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Chapter 1
PART1: Mathematical Paradoxes



Mathematical Paradoxes

Early Intuitive Approach:

Until recently, till the end of the 19th century, mathematical
theories used to be built in the intuitive, or axiomatic way.

Historical development of mathematics has shown that it is
not sufficient to base theories only on an intuitive
understanding of their notions



Example

Consider the following.

By a set, we mean intuitively, any collection of objects.

For example, the set of all even integers or the set of all
students in a class.

The objects that make up a set are called its members
(elements)

Sets may themselves be members of sets for example, the
set of all sets of integers has sets as its members



Example

Sets may themselves be members of sets for example, the
set of all sets of integers has sets as its members

Most sets are not members of themselves;

the set of all students, for example, is not a member of itself,
because the set of all students is not a student

However, there may be sets that do belong to themselves - for
example, the set of all sets



Russell Paradox, 1902

Russell Paradox

Consider the set A of all those sets X such that X is not a
member of X

Clearly, A is a member of A if and only if A is not a member of
A

So, if A is a member of A, the A is also not a member of A;
and if A is not a member of A, then A is a member of A

In any case, A is a member of A and A is not a member of A.

CONTRADICTION!



Russell Paradox Solution

Russel proposed his Theory of Types as a solution to the
Paradox

The idea is that every object must have a definite
non-negative integer as its type assigned to it

An expression x is a member of the set y is meaningful if and
only if the type of y is one greater than the type of x



Russell Paradox Solution

Russell’s theory of types guarantees that it is meaningless to
say that a set belongs to itself.

Hence Russell’ s solution is:

The set A as stated in the Russell paradox does not exist

The Type Theory was extensively developed by by Whitehead
and Russell in years 1910 - 1913

It is successful, but difficult in practice and has certain other
drawbacks as well



Logical Paradoxes

Logical Paradoxes, also called Logical Antinomies are
paradoxes concerning the notion of a set

A a modern development of Axiomatic Set Theory as one of
the most important fields of modern Mathematics , or more
specifically Mathematical Logic , or Foundations of
Mathematics resulted from the search for solutions to various
Logical Paradoxes

First paradoxes free axiomatic set theory was developed by
Zermello in 1908



Logical Paradoxes

Two of the most known logical paradoxes (antinomies), other
then Russell ’s Paradox are those of Cantor and Burali-Forti

They were stated at the end of 19th century

Cantor Paradox involves the theory of cardinal numbers

Burali-Forti Paradox is the analogue to Cantor’s but in the
theory of ordinal numbers



Cardinality of Sets

We say that sets X and Y have the same cardinality,
cardX = cardY or that they are equinumerous if and only if
there is one-to-one correspondence that maps X onto Y

cardX ≤ cardY means that X is equinumerous with a subset
of Y . The subset can be not proper, i.e. Y itself, hence the
sign ≤

cardX < cardY means that cardX ≤ cardY and
cardX , cardY



Cantor and Schröder- Berstein Theorems

Cantor Theorem

For any set X ,
cardX < cardP(X)

Schröder- Berstein Theorem

For any sets X and Y ,

If cardX ≤ cardY and cardY ≤ cardX , then cardX = cardY .

Ordinal numbers are special measures assigned to ordered
sets.



Cantor Paradox, 1899

Let C be the universal set - that is, the set of all sets

Now, P(C) is a subset of C, so it follows easily that

cardP(C) ≤ cardC

On the other hand, by Cantor Theorem,

cardC < cardP(C) ≤ cardP(C)

so also
cardC ≤ cardP(C).

From Schröder- Berstein theorem we have that
cardP(C) = cardC, what contradicts Cantor Theorem

Solution: Universal set does not exist.



Burali-Forti Paradox, 1897

Given any ordinal number, there is a still larger ordinal number

But the ordinal number determined by the set of all ordinal
numbers is the largest ordinal number

Solution: the set of all ordinal numbers do not exist



Logical Paradoxes

Another solution to Logical Paradoxes:

Reject the assumption that for every property

P(x), there exists a corresponding set of all objects x that
satisfy P(x)

Russell’s Paradox then simply proves that

there is no set A defined by a property

P(X): X is a set of all sets that do not belong to themselves



Logical Paradoxes

Cantor Paradox shows that

there is no set A defined by a property

P(X): there is an universal set X

Burali-Forti Paradox shows that

there is no set A defined by a property

P(X): there is a set X that contains all ordinal numbers



Intuitionism

A more radical interpretation of the paradoxes has been
advocated by Brouwer and his intuitionist school

