
CHAPTER 11

Classical Formal Theoriesch11

Formal theories play crucial role in mathematics and were historically defined
for classical predicate (first order logic) and consequently for other first and
higher order logics, classical and non-classical.

The idea of formalism in mathematics, which resulted in the concept of formal
theories, or formalized theories, as they are also called. Their concept was
developed in connection with the Hilbert Program. One of the main objects
of the program was to construct a formal theory that would cover the whole
mathematics and to prove its consistency by employing the simplest of logical
means. This part of the program was called the Consistency Program, where a
formal theory is said to be consistent if no formal proof can be carried in that
theory for a formula A and at the same time for its negation ¬A.

In 1930, while still in his twenties Kurt Gödel made a historic announcement:
Hilbert Consistency Program could not be carried out. He justified his claim by
proving his Inconsistency Theorem, called also Second Incompleteness Theorem.
Roughly speaking the theorem states that a proof of the consistency of every
formal theory that contains arithmetic of natural numbers can be carried out
only in mathematical theory which is more comprehensive than the one whose
consistency is to be proved. In particular, a proof of the consistency of formal
(elementary, first order) arithmetic can be carried out only in mathematical
theory which contains the whole arithmetic and also other theorems that do
not belong to arithmetic. It applies to a formal theory that would cover the
whole mathematics because it would obviously contain the arithmetic on natural
numbers. Hence the Hilbert Consistency Program fails.

Gödel result concerning the proofs of the consistency of formal theories math-
ematical theories has had a decisive impact on research in properties of formal
theories. Instead of looking for direct proofs of inconsistency of mathematical
theories mathematicians concentrated largely to relative proofs that demon-
strate that a theory under consideration is consistent if a certain other theory,
for example a formal theory of natural numbers is consistent. All those proofs
are rooted in a deep conviction, even though cannot be proved that the theory
of natural numbers is free of inconsistencies. This conviction is confirmed by
centuries of development of mathematics and experiences of mathematicians.

A formal theory is called complete if for every sentence (formula without free
variables) of the language of that theory there is a formal proof of it or of its
negation. A formal theory which does not have this property is called incom-
plete. Hence a formal theory is incomplete if there is a sentence A of the
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language of that theory, such that neither A nor ¬A are provable in it. Such
sentences are called undecidable in the theory in question or independent of the
theory.

It might seem that one should be able to formalize a theory such as the formal
theory of natural numbers is a way to make it complete, i.e. free of undecidable
(independent) sentences. But it is not the case in view of Gödel Incomplete-
ness Theorem. It states that every consistent formal theory which contains
the arithmetic of natural numbers is incomplete. The Inconsistency Theorem
follows form it. This is why the Incompleteness and Inconsistency Theorems
are now called Gödel First Incompleteness Theorem 3, Theorem 6 and Gödel
Second Incompleteness Theorem 4, Theorem 7, respectively.

The third part of the Hilbert Program posed and was concerned with the problem
of decidability of formal mathematical theories. A formal theory is called de-
cidable if there is a method of determining, in a finite number of steps, whether
any given formula in that theory is its theorem or not. If a theory is decidable
and if the decision algorithm is known, then the study of problems expressible
in the language of the theory reduces to a purely mechanical procedure. In
undecidable theories there is no mechanical procedure. Most of mathematical
theories are undecidable. Gödel proved in 1931 that the arithmetic of of natural
numbers is undecidable.

We discuss the Hilbert Program and Gödel’ s Theorems in more details in sec-
tions 3.1 and 3.2, respectively.

1 Formal Theories: Definition and Examples
sec:theory

We define here a notion of a formal theory based on a predicate (first order)
language. Formal theories are also routinely called first order theories, elemen-
tary theories, formal axiomatic theories, or just theories, when it is clear from
the context that they are formal theories. We will often use the term theory for
simplicity.

classicTh Remark 1

We consider here only classical formal theories, it means theories based and a
complete classical Hilbert style proof system. We call it for short a classical
Hilbert style proof system. We also assume, for simplicity, that its language
contains the full set {¬,∩,∪,⇒} of propositional connectives.

Given a classical Hilbert style proof system

H = (L, F , LA, R) (1) Psys

with a predicate (first order) language

L = L{¬,∩,∪,⇒}(P,F,C),
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where the sets P, F, C are infinitely enumerable.

A formal theory based on H is a proof system build from H by adding a new
special set SA of axioms to it, called the set of specific axioms. They are
characteristic description of the universe the formal theory is built to formally
describe. This is why we call them specific axioms and denote by SA. The
specific axioms are to be true only in a certain structure as opposed to logical
axioms LA that are true in all structures.

def:sa Definition 1 (Specific Axioms)

Let SA be a certain set of formulas of L of H = (L, F , LA, R), such that

SA ⊆ F and LA ∩ SA = ∅. (2) d:sa

We call the set SA a set of specific axioms of H.

def:Lsa Definition 2 (Language LSA)

Given a proof system H = (L, F , LA, R) and a non-empty set SA (2) of
specific axioms. We define a language

LSA ⊆ L (3) d:Lsa

by restricting the sets P, F, C of predicate, functional, and constant symbols
of L to predicate, functional, and constant symbols appearing in the set SA of
specific axioms. Both languages LSA and L share the same set of propositional
connectives.

