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PART 1: Propositional Languages Intuitive Introduction

We define now a general notion of a propositional language.

We show how to obtain, as specific cases, various languages
for propositional classical logic and some non-classical logics

We assume the following:

All propositional languages contain an infinitely countable set
of variables VAR, which elements are denoted by

a,b,c,...

with indices, if necessary

All propositional languages share the general way their sets
of formulas are formed



Propositional Languages

We distinguish one propositional language from the other is
the choice of its set of propositional connectives.

We adopt a notation
Lcon

where CON stands for the set of connectives

We use a notation
L

when the set of connectives is fixed



Propositional Languages

For example, the language
L)

denotes a propositional language with only one connective —
The language

Li-=)
denotes that a language with two connectives = and =
adopted as propositional connectives

Remember: formal languages deal with symbols only and
are also called symbolic languages



General Principles

Symbols for connectives do have intuitive meaning.

Semantics provides a formal meaning of the connectives and
is defined separately.

One language can have many semantics.
Different logics can share the same language.
For example: the language

L{ﬁ,m,u,:}}

is used as a propositional language of classical and
intuitionistic logics, some many- valued logics, and we
extend it to the language of many modal logics



General Principles

Several languages can share the same semantics.

The classical propositional logic is the best example of such
situation.

Due to the functional dependency of classical logic
connectives the languages:

L{ﬁ, :}}’ ~£{—|, ﬂ}’ "E{_!, U}$ L{—\, n, U, :>}>
L nu=, o Ly Ly

are all equivalent under the classical semantics

We will define formally languages equivalency of languages in
the next chapter.



General Principles

Propositional connectives have well established names
and the way we read them, even if their semantics may differ

We use names negation, conjunction, disjunction and
implication for -, N, U, =, respectively

The connective 7 is called alternative negation and

A T B reads: not both A and B

The connective | is called joint negation

and A | B reads: neither A nor B



Some Non-Classical Propositional Connectives

Other most common propositional connectives are modal
connectives of possibility and necessity

Modal connectives are not extensional

Standard modal symbols are: O for necessity and ¢ for
possibility.

We will also use symbols C and | for modal connectives of
possibility and necessity, respectively.

The formula CA, or 0A reads: itis possible that A or Ais
possible and

The formula IA, o rOA reads: itis necessary that A orAis
necessary



Modal Propositional Connectives

Symbols C and | are used for their topological meaning in the
semantics of standard modal logics S4 and S5

In topology C is a symbol for a set closure operation
CA means a closure of a set A

| is a symbol for a set interior operation

IA denotes an interior of the set A

Modal logics extend the classical logic

A modal logic languages are for example

L{C,I,ﬂ,m,u,:} or L{D,(},—u,ﬂ,U,:}



Some More Non-Extensional Connectives
Knowledge logics also extend the classical logic by adding
a new one argument knowledge connective
The knowledge connective is often denoted by K

A formula KA reads: it is known that A or A is known

A language of a knowledge logic is for example

Lik - nu =)



Some More Non-Extensional Connectives

Autoepistemic logics extend classical logic by adding an
one argument believe connective, often denoted by B

A formula BA reads: it is believed that A
A language of an autoepistemic logic is for example

LB - nu =)



Some More Non-Extensional Connectives

Temporal logics also extend classical logic by adding one
argument temporal connectives

Some of temporal connectives are: F, P, G, H.
Their intuitive meanings are:

FA reads A is true at some future time,

PA reads A was true at some past time,

GA reads A will be true at all future times,
HA reads A has always been true in the past



Propositional Connectives

It is possible to create connectives with more then one or two
arguments

We consider here only one or two argument connectives



Chapter 3
Propositional Languages
PART 2: Formal Definitions



Propositional Language

Definition
A propositional language is a pair

L=(A7F)
where A, 7 are called an alphabet and a set of formulas,
respectively
Definition
Alphabet is a set

A= VAR U CONU PAR

VAR, CON, PAR are all disjoint sets of propositional
variables, connectives and parenthesis, respectively

The sets VAR, CON are non-empty



Alphabet Components

VAR is a countably infinite set of propositional variables
We denote elements of VAR by

a,b,c,d,...

with indices if necessary

CON = ( is afinite set of propositional connectives

We assume that the set CON of logical connectives is
non-empty, i.e. that a propositional language always has at
least one connective.