Intuitionists refuse to accept the universality of certain basic
logical laws, such as the law of excluded middle: A or not A

For intuitionists the excluded middle law is true for finite sets,
but it is invalid to extend it to all sets

The intuitionists’ concept of infinite set differs from that of
classical mathematicians



Intuitionists’ Mathematics

The basic difference between classical and intuitionists’
mathematics lies also in the interpretation of the word exists

In classical mathematics proving existence of an object x
such that P(x) holds does not mean that one is able to
indicate a method of construction of it

In the intuitionists’ universe we are justified in asserting the
existence of an object having a certain property only if we
prove existence of an effective method for constructing, or
finding such an object



Intuitionists’ Mathematics

In intuitionistic mathematics the logical paradoxes are not
derivable, or even meaningful

The Intuitionism, because of its constructive flavor, has
found a lot of applications in computer science,

for example in the theory of programs correctness

Intuitionistic Logic (to be studied in this course) reflects
intuitionists ideas in a form a formalized deductive system



Chapter 1
PART 2 : Semantic Paradoxes



Semantic Paradoxes

The development of axiomatic theories solved some,

but not all problems brought up by the Logical Paradoxes.

Even the consistent sets of axioms, as the following examples
show, do not prevent the occurrence of another kind

of paradoxes, called Semantic Paradoxes that deal with the
notion of truth.



Semantic Paradoxes

Berry Paradox, 1906:

Let A denote the set of all positive integers which can be
defined in the English language by means of a sentence
containing at most 1000 letters

The set A is finite since the set of all sentences containing at
most 1000 letters is finite. Hence, there exist positive integer
which do not belong to A.

Consider a sentence: n is the least positive integer which
cannot be defined by means of a sentence of the English
language containing at most 1000 letters

This sentence contains less than 1000 letters and defines a
positive integer n

Therefore n ∈ A - but n < A by the definition of n

CONTRADICTION!



Berry Paradox Analysis

The paradox resulted entirely from the fact that we did not
say precisely what notions and sentences belong to the
arithmetic and what notions and sentences concern the
arithmetic

Of course we didn’t talk about and examine arithmetic as a fix
and closed deductive system

We also incorrectly mixed the natural language with
mathematical language of arithmetic



Berry Paradox Solution

We have to distinguish always the language of the theory
(arithmetic) and the language which talks about the theory,
called a metalanguage

In general we must distinguish a formal theory from the
meta-theory

In well and correctly defined theory the such paradoxes can
not appear



The Liar Paradox

A man says: I am lying.

If he is lying , then what he says is true, and so he is not lying

If he is not lying, then what he says is not true,

and so he is lying

CONTRADICTION!



Liar Paradoxes

These paradoxes arise because the concepts of the type

” I am true”, ” this sentence is true”, ” I am lying”

should not occur in the language of the theory

They belong to a metalanguage of the theory

It it means they belong to a language that talks about the
theory



Cretan Paradox

The Liar Paradox is a corrected version of a following paradox
stated in antiquity by a Cretan philosopher Epimenides

Cretan Paradox

The Cretan philosopher Epimenides said: All Cretans are liars

If what he said is true , then, since Epimenides is a Cretan, it
must be false

Hence, what he said is false. Thus, there is a Cretan who is
not a liar

CONTRADICTION with what he said: ”All Cretans are liars”



GENERAL REMARKS;
The Goals of the Course

FIRST TASK when one builds mathematical logic foundations
of mathematics or of computer science is to define formally
and proper symbolic language

This is called building a proper syntax

SECOND TASK is to extend the syntax to include a notion of
a proof

It allows us to find out what can and cannot be proved if
certain axioms and rules of inference are assumed

This part of syntax is called PROOF THEORY



GENERAL REMARKS;
The Goals of the Course

THIRD TASK is to define formally what does it mean that
formulas of our formal language defined in the TASK ONE
are true

It means that we have to define what we formally call a
semantics for our language

For example, the notion of truth i.e. the semantics for the
classical and intuitionistic approaches are different



GENERAL REMARKS;
The Goals of the Course

FOUTH TASK is to investigate the relationship between proof
theory (part of the syntax) and semantics for the given
language

It means to establish correct relationship between notion of a
proof and the notion of truth, i.e. to answer the following
questions

Q1: Is (and when) everything one proves is true?

The answer is called Soundness Theorem for a given proof
system under given semantics

Q2: Is it possible (and when it is possible) to guarantee
provability of everything we know to be true ?