Obviously, if SA = ∅, then LSA = L.

Now we are ready to define a formal (first order) classical theory as follows.

def:Th Definition 3 (Formal Theory)

A proof system
T = (L, F , LA, SA, R), (4) Th

is called a formal theory with the set SA of specific axioms.

The language LSA defined by (3) is called the language of the theory T .
The theory T (4) is based on a complete classical proof system

H = (L, F , LA, R).

def:thms Definition 4

Given a theory T = (L, F , LA, SA, R). We denote by FSA the set of formulas
of the language LSA of T . We denote by T the set all provable formulas in the
theory T , i.e.

T = {B ∈ FSA : SA ` B.} (5) th:SA

We also write `T B to denote that B ∈ T.
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d:eq Definition 5 (Theory with Equality)

A theory T is called a theory with equality if and only if its language LSA

has as one of its predicates, a two argument predicate P which we denote by =,
and all Equality Axioms (6) are provable in T .

Equality Axioms (6) Eax

For any any free variable or constant of LSA, R ∈ P, and t ∈ T, where R is an
arbitrary n-ary relation symbol of LSA and t ∈ T is an arbitrary n-ary term of
LSA the following properties hold.

E1 u = u,

E2 (u = w ⇒ w = u),

E3 ((u1 = u2 ∩ u2 = u3)⇒ u1 = u3),

E4 ((u1 = w1 ∩ ... ∩ un = wn)⇒ (R(u1, ..., un)⇒ R(w1, ..., wn))),

E5 ((u1 = w1 ∩ ... ∩ un = wn)⇒ (t(u1, ..., un)⇒ t(w1, ..., wn))).

Directly from above definitions we have the following.

Fact 1 The Hilbert style proof system H defined in chapter ?? is a theory with
equality with the set of specific axioms SA = ∅.

Some Examples of Formal Theories

In practice, formal theories we build and examine their properties are abstract
models of real mathematical theories that we develop using freely all laws of
logic. Hence the theories we present here are based on a complete proof
system H for classical predicate logic with a language

L = (L{¬,∩,∪,⇒}(P,F,C).

The first order formal theories are also called Elementary Theories.

T1. Theory of equality

Language
LT1 = L{¬,⇒,∪,∩}(P = {P}, F = ∅, C = ∅),

where # P = 2, i.e. P is a two argument predicate. The intended interpretation
of P is equality, so we use the equality symbol = instead of P . We write x = y
instead = (x, y). We write the language of T1 as follows.

LT1 = L{¬,⇒,∪,∩}({=}, ∅, ∅).

Specific Axioms
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e1 x = x,

e2 (x = y ⇒ y = x),

e3 (x = y ⇒ (y = z ⇒ x = z)),

for any x, y, z ∈ V AR,

Exercise 1

Show that the theory T1 of equality is a theory with equality of definition 5.

Solution
The first to axioms e1, e2 are particular cases of E1, E2. We have only to show
that the axiom E3 is provable in T1, i.e. that the formula

((x = y ∩ y = z)⇒ x = z) ∈ T1, (7) e3

where, by (5) T1 = {A ∈ F{e1,e2,e3} : {e1, e2, e3} ` A}.

Observe that by definition, T1 is based on a complete Hilbert style proof system.
A formula

(((A⇒ (B ⇒ C))⇒ ((A ∩B)⇒ C))

is a predicate tautology, hence is provable in T1 for any A,B,C ∈ F{e1,e2,e3}.
In particular its instance for A : x = y, B : y = z, C : x = z is also provable in
T1 what means that

(((x = y ⇒ (y = z ⇒ x = z))⇒ ((x = y ∩ y = z)⇒ x = z)) ∈ T1. (8) prov

Applying Modus Ponens (MP) to axiom e3 and (8), we get that

((x = y ∩ y = z)⇒ x = z) ∈ T1.

It proves that (7) holds and ends the proof.

closed Observation 1 We have chosen to write the specific axioms as open formulas.
Sometimes it is more convenient to write them as closed formulas (sentences).
In this case new axioms will be closures of axioms that were open formulas.

Taking closures of axioms of T1 we obtain the following new formalization for
T1. We call it T2 .

T2. Theory of equality (2)

We adopt a closure of the axioms e1, e2, e3, i.e. the following new set of axioms.

Specific Axioms

(e1) ∀x(x = x),
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(e2 ) ∀x∀y(x = y ⇒ y = x),

(e3) ∀x∀y∀z(x = y ⇒ (y = z ⇒ x = z)).

T3. Theory of Partial Order

Partial order relation is also called order relation.

Language
LT1 = L{¬,⇒,∪,∩}(P = {P,Q}, F = ∅, C = ∅),

where # P = 2, i.e. P is a two argument predicate. The intended interpretation
of P is equality, so we use the equality symbol = instead of P . We write x = y
instead = (x, y).
Q is a two argument predicate. The intended interpretation of Q is partial
order, called also order relation, so we use the order symbol ≤ instead of Q. We
write x ≤ y instead ≤ (x, y).
The language is

LT3 = L{¬,⇒,∪,∩}({=, ≤}, ∅, ∅).

