
Chapter 13:
Modal Logics: S4 and S5

Modal logics were first developed, as was the

intuitionistic logic, in a form of proof sys-

tems only.

First Hilbert style modal proof system was

published by Lewis and Langford in 1932.

They presented a formalization for two modal

logics, which they called S1 and S2. They

also outlined three other proof systems,

called S3, S4, and S5.
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In 1933 Gödel worked with Heyting’s ”sen-

tential logic” proof system, what we are

calling now Intuitionistic logic.

He considered a particular modal proof sys-

tem, now known as S4, and asserted that

theorems of Heyting’s ”sentential logic” could

be obtained from it by using a certain trans-

lation.

Since then hundreds of modal logics have been

created.

Some standard texts in the subject are, be-

tween the others:

Hughes, Cresswell [1968] for philosophical mo-

tivation for various modal and Intuitionistic

logic,

2



Bowen [1979] for a detailed and uniform study

of Kripke models for modal logics,

Segeberg [1971] for excellent classification, and

Fitting [1983], for extended and uniform stud-

ies of automated proof methods for classes

of modal logics.
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Godel S4 and S5 Systems

Language

L= L{∪,∩,⇒,¬,I,C}

The language is common to all modal logics.

Modal logics differ on a choice of axioms and

rules of inference, when studied as proof

systems and on a choice of semantics when

studied semantically.

Axioms: modal logics extend the classical logic

hence any modal logic contains two groups

of axioms: classical and modal.
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Group one: classical axioms Any modal logic

adopts as its classical axioms any complete

set of axioms for a classical propositional

logic.

Group two: modal axioms for S4 and S5

M1 (IA ⇒ A),

M2 (I(A ⇒ B) ⇒ (IA ⇒ IB)),

M3 (IA ⇒ IIA),

M4 (CA ⇒ ICA).
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Rules of inference: Modus Ponens (MP ) and

an additional rule, introduced by Gödel

(I)
A

IA
referred to as necessitation.

We define modal logics S4 and S5 as follows.

S4 = ( L, F , classical axioms,

M1−M3, (MP ), (I) ),

S5 = ( L, F , classical axioms,

M1−M4, (MP ), (I) ).
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Observe that the axioms of S5 extend the ax-

ioms of S4 and both system share the same

inference rules, hence we have immediately

the following.

FACT For any formula A ∈ F,

if `S4 A, then `S5 A.
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Rasiowa S4 and S5 Systems (1964) It stresses

the connection between S4 and S5 and

topological spaces which constitute a model

for them.

Language uses only one modal connective

connective I, that corresponds to the sym-

bol denoting a topological interior of a set.

Language

L = L{∩,∪,⇒,¬,I}.

Expressibility of connectives

IA ≡ ¬C¬A,

CA ≡ ¬I¬A.
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Axioms There are, as before, two groups of
axioms: classical and modal.

Group one: classical axioms We adopt as
classical axioms any complete set of ax-
ioms for a classical propositional logic.

Group two: modal axioms for S4 and S5.

I1 ((IA ∩ IB) ⇒ I(A ∩B)),

I2 (IA ⇒ A),

I3 (IA ⇒ IIA),

I4 I(A ∪ ¬A),

I5 (¬I¬A ⇒ I¬I¬A)
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Rules of inference We adopt the Modus

Ponens (MP ) and an additional modal rule

(I),

(I)
(A ⇒ B)

(IA ⇒ IB)
.

We define, after Rasiowa, the modal logic proof

systems S4, S5 as follows.

RS4 = ( L, F , classical axioms,

I1− I4, (MP ), (I))

RS4 = ( L, F , classical axioms,

I1− I5, (MP ), (I))
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Completeness Theorem For any formula A,

`M A if and only if |=S4,S5 A,

where M= S4, S5, RS4, RS5, respec-

tively.
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S4 derivable disjunction (McKinsey, Tarski,

1948)

Let S4 denote any complete system under

S4 modal semantics.

`S4 (IA∪IB) if and only if `S4A or `S4 B.

By the Completeness Theorem we get a gen-

eral and proof system independent version

of the above theorem.

|=S4(IA∪IB) if and only if |=S4 or |=S4B.
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S4 and Intuitionistic logic Gödel was the

first to consider the connection between

the intuitionistic logic and a logic which

was named later S4.

His proof was purely syntactic in its nature,

as semantics for neither intuitionistic logic

nor modal logic S4 had not been invented

yet.

The algebraic proof of this fact, was first pub-

lished by McKinsey and Tarski in [1948].
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Let L be a propositional language of modal

logic

L = L{∩,∪,⇒,¬,I},

L0 = L{∩,∪,⇒,∼}

We define, after McKInsey and Tarski (1948)

the mapping f as follows.

f : F0 → F

fa = Ia for any a ∈ V AR,

f(A ⇒ B) = I(fA ⇒ fB),

f(A ∪B) = (fA ∪ fB),

f(A ∩B) = (fA ∩ fB),

f(∼ A) = I¬fA,

where A, B denote any formulas in L0.
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Example Let A be a formula

((∼ A∩ ∼ B) ⇒∼ (A ∪B))

We evaluate f(A) as follows

f((∼ A∩ ∼ B) ⇒∼ (A ∪B)) =

I(f(∼ A∩ ∼ B) ⇒ f(∼ (A ∪B)) =

I((f(∼ A) ∩ f(∼ B)) ⇒ f(∼ (A ∪B)) =

I((I¬fA ∩ I¬fB) ⇒ I¬f(A ∪B)) =

I((I¬A ∩ I¬B) ⇒ I¬(fA ∪ fB)) =

I((I¬A ∩ I¬B) ⇒ I¬(A ∪B)).
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Theorem For any formula A ∈ F0 of L0,

`I A, if and only if `S4 fA,

where I, S4 denote any complete proof sys-

tems under intuitionistic and S4 semantics,

respectively.

Theorem For any formula A of L0,

|=I A, if and only if |=S4 fA.
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An embedding of S5 into S4

Embedding theorem 1 For any formula A,

|=S4 A if and only if |=S5 ICA.

Embedding theorem 2 For any formula A,

|=S5 A if and only if |=S4 ICIA.

Embedding theorem 3 For any formula A,

if |=S5 A, then |=S4 ¬I¬A.

The fist proof of the above embedding the-

orems was given by Matsumoto in 1955.
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