The answer is called Completeness Theorem for a given
proof system under given semantics



GENERAL REMARKS;
The Main Goal of the Course

The MAIN GOAL of this course is to formally define and
develop the above Four Tasks in case of the Classical Logic
and in case of Non- Classical Logics like Intuitionistic Logic,
some Modal Logics, and some Many Valued Logics



Chapter 1
PART 3: Logics for Computer Science



Classical and Intuitionistic

The use of Classical Logic in computer science is known,
indisputable, and well established.

The existence of PROLOG and Logic Programming as a
separate field of computer science is the best example of it.

Intuitionistic Logic in the form of Martin-Löf’s theory of types
(1982), provides a complete theory of the process of program
specification, construction, and verification.

A similar theme has been developed by Constable (1971)
and Beeson (1983)



Modal Logics

Modal Logics

In 1918, an American philosopher, C.I. Lewis proposed yet
another interpretation of lasting consequences, of the logical
implication.

In an attempt to avoid, what some felt, the paradoxes of
implication (a false sentence implies any sentence) he created
a modal logic.

The idea was to distinguish two sorts of truth: necessary
truth and mere possible (contingent) truth

A possibly true sentence is one which, though true, could be
false



Modal Logics for Computer Science

Modal Logics in Computer Science are used as as a tool for
analyzing such notions as knowledge, belief, tense.

Modal logics have been also employed in a form of Dynamic
logic (Harel 1979) to facilitate the statement and proof of
properties of programs



Temporal Logics

Temporal Logics were created for the specification and
verification of concurrent programs (Harel, Parikh, 1979,
1983) and for a specification of hardware circuits (Halpern,
Manna, Maszkowski, (1983)).

They were also used to specify and clarify the concept of
causation and its role in commonsense reasoning Shoham,
1988

Fuzzy Sets, Rough Sets, Many valued logics were created
and developed to reasoning with incomplete information.



Non-classical Logics

The development of new logics and the applications of logics
to different areas of Computer Science and in particular to
Artificial Intelligence is a subject of a book in itself but is
beyond the scope of this book

The course examines in detail the classical logic and some
aspects of the intuitionistic logic and its relationship with the
classical logic

It introduces some of the most standard many valued logics,
and examines modal S4, S5 logics.

] It also shows the relationship between the modal S4 and the
intuitionistic logics.



Chapter 1
PART 4: Computer Science Puzzles



Computer Science Puzzles
Reasoning in Distributive Systems

Problem by Grey, 1978, Halpern, Moses, 1984:

Two divisions of an army are camped on two hilltops
overlooking a common valley.

In the valley awaits the enemy.

If both divisions attack the enemy simultaneously they will win
the battle.

If only one division attacks it will be defeated.



Coordinated Attack

The divisions do not initially have plans for launching an attack
on the enemy, and the commanding general of the first
division wishes to coordinate a simultaneous attack (at some
time the next day).

Neither general will decide to attack unless he is sure that the
other will attack with him.

The generals can only communicate by means of a
messenger.



Coordinated Attack

Normally, it takes a messenger one hour to get from one
encampment to the other.

However, it is possible that he will get lost in the dark or, worst
yet, be captured by the enemy.

Fortunately on this particular night, everything goes smoothly.

Question: How long will it take them to coordinate an attack?



Coordinated Attack

Suppose the messenger sent by General A makes it to
General B with a message saying Attack at dawn.

Will B attack?

No, since A does not know B got the message, and thus may
not attack.

General B sends the messenger back with an
acknowledgment. Suppose the messenger makes it.

Will A attack?

No, because now A is worried that B does not know A got the
message, so that B thinks A may think that B did not get the
original message, and thus not attack.



Coordinated Attack

General A sends the messenger back with an
acknowledgment.

This is not enough.

No amount of acknowledgments sent back and forth will ever
guarantee agreement.

Even in a case that the messenger succeeds in delivering the
message every time.

All that is required in this (informal) reasoning is the possibility
that the messenger doesn’t succeed.



Coordinated Attack Solutiom

To solve this problem Halpern and Moses (1985) created a
Propositional Modal logic with m agents.

They proved this logic to be essentially a multi-agent version
of the standard modal logic S5.

They also proved that common knowledge (formally defined!)
is not attainable in systems where communication is not
guaranteed



Communication in Distributed Systems

The common knowledge is also not attainable in systems
where communication is guaranteed, as long as there is some
uncertainty in massage delivery time.