Specific Axioms

There are two groups of specific axioms: equality and order axioms. We adopt
equality axioms (6) to the language LT3 as follows.

Equality Axioms

For any x, y, z, x1, x2, y1, y2,∈ V AR,

e1 x = x,

e2 (x = y ⇒ y = x),

e3 ((x = y ∩ y = z)⇒ x = z),

e4 ((x1 = y1 ∩ x2 = y2)⇒ (x1 ≤ x2 ⇒ y1 ≤ y2)).

Partial Order Axioms

o1 x ≤ x, (reflexivity)

o2 ((x ≤ y ∩ y ≤ x)⇒ x = y), (antisymmetry)

o3 ((x ≤ y ∩ y ≤ z)⇒ x ≤ z), (trasitivity )

where x, y, z ∈ V AR.

The model of T3 is called a partially ordered structure.

T4. Theory of Partial Order (2)

Here is another formalization for partial order.
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Language
LT4 = L{¬,⇒,∪,∩}(P = {P}, F = ∅, C = ∅),

where # P = 2, i.e. P is a two argument predicate. The intended interpretation
of P (x, y) is x < y , so we use the ”less” symbol < instead of P . We write x < y
instead < (x, y). We also write x 6< y for ¬(x < y), i.e. ¬ < (x, y).

The language of T4 is

LT4 = L{¬,⇒,∪,∩}({<}, ∅, ∅).

Specific Axioms

For any x, y, z ∈ V AR,

p1 x 6< x, (irreflexivity)

p2 ((x ≤ y ∩ y ≤ z)⇒ x ≤ z). (trasitivity )

T5. Theory of Linear Order

Linear order relation is also called total order relation.

Language
LT5 = L{¬,⇒,∪,∩}({=, ≤}, ∅, ∅).

Specific Axioms

We adopt all axioms of theory T3 of partial order and add the following addi-
tional axiom.

o4 (x ≤ y) ∪ (y ≤ x).

This axiom says that in linearly ordered sets each two elements are comparable.

T6. Theory of Dense Order

Language
LT6 = L{¬,⇒,∪,∩}({=, ≤}, ∅, ∅).

Specific Axioms

We adopt all axioms of theory T5 of linear order and add the following additional
axiom. We write x 6= y for ¬(x = y), i.e. for the formula ¬ = (x, y).

o5 ((x ≤ y ∩ x 6= y)⇒ ∃z((x ≤ z ∩ x 6= z) ∩ (z ≤ y ∩ z 6= y))).

This axiom says that in linearly ordered sets between any two different there is
a third element, respective to the order.
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T7. Lattice Theory

Language

LT7 = L{¬,⇒,∪,∩}(P = {P,Q}, F = {f, g}, C = ∅),

where # P = 2, i.e. P is a two argument predicate. The intended interpretation
of P is equality, so we use the equality symbol = instead of P . We write x = y
instead = (x, y).
Q is a two argument predicate. The intended interpretation of Q is partial
order, called also order relation, so we use the order symbol ≤ instead of Q. We
write x ≤ y instead ≤ (x, y).
# f = # g 2, i.e. f, g are a two argument functional symbols. The intended
interpretation of f, g is the lattice intersection ∧ and union ∨, respectively.
We write (x ∧ y) for ∧(x, y) and (x ∨ y) for ∨(x, y).

Observe that (x ∩ y), (x ∪ y) are atomic formulas of LT7 and (x ∧ y) and
(x ∨ y) are terms of LT7.

We write the language as

LT7 = L{¬,⇒,∪,∩}({=,≤}, {∧,∨}, ∅).

Specific Axioms

There are three groups of specific axioms: equality axioms, order axioms, and
lattice axioms. We adopt equality axioms (6) to the language LT7 as follows.

Equality Axioms

For any x, y, z, x1, x2, y1, y2,∈ V AR,

e1 x = x,

e2 (x = y ⇒ y = x),

e3 ((x = y ∩ y = z)⇒ x = z),

e4 ((x1 = y1 ∩ x2 = y2)⇒ (x1 ≤ x2 ⇒ y1 ≤ y2)),

e5 ((x1 = y1 ∩ x2 = y2)⇒ (x1 ∧ x2 ⇒ y1 ∧ y2)),

e6 ((x1 = y1 ∩ x2 = y2)⇒ (x1 ∨ x2 ⇒ y1 ∨ y2)).

Remark 2

We write ∧ for the lattice functional symbol of intersection in order to better
distinguish it from the conjunction symbol ∩ in the formula.
The same applies to the next axiom e7 that involves lattice functional symbol ∨
for the union and disjunction symbol ∪ in the formula.
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Partial Order Axioms

For any x, y, z ∈ V AR,

o1 x ≤ x, (reflexivity)

o2 ((x ≤ y ∩ y ≤ x)⇒ x = y), (antisymmetry)

o3 ((x ≤ y ∩ y ≤ z)⇒ x ≤ z). (trasitivity)

Lattice Axioms

For any x, y, z ∈ V AR,

b1 (x ∧ y) = (y ∧ x), (x ∧ y) = (x ∧ y),

b2 (x ∧ (y ∧ z)) = ((x ∧ y) ∧ z), (x ∨ (y ∨ z)) = ((x ∨ y) ∨ z),

b3 (((x ∧ y) ∨ y) = y), ((x ∧ (x ∨ y)) = x).

