \ v_A(c) = F$$

We **extend** V_A to the set of all propositional variables VAR to obtain a (non restricted) **models** as follows

Model W_1 is a function $W_1: VAR \longrightarrow \{T, F\}$ such that $w_1(a) = v_A(a) = T$, $w_1(b) = v_A(b) = T$, $w_1(c) = v_A(c) = F$, and $w_1(x) = T$, for all $x \in VAR - \{a, b, c\}$ **Model** w_2 is defined by a formula $w_2(a) = v_A(a) = T$, $w_2(b) = v_A(b) = T$, $w_2(c) = v_A(c) = F$, and $w_2(x) = F$, for all $x \in VAR - \{a, b, c\}$

Model W_3 is defined by a formula

$$w_3(a) = v_A(a) = T$$
, $w_3(b) = v_A(b) = T$, $w_3(c) = v(c) = F$,

 $w_3(d) = F$ and $w_3(x) = T$ for all $x \in VAR - \{a, b, c, d\}$

There is as many of such models, as extensions of v_A to the set VAR, i.e. as many as real numbers

A counter-model for a formula A, by definition, is any function

$$v: VAR \longrightarrow \{T, F\}$$

such that $v^*(A) = F$

A restricted counter-model for A (only one as proved in question 5) is a function

$$v_A: \{a,b\} \longrightarrow \{T,F\}$$

such that such that

$$v_A(a) = F$$
, $v_A(b) = T$, $v_A(c) = T$

We extend v_A to the set of all propositional variables VAR to obtain (non restricted) some counter-models.

Here are **two** of such extensions

Counter- model w₁:

$$w_1(a) = v_A(a) = F$$
, $w_1(b) = v_A(b) = T$,
 $w_1(c) = v(c) = T$, and $w_1(x) = F$, for all $x \in VAR - \{a, b, c\}$

Counter- model w2:

$$w_2(a) = v_A(a) = T$$
, $w_2(b) = v_A(b) = T$,
 $w_2(c) = v(c) = T$, and $w_2(x) = T$ for all
 $x \in VAR - \{a, b, c\}$

There is as many of such **counter- models**, as extensions of v_A to the set VAR, i.e. as many as real numbers

Chapter 3: Models for Sets of Formulas

Definition

A truth assignment \mathbf{v} is a **model for a set** $\mathcal{G} \subseteq \mathcal{F}$ **of formulas** of a given language $\mathcal{L} = \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$ if and only if

$$v \models B$$
 for all $B \in \mathcal{G}$

We denote it by $\mathbf{v} \models \mathcal{G}$

Observe that the set $G \subseteq \mathcal{F}$ can be **finite** or **infinite**

Chapter 3: Consistent Sets of Formulas

Definition

A set $\mathcal{G} \subseteq \mathcal{F}$ of **formulas** is called **consistent** if and only if \mathcal{G} has a model, i.e. we have that

 $\mathcal{G} \subseteq \mathcal{F}$ is **consistent** if and only if **there is** v such that $v \models \mathcal{G}$

Otherwise G is called inconsistent

Chapter 3: Independent Statements

Definition

A formula A is called **independent** from a set $\mathcal{G} \subseteq \mathcal{F}$ if and only if **there are** truth assignments v_1, v_2 such that

$$v_1 \models \mathcal{G} \cup \{A\} \text{ and } v_2 \models \mathcal{G} \cup \{\neg A\}$$

i.e. we say that a formula A is **independent** if and only if

 $\mathcal{G} \cup \{A\}$ and $\mathcal{G} \cup \{\neg A\}$ are consistent

Question 5

Given a set

$$G = \{((a \cap b) \Rightarrow b), (a \cup b), \neg a\}$$

Show that G is consistent

Solution

We have to find $v: VAR \longrightarrow \{T, F\}$ such that

$$v \models \mathcal{G}$$

It means that we need to bf find v such that

$$v^*((a \cap b) \Rightarrow b) = T$$
, $v^*(a \cup b) = T$, $v^*(\neg a) = T$

Observe that
$$\models ((a \cap b) \Rightarrow b)$$
, hence we have that
1. $v^*((a \cap b) \Rightarrow b) = T$ for any v
 $v^*(\neg a) = \neg v^*(a) = \neg v(a) = T$ only when $v(a) = F$ hence
2. $v(a) = F$
 $v^*(a \cup b) = v^*(a) \cup v^*(b) = v(a) \cup v(b) = F \cup v(b) = T$
only when $v(b) = T$ so we get
3. $v(b) = T$
This means that for any $v : VAR \longrightarrow \{T, F\}$ such that $v(a) = F$, $v(b) = T$

and we **proved** that G is **consistent**

Question 6

Show that a formula $A = (\neg a \cap b)$ is **not independent** of

$$\mathcal{G} = \{((a \cap b) \Rightarrow b), (a \cup b), \neg a\}$$

Solution

We have to show that **it is impossible** to construct v_1, v_2 such that

$$v_1 \models \mathcal{G} \cup \{A\} \text{ and } v_2 \models \mathcal{G} \cup \{\neg A\}$$

Observe that we have just proved that any \mathbf{v} such that $\mathbf{v}(a) = F$, and $\mathbf{v}(b) = T$ is **the only** model restricted to the set of variables $\{a, b\}$ for \mathcal{G} so we have to check now if it is **possible** that $\mathbf{v} \models A$ and $\mathbf{v} \models \neg A$