Alphabet Components

Notation
We denote the language £ with the set of connectives CON
by

Lcon

Observe that propositional languages differ only on a
choice of the propositional connectives, hence our notation.



Alphabet Components

PAR is a set of auxiliary symbols

This set may be empty; for example in case of Polish notation.
Assumptions

We assume here that PAR contains only 2 parenthesis and

PAR = {(,)}

We also assume that the set CON of logical connectives
contains only unary and binary connectives, i.e.
CON = Cy U Co

where C; is the set of all unary connectives, and C. is the
set of all binary connectives



Formulas Definition

Definition
The set 7 of all formulas of a propositional language Lcon
is build recursively from the elements of the alphabet A as
follows.
F c A" and F is the smallest set for which the following
conditions are satisfied
(1) VARCF
(2) fAeF,veCy, thenvVAeF
(3) fFA,Be¥F, oec Cy i.e o isatwo argument
connective, then
(AoB)e¥F
By (1) propositional variables are formulas and they are
called atomic formulas
The set ¥ is also called a set of all well formed formulas
(wff) of the language Lcon



Set of Formulas

Observe that the the alphabet A is countably infinite

Hence the set ‘A" of all finite sequences of elements of A is
also countably infinite

By definition ¥ <€ A* and hence we get that the set of all
formulas 7 is also countably infinite

We state as separate fact
Fact

For any propositional language £ = (A, ¥ ), its sets of
formulas 7 is always a countably infinite set

We hence consider here only infinitely countable languages



Main Connectives and Direct Sub-Formulas

V is called a main connective of the formula VA € ¥

A is called its direct sub-formula of VA

o is called a main connective of the formula (A o B) e F
A, B are called direct sub-formulas of (A o B)



Examples

E1 Main connective of (a = —-Nb)is =

a, —Nb are direct sub-formulas

E2 Main connective of N(a = —=b)is N

(a = —b) is the direct sub-formula

E3 Main connective of =(a = =b)is -

(a = —b) is the direct sub-formula

E4 Main connective of of (maU —(a = b)) is U
-a, —(a = b)) are direct sub-formulas



Sub-Formulas

We define a notion of a sub-formula in two steps:

Step 1

For any formulas A and B, the formula A is a proper
sub-formula of B if there is sequence of formulas, beginning
with A, ending with B, and in which each term is a direct
sub-formula of the next

Step 2

A sub-formula of a given formula A is any proper sub-formula
of A, or A itself



Sub-Formulas Example

The formula (-~aU-(a = b))
has two direct sub-formulas: —a, -(a = b)

The direct sub-formulas of =-a, -(a = b)

are respectively a, (a=b)

The direct sub-formulas  of a, (a=b), are a,b
END of the process



Example

Given a formula
(rauU—=(a=Db))

Its set of all proper sub-formulas is:

S={-a,~(a=b),a,(a= b,)b}

The set of all its sub-formulas is

Su{(-au—-(a=0b))}



Formula Degree Definition

We define a degree of a formula as a number of occurrences
of logical connectives in the formula.

Example

The degree of (maU-(a= b)) is4
The degree of —(a = b)) is 2

The degree of —a is 1

The degree of a is 0



Formula Degree

A degree of a formula is number of occurrences of logical
connectives in the formula

Observation: the degree of any proper sub-formula of A
must be one less than the degree of A

This is the central fact upon which mathematical induction
arguments are based.

Proofs of properties of formulas are usually carried by
mathematical induction on their degrees



Exercise

Exercise 1
Consider a language

L= -£lﬂ. 0,0, U, N, =}

andaset S C A* such that

S ={0-a= (aub),(0(~a = (aub))),
o-(a= (aub))}

1. Determine which of the elements of S are, and which are
not well formed formulas (wff) of £

2. If a formula A is a well formed formula, i.e. A € F,
determine its its main connective.

3. If A ¢ ¥ write the correct formula and then determine its
main connective



Exercise 1 Solution

Solution
The formula ¢-a = (auUb) is nota well formed formula
The correct formula is

(0-a = (aub))

The main connective is =

The correct formula says:

If negation of a is possible, then we have a or b
Another correct formulain is

0(-~a=(aub))