T8. Theory of Distributive Lattices

Language
LT8 = L{¬,⇒,∪,∩}({=,≤}, {∧,∨}, ∅).

Specific Axioms

We adopt all axioms of theory T7 of lattice theory and add the following addi-
tional axiom.

b4 (x ∧ (y ∨ z)) = ((x ∧ y) ∨ (x ∧ z)).

T9. Theory of Boolean Algebras

Language
LT9 = L{¬,⇒,∪,∩}({=,≤}, {∧,∨,−}, ∅),

where − is one argument function symbol representing algebra complement.

Specific Axioms

We adopt all axioms of theory T8 of distributive lattices theory and add the
following additional axioms that characterize the algebra complement −.

b5 (((x ∧ −x) ∨ y) = y), (((x ∨ −x) ∧ y) = y).

T10. Theory of Groups

Language

LT10 = L{¬,⇒,∪,∩}(P = {P}, F = {f, g}, C = {c}),
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where # P = 2, i.e. P is a two argument predicate. The intended interpretation
of P is equality, so we use the equality symbol = instead of P . We write x = y
instead = (x, y).
f is a two argument functional symbol. The intended interpretation of f is
group operation ◦. We write (x ◦ y) for the formula ◦(x, y).
g is a one argument functional symbol. g(x) represent a group inverse element
to a given x and we denote it by x−1. We hence use a symbol −1 for g.
c is a constant symbol representing unit element in the group and we use a
symbol e to denote it

LT10 = L{¬,⇒,∪,∩}({=}, {◦, −1}, {e}).

Specific Axioms

There are two groups of specific axioms: equality axioms and group axioms. We
adopt equality axioms (6) to the language LT10 as follows.

Equality Axioms

For any x, y, z, x1, x2, y1, y2,∈ V AR,

e1 x = x,

e2 (x = y ⇒ y = x),

e3 ((x = y ∩ y = z)⇒ x = z),

e4 (x = y ⇒ x−1 = y−1),

e5 ((x1 = y1 ∩ x2 = y2)⇒ (x1 ◦ x2 ⇒ y1 ◦ y2)).

Group Axioms

g1 (x ◦ (y ◦ z)) = ((x ◦ y) ◦ z),

g2 (x ◦ e) = x,

g3 (x ◦ x−1) = e.

T11. Theory of Abelian Groups

Language is the same as LT11, i.e.

LT11 = L{¬,⇒,∪,∩}({=}, {◦, −1}, {e})′

Specific Axioms

We adopt all axioms of theory T11 of groups and add the following additional
axiom.
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g4 (x ◦ y) = (y ◦ x).

T12. Theory of Groups (2)

Here is another formalization for group theory.

Language

LT12 = L{¬,⇒,∪,∩}(P = {P}, F = {f}, C = {c}),

where # P = 2, i.e. P is a two argument predicate. The intended interpretation
of P is equality, so we use the equality symbol = instead of P . We write x = y
instead = (x, y).
f is a two argument functional symbols. The intended interpretation of f is
group operation ◦. We write (x ◦ y) for the formula ◦(x, y).
c is a constant symbol representing unit element in the group and we use a unit
symbol e to denote it.

LT12 = L{¬,⇒,∪,∩}({=}, {◦}, {e}).

Specific Axioms

For any x, y, z, x1, x2, y1, y2,∈ V AR,

a1 (x ◦ (y ◦ z)) = ((x ◦ y) ◦ z),

a2 (x ◦ e) = x,

a3 ∀x∃y((x ◦ y) = e),

a4 x = x,

a5 (x = y ⇒ y = x),

a6 (x = y ⇒ (y = z ⇒ x = z)),

a7 (x = y ⇒ (x ◦ z = y ∩ z ◦ x = z ◦ y)).

T13. Theory of Abelian Groups (2)

We adopt the language and all axioms of theory T12 of groups and add the
following additional axiom.

a8 (x ◦ y) = (y ◦ x).

Observe that what we formally prove in the formal axiomatic theories presented
here represents only fragments of corresponding axiomatic theories developed in
mathematics. For example Group Theory, of Boolean Algebras Theory are fields
in mathematics and many theorems developed there, like the Representation
Theorem for Boolean Algebras, and many, many others in other domains can not
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be expressed in the languages of respective formal theories. This is is a reason
why we also call them elementary theories. We say for example elementary group
theory to distinguish it from the group theory as a lager field of mathematics.

2 PA: Formal Theory of Natural Numbers

Next to geometry, the theory of natural numbers in the most intuitive and
intuitively known of all branches of mathematics. This is why the first attempts
to formalize mathematics begin with with arithmetic of natural numbers. The
first attempt of axiomatic formalization was given by Dedekind in 1879 and by
Peano in 1889. It became known as Peano Postulates (axioms) and can be
written as follows.

p1 0 is a natural number.

p2 If nis a natural number, there is another number which we denote by n′.

