Chapter 13:
Modal Logics: S4 and S5

Modal logics were first developed, as was the
intuitionistic logic, in a form of proof sys-
tems only.

First Hilbert style modal proof system was
published by Lewis and Langford in 1932.

They presented a formalization for two modal
logics, which they called S1 and S2. They
also outlined three other proof systems,
called S3, S4, and S5.



In 1933 Godel worked with Heyting’'s "sen-
tential logic’ proof system, what we are
calling now Intuitionistic logic.

He considered a particular modal proof sys-
tem, now known as S4, and asserted that
theorems of Heyting's " sentential logic” could
be obtained from it by using a certain trans-
lation.

Since then hundreds of modal logics have been
Created.

Some standard texts in the subject are, be-
tween the others:

Hughes, Cresswell [1968] for philosophical mo-
tivation for various modal and Intuitionistic
logic,



Bowen [1979] for a detailed and uniform study
of Kripke models for modal logics,

Segeberg [1971] for excellent classification, and

Fitting [1983], for extended and uniform stud-
ies of automated proof methods for classes
of modal logics.



Godel S4 and S5 Systems

Language

L= Lin=,-1,C)

The language is common to all modal logics.

Modal logics differ on a choice of axioms and
rules of inference, when studied as proof
systems and on a choice of semantics when
studied semantically.

AXioms: modal logics extend the classical logic
hence any modal logic contains two groups
of axioms: classical and modal.



Group one: classical axioms Any modal logic
adopts as its classical axioms any complete
set of axioms for a classical propositional
logic.

Group two: modal axioms for S4 and S5

M1 (IA = A),

M2 (I(A= B)= (I1A=1B)),

M3 (1A = IIA),

M4 (CA = ICA).



Rules of inference: Modus Ponens (M P) and
an additional rule, introduced by Godel

OF=

referred to as necessitation.
We define modal logics S4 and S5 as follows.

S4 = ( L, F, classical axioms,
M1 -M3, (MP), (1)),

S5 = ( L, F, classical axioms,
M1 -M4, (MP), (I) ).



Observe that the axioms of S5 extend the ax-
ioms of S4 and both system share the same
inference rules, hence we have immediately
the following.

FACT For any formula A € F,

if Fgq A,then Fgy A.



Rasiowa S4 and S5 Systems (1964) It stresses
the connection between S4 and S5 and
topological spaces which constitute a model
for them.

Language uses only one modal connective
connective I, that corresponds to the sym-
bol denoting a topological interior of a set.

Language

L=Linu=-1)

Expressibility of connectives

1A = ﬂCﬂA,

CA = -1-A.



AXxioms There are, as before, two groups of
axioms: classical and modal.

Group one: classical axioms We adopt as
classical axioms any complete set of ax-
ioms for a classical propositional logic.

Group two: modal axioms for S4 and S5.

11 (TANIB)=1(ANB)),

12 (A= A),

I3 (1A = I1A4),

14 I(AU-A),

15 (-I-A = I-1-A)



Rules of inference We adopt the Modus
Ponens (M P) and an additional modal rule

(D,

(A= B)

() (IA = 1IB)

We define, after Rasiowa, the modal logic proof
systems S4, S5 as follows.

RS4 = ( £, F, classical axioms,

I1-14, (MP), (I))

RS4 = ( £, F, classical axioms,

11 —15, (MP), (1))
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Completeness Theorem For any formula A,

Fap A if and only if |:S4,55 A,

where M= S4, S5, RS4, RS5, respec-
tively.
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S4 derivable disjunction (McKinsey, Tarski,
1948)

Let S4 denote any complete system under
S4 modal semantics.

g4 (TAUIB) if andonlyif FgaA or Fga B.

By the Completeness Theorem we get a gen-
eral and proof system independent version
of the above theorem.

=oq4,({AUIB) if and only if =g, or =g4B.

12



S4 and Intuitionistic logic Godel was the
first to consider the connection between
the intuitionistic logic and a logic which
was named later S4.

His proof was purely syntactic in its nature,
as semantics for neither intuitionistic logic
nor modal logic S4 had not been invented

yet.

T he algebraic proof of this fact, was first pub-
lished by McKinsey and Tarski in [1948].
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Let £ be a propositional language of modal
logic

L=Linu=-1
Lo = Lin U=~}

We define, after McKliInsey and Tarski (1948)
the mapping f as follows.

f:Fg —F
fa=1Ia for any ac VAR,
f(A= B) =I(fA= [B),
f(AuB) = (fAU fB),
f(ANB) = (fAN fB),

f(~A) =1=fA,

where A, B denote any formulas in Lg.
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Example Let A be a formula

((~AN~ B) ==~ (AUB))

We evaluate f(A) as follows

f((~ AN~ B) =~ (AUB)) =
I(f(~ AN~ B) = f(~ (AUB)) =
I((f(~A)N f(~B)) = f(~(AUB)) =
I((I-fANI~fB) = I-f(AU B)) =
I(I~ANI-B) = I-(fAU fB)) =

I((I-ANI-B) = 1-(AU B)).
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Theorem For any formula A € Fg of Lo,

=17 A,

of and only if tFga fA,

where [, S4 denote any complete proof sys-
tems under intuitionistic and S4 semantics,

respectively.

Theorem For any formula A of Lo,

= A,

v f and only 1 f

=54 fA.
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An embedding of S5 into S4

Embedding theorem 1 For any formula A,

=g4 A if and only if |=g5 ICA.

Embedding theorem 2 For any formula A,

=¢5 A if and only if =g, ICIA.

Embedding theorem 3 For any formula A,

’I,f |:S5 A, then |:S4 _II_IA

The fist proof of the above embedding the-
orems was given by Matsumoto in 1955.
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