CSE/MAT371 QUIZ 4 Fall 2015 Solutions

DEFINITIONS

Write carefully the following DEFINITIONS

D1. Proof System S

By a **proof system** we understand a quadruple

 $S = (\mathcal{L}, \mathcal{E}, \mathcal{L}A, \mathcal{R})$

where

 $\mathcal{L} = \{\mathcal{A}, \mathcal{F}\}$ is a **language** of S with a set \mathcal{F} of formulas

 \mathcal{E} is a set of **expressions** of S

In particular case $\mathcal{E} = \mathcal{F}$

 $LA \subseteq \mathcal{E}$ is a non-empty finite set of **logical axioms** of S

 \mathcal{R} is a non-empty finite set of rules of inference of S

D2. Sound rule of inference (under a semantics M)

An inference rule

$$(r) \quad \frac{P_1 \ ; \ P_2 \ ; \ \dots \ ; \ P_m}{C}$$

- is sound under a semantics M if and only if all M models of the set $\{P_1, P_2, .P_m\}$ of its premisses are also M models of its conclusion C
- In particular, in case of **extensional propositional semantics** when the condition below holds for any truth assignment $v: VAR \longrightarrow LV$

If $v \models_{\mathbf{M}} \{P_1, P_2, .P_m\}$, then $v \models_{\mathbf{M}} C$

D3 Completeness Theorem for S (under a semantics M)

Completeness Theorem (for S and semantics M)

 $\mathbf{P}_S = \mathbf{T}_{\mathbf{M}}$

i.e. for any $A \in \mathcal{E}$, the following holds: $\vdash_S A$ if and only if $\models_M A$

The Completeness Theorem consists of two parts:

Part 1: Soundness Theorem : $P_S \subseteq T_M$

Part 2: Completeness Part of the Completeness Theorem: $T_M \subseteq P_S$

PROBLEM

S is the following proof system:

$$S = (\mathcal{L}_{\{\Rightarrow, \cup, \neg\}}, \mathcal{F}, LA = \{(A \Rightarrow (A \cup B))\} (r1), (r2))$$

Rules of inference:

$$(r1) \ \frac{A \ ; B}{(A \cup \neg B)}, \qquad (r2) \ \frac{A \ ; (A \cup B)}{B}$$

1. Verify whether *S* is sound/not sound under classical semantics.

- **Solution** The system is not sound. Take any *v* such that it evaluates A = T and B = F. The premiss $(A \cup B \text{ of the rule} (r2)$ is *T* and the conclusion B is *F*
- **2.** Find a formal proof of $\neg(A \Rightarrow (A \cup B))$ in *S*, i. e. show that $\vdash_S \neg(A \Rightarrow (A \cup B))$

Solution The proof is as follows

 B_1 : $(A \Rightarrow (A \cup B))$, (axiom)

 B_2 : $(A \Rightarrow (A \cup B))$, (axiom)

*B*₃: $((A \Rightarrow (A \cup B)) \cup \neg (A \Rightarrow (A \cup B)))$, (rule r1 application to *B*₁ and *B*₂)

 B_4 : $\neg(A \Rightarrow (A \cup B))$, (rule r2 application to B_1 and B_3).

3. Does above point **2.** prove that $\models \neg(A \Rightarrow (A \cup B))$?

Solution

System S is **not sound**, so existence of a proof does not guarantee that what we proved is a tautology.

Moreover, the proof of $\neg(A \Rightarrow (A \cup B))$ used rule (*r*2) that is not sound!