We call n′ a successor of n. The intuitive meaning of n′ is n + 1.

p3 0 6= n′, for any natural number n.

p4 If n′ = m′, then n = m, for any natural numbers n, m.

p5 If W is is a property that may or may not hold for natural numbers, and
if (i) 0 has the property W and (ii) whenever a natural number n has the
property W, then n′ has the property W,
then natural numbers have the property W.

p5 is called Principle of Induction.

These axioms together with certain amount of set theory are sufficient to develop
not only theory of natural numbers, but also theory of rational and even real
numbers. But they can’t act as a fully formal theory as they include intuitive
notions like ”property” and ”has a property”.

A formal theory of natural numbers based on Peano Postulates is referred in
literature as Peano Arithmetic, or simply PA. We present here formalization by
Mendelson (1973) that is included and worked out in smallest details in his book
Intoduction to Mathematical Logic(1987). We refer the reader to this excellent
book for details and further reading.

We assume, as we did in the previous section ?? that T14 and other theories
considered here are based on a complete Hilbert style proof system

H = (L, F , LA, R) (9) Hsys

for classical predicate logic with a language

L = (L{¬,∩,∪,⇒}(P,F,C),
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We additionally assume now that the system H has as one of ts inference rules
a a generalization rule

(G)
A(x)

∀xA(x)
. (10) Grule

We do so to facilitate use Mendelson’s book as a supplementary reading to the
material included here and for additional reading for material not covered here.

dthm Remark 3

The Deduction Theorem as proved in chapter ?? holds for the proof system
system H defined by (9).

T14. Peano Arithmetic PA (11) def:PA

Language
LPA = L(P = {P}, F = {f, g, h}, C = {c}),

where # P = 2, i.e. P is a two argument predicate. The intended interpretation
of P is equality, so we use the equality symbol = instead of P . We write x = y
instead = (x, y). We write x 6= y for ¬(x = y).
f is a one argument functional symbol. f(x) represent the successor of a given
x and we denote it by x′. We hence use a symbol ′ for f .
g, h is are two argument functional symbols. The intended interpretation of f is
addition and the intended interpretation of g is multiplication. We write x + y
for f(x, y) and x · y for g(x, y).

c is a constant symbol representing zero and we use a symbol 0 to denote c.

LPA = L{¬,⇒,∪,∩}({=}, {′, +, ·}, {0}).

Specific Axioms

P1 (x = y ⇒ (x = z ⇒ y = z)),

P2 (x = y ⇒ x′ = y′),

P3 0 6= x′,

P4 (x′ = y′ ⇒ x = y),

P5 x + 0 = x,

P6 x + y′ = (x + y)′

P7 x · 0 = 0,

P8 x · y′ = (x · y) + x,

P9 (A(0)⇒ (∀x(A(x)⇒ A(x′)⇒ ∀xA(x)))),
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for all formulas A(x) of LPA and all x, y, z ∈ V AR.

The axiom P9 is called Principle of Mathematical Induction. It does not
fully corresponds to Peano Postulate p5 which refers intuitively to all possible
properties on natural numbers (uncountably many). The P7 axiom applies only
to properties defined by infinitely countably formulas of A(x) of LPA.
Axioms P3, P4 correspond to Peano Postulates p3, p4. The Postulates p1, p2
are taken care by presence of 0 and successor function. Axioms P1, P2 deal with
some needed properties of equality that were probably assumed as intuitively
obvious by Peano and Dedekind. Axioms P5 - P8 are the recursion equations
for addition and multiplication. They are not stated in the Peano Postulates
as Dedekind and Peano allowed the use of intuitive set theory within which the
existence of addition and multiplication and their property P5-P8 can be proved
(Mendelson, 1973).

Observe that while axioms P1 - P6 of theory of Peano Arithmetic PA are par-
ticular formulas of LPA, the axiom P9 as an axiom schema providing an infinite
number of axioms. This means that the set of axioms P1 - P9 does not provide
a finite axiomatization for Peano Arithmetic. But any formalization of Peano
Postulates must include formalization of the Principle of Induction p5 and hence
must contain some form of induction axiom P9. It was proved formally in 1952
by Czeslaw Ryll-Nardzewski and Rabin in 1961.

thm:RN Theorem 1 (Ryll-Nardzewski)

Peano Arithmetic is is not finitely axiomatizable; that is there is no theory K
having inly a finite number of proper axioms, whose theprems are the same as
those of PA.

By definition 4, given a theory T , we denote by T the set all provable formulas
in T . In particular, PA denotes the set of all formulas provable in Peano
Arithmetic PA.

Theory PA is one of many formalizations of Peano Arithmetic. They all repre-
sent what we call Peano Arithmetic if they have the same set of theorems. We
adopt hence the following definition.

d:PA Definition 6 Any theory T such that T = PA for PA defined by (11) is called
a Peano arithmetic.

Taking closure of axioms P1 - P8 of T14 we obtain new theory T15 . The axiom
P9 is a sentence (closed formula) already.

T15. Theory CPA

LT15 = LT14 = L{¬,⇒,∪,∩}({=}, {′, +, ·}, {0}).
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We denote the specific axioms of T15 by CPA to express that its specific axioms
are closures of specific axioms of PA.

