CSE/MAT371 QUIZ 2 Fall 2015 Solutions

PART 1: DEFINITIONS

All Definitions are for language $\mathcal{L} = \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$ and classical semantics

D1.

Given the **truth assignment** $v: VAR \longrightarrow \{T, F\}$

Write the **definition** of its **extension** v^* to the set \mathcal{F} of all formulas of \mathcal{L}

Definition

We define the **extension** v^* as follows

- v^* is a function $v^* : \mathcal{F} \longrightarrow \{T, F\}$ such that
- (i) for any $a \in VAR$

 $v^*(a) = v(a)$

(ii) and for any $A, B \in \mathcal{F}$ we put

 $v^{*}(\neg A) = \neg v^{*}(A);$ $v^{*}((A \cap B)) = \cap (v^{*}(A), v^{*}(B));$ $v^{*}((A \cup B)) = \cup (v^{*}(A), v^{*}(B));$ $v^{*}((A \Rightarrow B)) \Longrightarrow (v^{*}(A), v^{*}(B))$

The condition (ii) of the definition of the extension v^* can be also written as follows

(ii) and for any $A, B \in \mathcal{F}$ we put

$$v^*(\neg A) = \neg v^*(A);$$

$$v^*((A \cap B)) = v^*(A) \cap v^*(B);$$

$$v^*((A \cup B)) = v^*(A) \cup v^*(B);$$

$$v^*((A \Rightarrow B)) = v^*(A) \Rightarrow v^*(B)$$

D2.

Write the **definition** of a **restricted MODEL** for a given formula $A \in \mathcal{F}$

Definition

A restricted MODEL for the formula A is any function $w : VAR_A \longrightarrow \{T, F\}$ such that $w^*(A) = T$, where VAR_A is the sent of all propositional variables appearing in A.

D3

Write the **definition** of a **consistent** non-empty set $\mathcal{G} \subseteq \mathcal{F}$

Definition

A non-empty set $\mathcal{G} \subseteq \mathcal{F}$ of **formulas** is called **consistent** if and only if \mathcal{G} has a model, i.e. we have that $\mathcal{G} \subseteq \mathcal{F}$ is **consistent** if and only if **there is** a truth assignment v such that $v \models \mathcal{G}$, i.e. v is such that $v^*(A) = T$ for all $A \in \mathcal{G}$

PART 2: PROBLEMS

Problem 1

We know that $v: VAR \longrightarrow \{F, \bot, T\}$ is such that $v^*((a \cap b) \Rightarrow (a \Rightarrow c)) = \bot$

under **H** semantics: for any $(a, b) \in \{T, \bot, F\} \times \{T, \bot, F\}$ we put $a \cup b = max\{a, b\}, a \cap b = min\{a, b\},$

 $a \Rightarrow b = \begin{cases} T & \text{if } a \le b \\ b & \text{otherwise} \end{cases} \quad \text{and for any } a \in \{T, \bot, F\} \text{ we put } \neg a = a \Rightarrow F$

Use above definition and proper reasoning to evaluate $v^*(((b \Rightarrow a) \Rightarrow (a \Rightarrow \neg c)) \cup (a \Rightarrow b))$

Use shorthand notation

Solution

We evaluate

H Implication

\Rightarrow	F	\perp	Т
F	Т	Т	Т
\perp	F	Т	Т
Т	F	\perp	Т

H Negation

 $v^*((a \cap b) \Rightarrow (a \Rightarrow c)) = \bot$ under **H** semantics if and only if (using a shorthand notation) $(a \cap b) = T$ and $(a \Rightarrow c) = \bot$ if and only if a = T, b = T and $(T \Rightarrow c) = \bot$ if and only if $c = \bot$

I.e. we have that $v^*((a \cap b) \Rightarrow (a \Rightarrow c)) = \bot$ if and only if $a = T, b = T, c = \bot$

Now we can we evaluate

 $v^*(((b \Rightarrow a) \Rightarrow (a \Rightarrow \neg c)) \cup (a \Rightarrow b))$ as follows

 $v^*(((b \Rightarrow a) \Rightarrow (a \Rightarrow \neg c)) \cup (a \Rightarrow b)) = (((T \Rightarrow T) \Rightarrow (T \Rightarrow \neg \bot)) \cup (T \Rightarrow T)) = ((T \Rightarrow (T \Rightarrow F)) \cup T) = T$

Problem 2 (extra 5pts)

Find an **infinite number of formulas** that are **independent** of $\mathcal{G} = \{((a \cap b) \Rightarrow b), (a \cup b), \neg a\}$

Solution

First we have to find all $v : VAR \longrightarrow \{T, F\}$ such that $v \models \{((a \cap b) \Rightarrow b), (a \cup b), \neg a\}$, i.e such that (shorhand notation) $((a \cap b) \Rightarrow b) = T$, $(a \cup b) = T$, $\neg a = T$. Observe that $\models ((a \cap b) \Rightarrow b)$ so we have to consider only $(a \cup b) = T$, $\neg a = T$. This holds if and only if a = F and $(F \cup b) = T$, i.e. if and only if a = F and b = T

This proves that \mathcal{G} that any v such that v(a) = F and v(b) = T is the **ONLY one restricted model** for \mathcal{G} .

We define now a countably in as follows.

The set $VAR - \{a, b\}$ is countably infinite, so we take as a set of formulas (to be **proved to be independent**) the set of **atomic formulas**

$$\mathcal{F}_0 = VAR - \{a, b\}$$

Let $c \in \mathcal{F}_0$

We define truth assignments $v_1, v_2 : VAR \longrightarrow \{T, F\}$ such that

 $v_1 \models \mathcal{G} \cup \{c\}$ and $v_2 \models \mathcal{G} \cup \{\neg c\}$

as follows

 $v_1(a) = v(a) = F$, $v_1(b) = v(b) = T$ and $v_1(c) = T$ for all $c \in \mathcal{F}_0$

 $v_2(a) = v(a) = F$, $v_2(b) = v(b) = T$ and $v_2(c) = F$ ffor all $c \in \mathcal{F}_0$