We have to evaluate
$$v^*(A)$$
 and $v^*(\neg A)$ for $v(a) = F$, and $v(b) = T$ $v^*(A) = v^*((\neg a \cap b) = \neg v(a) \cap v(b) = \neg F \cap T = T \cap T = T$ and so $v \models A$ $v^*(\neg A) = \neg v^*(A) = \neg T = F$ and so $v \not\models \neg A$

This ends the proof that A is **not independent** of G

Question 7

2. Find an infinite number of formulas that are independent of $\mathcal{G} = \{((a \cap b) \Rightarrow b), (a \cup b), \neg a\}$

This **my solution** - there are many others- this one seemed to me the **most simple**

Solution

We just proved that any v such that v(a) = F, v(b) = T is **the only** model restricted to the set of variables $\{a, b\}$ and so all other possible models for \mathcal{G} must be **extensions** of v

We **define** a countably infinite set of formulas (and their negations) and corresponding **extensions** of **v** (restricted to to the set of variables $\{a, b\}$) such that $v \models \mathcal{G}$ as follows **Observe** that **all extensions** of **v** restricted to to the set of variables $\{a, b\}$ have as domain the infinitely countable set

$$VAR - \{a, b\} = \{a_1, a_2, ..., a_n, ...\}$$

We take as a set of formulas (to be proved to be independent) the set of atomic formulas

$$\mathcal{F}_0 = VAR - \{a, b\} = \{a_1, a_2, \dots, a_n, \dots\}$$

Let $c \in \mathcal{F}_0$

We define truth assignments $v_1, v_2 : VAR \longrightarrow \{T, F\}$ such that

$$v_1 \models \mathcal{G} \cup \{c\}$$
 and $v_2 \models \mathcal{G} \cup \{\neg c\}$

as follows

$$v_1(a) = v(a) = F$$
, $v_1(b) = v(b) = T$ and $v_1(c) = T$ for all $c \in \mathcal{F}_0$

$$v_2(a) = v(a) = F$$
, $v_2(b) = v(b) = T$ and $v_2(c) = F$ for all $c \in \mathcal{F}_0$

CHAPTER 3 Some Extensional Many Valued Semantics

Question 8

We **define** a 4 valued H₄ logic semantics as follows

The language is $\mathcal{L} = \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$

The logical connectives $\neg, \Rightarrow, \cup, \cap$ of \mathbf{H}_4 are operations in the set $\{F, \bot_1, \bot_2, T\}$, where $\{F < \bot_1 < \bot_2 < T\}$ and are defined as follows

Conjunction ∩ is a function

$$\cap: \ \{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \ \bot_1, \bot_2, T\},$$
 such that for any $a, b \in \{F, \bot_1, \bot_2, T\}$

$$a \cap b = min\{a, b\}$$

Chapter 3: Many Valued Semantics

Disjunction ∪ is a function

$$\cup: \ \{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \bot_1, \bot_2, T\},$$
 such that for any $a, b \in \{F, \bot_1, \bot_2, T\}$

$$a \cup b = max\{a, b\}$$

Implication \Rightarrow is a function

⇒:
$$\{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \bot_1, \bot_2, T\}$$
, such that for any $a, b \in \{F, \bot_1, \bot_2, T\}$,

$$a \Rightarrow b = \begin{cases} T & \text{if } a \leq b \\ b & \text{otherwise} \end{cases}$$

Negation:

Part 1 Write Truth Tables for IMPLICATION and NEGATION in H₄

Solution

H₄ Implication

H₄ Negation

Part 2 Verify whether

$$\models_{\mathsf{H}_4}((a\Rightarrow b)\Rightarrow (\neg a\cup b))$$

Solution

Take any v such that

$$v(a) = \bot_1 \quad v(b) = \bot_2$$

Evaluate

$$v*((a\Rightarrow b)\Rightarrow (\neg a\cup b))=(\bot_1\Rightarrow \bot_2)\Rightarrow (\neg \bot_1\cup \bot_2)=T\Rightarrow (F\cup \bot_2))=T\Rightarrow \bot_2=\bot_2$$

This proves that our *v* is a **counter-model** and hence

$$\not\models_{\mathsf{H}_4} ((a \Rightarrow b) \Rightarrow (\neg a \cup b))$$

Chapter 3: Classical Propositional Tautologies

Question 11

Show that (can't use TTables!)

$$\models ((\neg a \cup b) \Rightarrow (((c \cap d) \Rightarrow \neg d) \Rightarrow (\neg a \cup b)))$$

Solution

Denote $A = (\neg a \cup b)$, and $B = ((c \cap d) \Rightarrow \neg d)$

Our formula becomes a substitution of a basic tautology

$$(A \Rightarrow (B \Rightarrow A))$$

and hence is a tautology

Chapter 3: Challenge Exercise

1. Define your own propositional language \mathcal{L}_{CON} that contains also **different connectives** that the standard connectives \neg , \cup , \cap , \Rightarrow

Your language \mathcal{L}_{CON} does not need to include all (if any!) of the standard connectives \neg , \cup , \cap , \Rightarrow

- 2. **Describe** intuitive meaning of the new connectives of your language
- 3. Give some motivation for your own semantic
- **4. Define** formally your own extensional semantics **M** for your language \mathcal{L}_{CON} it means write carefully all **Steps 1- 4** of the definition of your **M**