Specific Axioms

C1 ∀x∀y∀z(x = y ⇒ (x = z ⇒ y = z)),

C2 ∀x∀y(x = y ⇒ x′ = y′),

C3 ∀x(0 6= x′),

C4 ∀x∀y(x′ = y′ ⇒ x = y),

C5 ∀x(x + 0 = x),

C6 ∀x∀y(x + y′ = (x + y)′)

C7 ∀x(x · 0 = 0),

C8 ∀x∀y(x · y′ = (x · y) + x),

C9 (A(0)⇒ (∀x(A(x)⇒ A(x′))⇒ ∀xA(x))),

for all formulas A(x) of LPA and all x, y, z ∈ V AR.

Here is a very simple exercise.

f:pa Fact 2

Theory CPA is a Peano Arithmetic.

Proof
By definition 6 we have to show that PA = CPA. Observe that LCPA = LPA

, so we have to show that for any formula B of LPA,

`PA B if and only if `CPA B. (12) CPA

Both theories are based on the same Hilbert proof system H, so to prove (12)
means to prove that

(1) all axioms C1− C8 of CPA are provable in PA and vice versa,

(2) all axioms P1− P8 of LPA are provable in CPA.

Here are detailed proofs for axioms P1, and C1. The proofs for other axioms
follow the same pattern.

(1) We prove that the axiom C1 ∀x∀y∀z(x = y ⇒ (y = z ⇒ x = z)) is
provable in PA as follows.

Observe that axioms of CPA are closures of respective axioms of PA. Consider
axiom P1: (x = y ⇒ (y = z ⇒ x = z)). As the proof system H has a
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generalization rule 10

(G)
A(x)

∀xA(x)

as its rule of inference, we obtain a proof B1, B2, B3, B4 of C1 as follows.

B1: (x = y ⇒ (x = z ⇒ y = z)), (axiom P1)

B2: ∀z(x = y ⇒ (x = z ⇒ y = z)), (GA)

B3: ∀y∀z(x = y ⇒ (x = z ⇒ y = z)), (GA)

B4: ∀x∀y∀z(x = y ⇒ (x = z ⇒ y = z)). (axiom C1)

This ends the proof of (1) for axioms P1, and C1.

(2) We prove that the axiom P1 (x = y ⇒ (y = z ⇒ x = z)) of LPA is
provable in CPA as follows.

By H completeness a predicate tautology

(∀xA(x)⇒ A(t)), (13) A4

where term t is free for x in A(x) is provable in H for any formula A(x) of L and
hence for any formula A(x) of its particular sublanguage LPA. So its particular
case for A(x) = (x = y ⇒ (x = z ⇒ y = z)) and t = x is provable in CPA, i.e.
we have that the formula

(∀x∀y∀z(x = y ⇒ (x = z ⇒ y = z))⇒ ∀y∀z(x = y ⇒ (x = z ⇒ y = z)))

is provable in CPA.

We construct a proof B1, B2, B3, B4, B5, B6, B7 of P1 in CPA in as follows.

B1 ∀x∀y∀z(x = y ⇒ (x = z ⇒ y = z)), (axiom C1)

B2 (∀x∀y∀z(x = y ⇒ (x = z ⇒ y = z)) ⇒ ∀y∀z(x = y ⇒ (x = z ⇒ y = z))),
by (15)

B3 ∀y∀z(x = y ⇒ (x = z ⇒ y = z)), MP on B1, B2

B4 (∀y∀z(x = y ⇒ (x = z ⇒ y = z))⇒ ∀z(x = y ⇒ (x = z ⇒ y = z))), by (15)

B5 ∀z(x = y ⇒ (x = z ⇒ y = z)), MP on B3, B4

B6 (∀z(x = y ⇒ (x = z ⇒ y = z))⇒ (x = y ⇒ (x = z ⇒ y = z))), by (15)

B7 (x = y ⇒ (x = z ⇒ y = z)) MP on B5, B6

This ends the proof of (2) for axioms P1, and C1.
The proofs for other axioms is similar and are left as homework assignment.

Here are some more basic facts about PA.

f:term Fact 3
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The following formulas are provable in PA for any terms t, s, r of LPA.

P1’ (t = r ⇒ (t = s⇒ r = s)),

P2’ (t = r ⇒ t′ = r′),

P3’ 0 6= t′,

P4’ (t′ = r′ ⇒ t = r),

P5’ t + 0 = t,

P6’ t + r′ = (t + r)′

P7’ t · 0 = 0,

P8’ t · r′ = (t · r) + t.

We named the properties as P1’- P8’ to stress the fact that they are generaliza-
tions of axioms P1 - P8 to the set of all terms of LPA.
Proof
We write the proof for P1’ as an example. Proofs of all other formulas follow
the same pattern.
Consider axiom P1: (x = y ⇒ (y = z ⇒ x = z)). By Fact 2 its closure
∀x∀y∀z(x = y ⇒ (x = z ⇒ y = z)) is provable in ThPA, i.e.

