CSE/MAT371 QUIZ 1 SOLUTIONS Fall 2015 (20pts)

PART 1: DEFINITIONS

D1. Write **definition** of a LOGICAL PARADOX

Logical Paradoxes, also called Logical Antinomies are paradoxes concerning the notion of a set

2. Give an example (by name) of a logical paradox

Here are 3 of them

Russel Paradox, 1902, Cantor Paradox, 1899, Burali-Forti Paradox, 1897

D3. Write definition of the set \mathcal{F} of all formulas of \mathcal{L}_{CON} for $C_1 = \{K, L\}$ and $C_2 = \{\cup\}$

The set of all formulas is defined as follows

 $\mathcal{F} \subseteq \mathcal{A}^*$ and \mathcal{F} is the **smallest** set for which the following conditions are satisfied

- (1) $VAR \subseteq \mathcal{F}$ ATOMIC FORMULAS
- (2) If $A \in \mathcal{F}$, then LA, $KA \in \mathcal{F}$
- (3) If $A, B \in \mathcal{F}$, then $(A \cap B) \in \mathcal{F}$

Write an **example** of 3 formulas of your language $\mathcal{L}_{\{K,L,\cup\}}$

item[] a, La, $KL(b \cup a)$, $(KLb \cup a)$

D3 Describe the MAIN difference between classical and intuitionists' mathematics

The main difference between classical and intuitionists' mathematics lies in the interpretation of the word exists

PART 2: PROBLEMS

Problem 1 Write the following natural language statement:

From the fact that each natural number is greater than zero we deduce that: it is not possible that Anne is a boy or, if it is possible that Anne is not a boy, then it is necessary that it is not true that each natural number is greater than zero

in the following two ways

1. As a formula $A_1 \in \mathcal{F}_1$ of a language $\mathcal{L}_{\{\neg, \Box, \Diamond, \cap, \cup, \Rightarrow\}}$

Propositional Variables: a, b, where

a denotes statement: each natural number is greater than zero,

b denotes statement: Anne is a boy

Propositional Modal Connectives: □, ◊

♦ denotes statement: it is possible that, □ denotes statement: it is necessary that

Translation The formula A_1 is

$$(a \Rightarrow (\neg \Diamond b \cup (\Diamond \neg b \Rightarrow \Box \neg a)))$$

2. As a formula $A_2 \in \mathcal{F}_2$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$

Propositional Variables: a, b, c, d where

a denotes statement: each natural number is greater than zero,

b denotes statement: possible that Anne is a boy

c denotes statement: possible that Anne is not a boy

d denotes statement: necessary that it is not true that each natural number is greater than zero

Formula A_2 is

$$(a \Rightarrow (\neg b \cup (c \Rightarrow d)))$$