The main connective is ¢
The corrected formula says:
It is possible that not a implies a or b



Exercise 1 Solution

The formula (¢(-a = (aub))) is not correct
The correct formula is

o(-a= (aub))

The main connective is ¢

The correct formula says:

It is possible that not a implies a or b

0=(a= (auUb)) isa correctformula

The main connective is ¢

The formula says:

It is possible that it is not true that a implies a or b



Exercise

Exercise 2

Given a formula:
o((au-a)nb)

1. Determine its degree

2. Write down all its sub-formulas
Solution:

The degree is 4

All sub-formulas are:

o((au=-a)nb), (au—-a)nb),

(au-a), —a, b, a



Language Defined by a set S

Definition
Given a set S of formulas of a language Lcon

Let CS C CON be the set of all connectives that appear in
formulas of S

Alanguage Lcs
is called the language defined by the set of formulas S

Example

Let S be a set
S ={((a= —-b) = -a), o(~va = —-a)}
All connectives appearing in the formulas in S are:

i’ _‘? D’ 0

The language defined by the set S is

-E[—|, =, 0, ¢}



Exercise

Exercise 3
Write the following natural language statement:

From the fact that it is possible that Anne is not a boy we
deduce that it is not possible that Anne is not a boy or, if it is
possible that Anne is not a boy, then it is not necessary that
Anne is pretty

in the following two ways
1. As a formula

A1 € F1 ofalanguage L. o o n u =)
2. As a formula

A € o ofalanguage L. n u —



Exercise 3 Solution

1.We translate our statement into a formula
Aj € 1 ofthelanguage L. o ¢, n u, -} as follows

Propositional Variables: a,b

a denotes statement: Anne is a boy,

b denotes a statement: Anne is pretty
Propositional Modal Connectives: 0O, ¢
¢ denotes statement: it is possible that
O denotes statement: it is necessary that
Translation 1: the formula A; is

(0-a = (-¢-au (¢-a = -ob)))



Exercise 3 Solution

2. We translate our statement into a formula

Ao € F» ofthe language - . u, =, as follows
Propositional Variables: a,b

a denotes statement: it is possible that Anne is not a boy
b denotes a statement: it is necessary that Anne is pretty
Translation 2: the formula A, is

(a=(-au(a=-b)))



Exercise

Exercise 4
Write the following natural language statement:

For all natural numbers n € N the following implication holds:
if n < 0, then there is a natural number m, such that it is
possible that n + m < 0, OR itis not possible that there is a
natural number m, such that m > 0

in the following two ways
1. As a formula
A1 € F1 ofalanguage L. n u =
2. As a formula
Az € F» ofalanguage L. o o n, u. =)



Exercise 4 Solution

1. We translate our statement into a formula
A € ¥1 ofthe language /- n v, —) as follows

Propositional Variables: a, b

a denotes statement:  For all natural numbers n € N the
following implication holds: if n < 0, then there is a natural
number m, such that it is possible thatn + m < 0

b denotes a statement: it is not possible that there is a
natural number m, such that m > 0

Translation: the formula A; is

(au=b)



Exercise 4 Solution

2. We translate our statement into a formula A € o ofa
language L~ o ¢, n u, —) as follows
Propositional Variables: a, b

a denotes statement: For all natural numbers n € N the
following implication holds: if n < 0, then there is a natural
number m, such that it is possible thatn +m < 0

b denotes a statement: there is a natural number m, such
thatm >0

Translation: the formula A, is

(a U —|()b)



Exercise

Exercise 5
Write the following natural language statement:

The following statement holds for all natural numbers n € N:
if n < 0, then there is a natural number m, such that it is
possible that n + m < 0, OR it is not possible that there is a
natural number m, such that m > 0
in the following two ways
1. As a formula

A1 €71 ofalanguage Li- n u, =)

2. As a formula
A € Fo ofalanguage L~ o o n u =)



Exercise

Exercise 6
Write the following natural language statement:

From the fact that each natural number is greater than zero
we deduce that it is not possible that Anne is a boy or, if it is
possible that Anne is not a boy, then it is necessary that it is
not true that each natural number is greater than zero

in the following two ways
1. As a formula

A1 € F1 ofalanguage L. o o n u =)
2. As a formula

A € o ofalanguage L. n u —