`PA∀x∀y∀z(x = y ⇒ (x = z ⇒ y = z)) (14) a

By H completeness a predicate tautology

(∀xA(x)⇒ A(t)), (15) A4

where term t is free for x in A(x) is provable in H for any formula A(x) of L and
hence for any formula A(x) of its particular sublanguage LPA. So its particular
case for A(x) = ∀y∀z(x = y ⇒ (x = z ⇒ y = z)) the formula (15) is provable
in ThPA. Observe that any term t is free for x in this particular A(x). We get
that for any term t,

`PA(∀x∀y∀z(x = y ⇒ (x = z ⇒ y = z))⇒ ∀y∀z(t = y ⇒ (t = z ⇒ y = z))),
(16) aa

Applying MP to (14) and (16) we get that for any t

`PA ∀y∀z(t = y ⇒ (t = z ⇒ y = z)). (17) b

Observe that any term r is free for for y in ∀z(t = y ⇒ (t = z ⇒ y = z)). so we
have that for all terms r

`PA(∀y∀z(t = y ⇒ (t = z ⇒ y = z))⇒ ∀z(t = r ⇒ (t = z ⇒ r = z))), (18) bb

as a particular case of 15). Applying MP to (17) and (18) we get that for any
terms t, r

`PA ∀z(t = r ⇒ (t = z ⇒ r = z)). (19) c
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Observe that any term s is free for for z in (t = r ⇒ (t = z ⇒ r = z)). so we
have that

`PA(∀z(t = y ⇒ (t = z ⇒ y = z))⇒ (t = r ⇒ (t = s⇒ r = s))), (20) cc

for all terms r, t, s as a particular case of 15). Applying MP to (19) and (20) we
get that for any t, r

`PA(t = r ⇒ (t = s⇒ r = s)).

This ends the proof of P ′.
The proofs of properties P2’ - P8’ follow the same pattern and are left as a
homework assignment.

p3.2 Fact 4

The following formulas are provable in PA for any terms t, s, r of LPA.

a1 t = t,

a2 (t = r ⇒ r = t),

a3 (t = r ⇒ (r = s⇒ t = s)),

a4 (r = t⇒ (t = s⇒ r = s)),

a5 (t = r ⇒ (t + s = r + s)),

a6 t = 0 + t.

Proof
We use in the proof Fact 2, Fact 3, axioms of PA (11, and completeness of the
system H. We denote it in the comments. The details of the steps are similar
to the proof of Fact 3 and is left to the reader as as homework assignment.

a1 We construct a proof of t = t in CPA in as follows.

B1 t + 0 = t, P5’ in Fact 3

B2 (t + 0 = t⇒ (t + 0 = t⇒ t = t)), P1’ in Fact 3 for t = t + 0, r = t, s = t

B3 (t + 0 = t⇒ t = t), MP on B1, B2

B4 t = t. MP on B1, B3

a2 We construct a proof of (t = r ⇒ r = t) as follows.

B1 (t = r ⇒ (t = t⇒ r = t)), P1’ in Fact 3 for r = t, s = t

B2 (t = t⇒ (t = r ⇒ r = t)), B1, tautology

B3 t = r ⇒ r = t. MP on B2, a1

a3 We construct a proof of (t = r ⇒ (r = s⇒ t = s)) as follows.

B1 (r = t⇒ (r = s⇒ t = s)), P1’ in Fact 3
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B2 t = r ⇒ r = t, a2

B3 (t = r ⇒ r = t). MP on B1, B2

a4 We construct a proof of (r = t⇒ (t = s⇒ r = s)) as follows.

B1 (r = t⇒ (t = s⇒ r = s)), a3 for t = r, r = t

B2 (t = s⇒ (r = t⇒ r = s)), B1, tautology

B3 s = t⇒ t = s, a2

B4 (s = t⇒ (r = t⇒ r = s)), B1, B2, tautology

B5 (r = t⇒ (t = s⇒ r = s)). B4, tautology

a5 We prove (t = r ⇒ (t+ s = r + s)) by the Principle of Mathematical Induc-
tion P9 (A(0)⇒ (∀x(A(x)⇒ A(x′)⇒ ∀xA(x)))).

The proof uses the Deduction Theorem which holds for the proof system H
(Remark 3) and so can be use in PA.

We first apply the Induction Rule to A(z) : (x = y ⇒ x + z = y + z) to prove

`PA ∀z(x = y ⇒ x + z = y + z).

(i) We prove that `PA A(0), i.e. `PA (x = y ⇒ x+ 0 = y + 0). Here the steps
in the proof.

B1 x + 0 = x, P5’

B2 y + 0 = y, P5’

B3 x = y, Hyp

B4 (x + 0 = x⇒ (x = y ⇒ x + 0 = y), a3 for t = x + 0, r = x, s = y

B5 (x = y ⇒ x + 0 = y), MP on B1, B4

B6 x + 0 = y, MP on B3, B5

B7 (x+0 = y ⇒ (y+0 = y ⇒ x+0 = y+0), a4 for r = x+0, t = y, s = y = 0

B8 (y + 0 = y ⇒ x + 0 = y + 0), MP on B6, B7

B9 x + 0 = y + 0), MP on B2, B8

B10 (x = y ⇒ x + 0 = y + 0). B1- B9, Deduction Theorem

Thus, `PA A(0).