In distributed systems where communication is not
guaranteed common knowledge is not attainable.

But we often do reach agreement!



Communication in Distributed Systems

They proved that formally defined common knowledge is
attainable in such models of reality where we assume, for
example, events can be guaranteed to happen
simultaneously.

Moreover, there are some variants of the definition of common
knowledge that are attainable under more reasonable
assumptions.

So, we can formally prove that in fact we often do reach
agreement!



Computer Science Puzzles
Reasoning in Artificial Intelligence

Assumption 1:

Flexibility of reasoning is one of the key property of
intelligence

Assumption 2:

Commonsense inference is defeasible in its nature;

we are all capable of drawing conclusions, acting on them,
and then retracting them if necessary in the face of new
evidence



Reasoning in Artificial Intelligence

If computer programs are to act intelligently, they will need to
be similarly flexible

Goal:

development of formal systems (logics) that describe
commonsense flexibility.



Flexible Reasoning

Example: Reiter, 1987

Consider a statement Birds fly. Tweety, we are told, is a bird.

From this, and the fact that birds fly, we conclude that Tweety
can fly

This conclusion is defeasible: Tweety may be an ostrich, a
penguin, a bird with a broken wing, or a bird whose feet have
been set in concrete.

This is a non-monotonic reasoning: on learning a new fact
(that Tweety has a broken wing), we are forced to retract our
conclusion (that he could fly)



Non-Monotonic and Default Reasoning

Definition:

A non-monotonic reasoning is a reasoning in which the
introduction of a new information can invalidate old facts

Definition:

A default reasoning (logic) is a reasoning that let us draw of
plausible inferences from less-than- conclusive evidence in
the absence of information to the contrary

Observe: non-monotonic reasoning is an example of default
reasoning



Believe Reasoning

Example: Moore, 1983

Consider my reason for believing that I do not have an older
brother.

It is surely not that one of my parents once casually remarked,
You know, you don’t have any older brothers, nor have I
pieced it together by carefully sifting other evidence.

I simply believe that if I did have an older brother I would
know about it;

therefore since I don’t know of any older brothers of mine, I
must not have any



Auto-epistemic Reasoning

The brother example reasoning is not default reasoning nor
non-monotonic reasoning

It is a reasoning about one’s own knowledge or belief

Definition

Any reasoning about one’s own knowledge or belief is called
an auto-epistemic reasoning

Auto-epistemic reasoning models the reasoning of an ideally
rational agent reflecting upon his beliefs or knowledge

Logics which describe it are called auto-epistemic logics



Computer Science Puzzles
Missionaries and Cannibals

Example: McCarthy, 1985

Here is the old Cannibals Problem:

Three missionaries and three cannibals come to the river.

A rowboat that seats two is available.

If the cannibals ever outnumber the missionaries on either
bank of the river, the missionaries will be eaten.

How shall they cross the river?

Traditionally the puzzler is expected to devise a strategy of
rowing the boat back and forth that gets them all across and
avoids the disaster.



Traditional Solution

A state is a triple comprising the number of missionaries,
cannibals and boats on the starting bank of the river.

The initial state is 331 , the desired state is 000

A solution is given by the sequence:

331, 220, 321, 300, 311, 110, 221, 020, 031, 010, 021, 000.



Missionaries and Cannibals Revisited

Imagine now giving someone a problem, and after he puzzles
for a while, he suggests going upstream half a mile and
crossing on a bridge

What a bridge? you say.

No bridge is mentioned in the statement of the problem.

He replies: Well, they don’t say the isn’t a bridge.

So you modify the problem to exclude the bridges and pose it
again.

He proposes a helicopter, and after you exclude that, he
proposes a winged horse....



Missionaries and Cannibals Revisited

Finally, you tell him the solution.

He attacks your solution on the grounds that the boat might
have a leak.

After you rectify that omission from the statement of the
problem, he suggests that a see monster may swim up the
river and may swallow the boat

Finally, you must look for a mode of reasoning that will settle
his hash once and for all.



McCarthy Solution

McCarthy proposes circumscription as a technique for
solving his puzzle.

He argues that it is a part of common knowledge that a boat
can be used to cross the river unless there is something
with it or something else prevents using it

If our facts do not require that there be something that
prevents crossing the river, the circumscription will generate
the conjecture that there isn’t

Lifschits has shown in 1987 that in some special cases the
circumscription is equivalent to a first order sentence.

In those cases we can go back to our secure and well known
classical logic