(ii) We prove that `PA ∀z(A(z)⇒ A(z′), i.e.

∀z((x = y ⇒ x + z = y + z) ⇒ (x = y ⇒ x + z′ = y + z′)). Here the steps in
the proof.
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C1 (x = y ⇒ x + z = y + z), Hyp

C2 x = y, Hyp

C3 x + z′ = (x + z)′, P6’

C4 y + z′ = (y + z)′, P6’

C5 x + z = y + z), MP on B1, B2

C6 (x + z = y + z ⇒ (x + z)′ = (y + z)′) P2’ for t = x + z, r = y + z,

C7 (x + z)′ = (y + z)′, MP on B5, B6

C8 x + z′ = y + z′, a3 substitution and MP on B3, B7

C9 ((x = y ⇒ x+ z = y+ z)⇒ x+ z′ = y+ z′) B1- B8, Deduction Theorem

This proves ` A(z)⇒ A(z′).

C10 (((x = y ⇒ x + 0 = y + 0) ⇒ ((x = y ⇒ x + z = y + z) ⇒ x + z′ =
y + z′))⇒ ∀z(x = y ⇒ x + z = y + z)), P9 for A(z) : (x = y ⇒ x + z = y + z)

C11 ((x = y ⇒ x+z = y+z)⇒ x+z′ = y+z′))⇒ ∀z(x = y ⇒ x+z = y+z),
MP on C10 and B10

C12 ∀z(x = y ⇒ x + z = y + z), MP on C11 and C9

C13 ∀y∀z(x = y ⇒ x + z = y + z), (GA)

C14 ∀x∀y∀z(x = y ⇒ x + z = y + z), (GA)

Now we repeat here the proof of P1’ of Fact 3. We apply it step by step to
C14. We eliminate the quantifiers ∀x∀y∀z and replace variables x, y, z by terms
t, r, s using the tautology (15) (∀xA(x) ⇒ A(t)) and Modus Ponens. Finally,
we obtain the proof of a5, i.e.

`PA (t = r ⇒ (t + s = r + s)).

We go on proving other basic properties of addition and multiplications includ-
ing for example the following.

f:prop Fact 5

The following formulas are provable in PA for any terms t, s, r of LPA.

(i) t · (r + s) = (t · r) + (t · s), distributivity

(ii) (r + s) · t = (r · t) + (s · t), distributivity

(iii) (r · t) · s = r · (t · s), associativity of ·

(iv) (t + s = r + s⇒ t = r), canlcellation law for +

Proof
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(i) Prove `PA t · (x + z) = (x · y) + (x · z) by induction on z.
(ii) Prove from (i) and property t · r = r · t.
(iii) Prove `PA (x · y) · z = x · (y · z) by induction on z.
(iv) Prove (x + z = y + z ⇒ x = y) by induction on z

d:num Definition 7 (Numerals)

The terms 0, 0′, 0′′, 0′′′, . . . are called numerals and denoted by 0, 1, 2, 3, . . . .
More precisely,

(1) 0 is 0,

(2) for any natural number n, n + 1 is (n)′.

In general, if n is a natural number, n stands for the corresponding numeral
0” . . .′, i.e. by 0 followed by n strokes.

The numerals can be defined recursively as follows.
(1) 0 is a numeral,
(2) if u is a numeral, then u′ is also a numeral.

Here are some more of many properties, intuitively obvious, that provable in
ThPA. We give some proofs and an example, and leave the others as an exercise.

Reminder
We use numerals n, m as un abbreviation of the terms r, s they represent.

Fact 6 The following formulas are provable in PA for any terms t, s of LPA.

1. t + 1 = t′,

2. t · 1 = t,

3. t · 2 = t + t,

4. (t + s = 0⇒ (t = 0 ∩ s = 0)),

5. (t 6= 0⇒ (s · t = 0⇒ s = 0)),

Proof
1. Major steps in the proof of t + 1 = t′ in PA are as follows.
The comments at each step explain how to reconstruct the formal proof from
the properties already proven.

B1 t + 0′ = (t + 0)′, P6’

B2 t + 0 = t, P5’

B3 (t + 0)′ = t′, B2, P2’, MP

B4 t + 0′ = t′, B1, B3, Fact 4 a3, MP

B5 t + 1 = t′. B4, abbreviation
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2. Major steps in the proof of t · 1 = t in PA are as follows.

B1 t · 0′ = t · 0 + t, P8’

B2 t · 0 = 0, P7’

B3 (t · 0) + t = 0 + t, B1, Fact 4 a4, MP

B4 t · 0′ = 0 + t, B1, B3, Fact 4 a3, MP

B5 0 + t = t, Fact 4 a3, a6, MP

B6 t · 0′ = t, B4, B5, Fact 4 a3, MP

B7 t + 1 = t′, B6, abbreviation

3. Major steps in the proof of t · 2 = t + t in PA are as follows.

B1 t + 1′ = (t · 1′) + t, P8’

B2 t + 1 = t′, part 2.

B3 (t · 1) + t = t + t, B2, Fact 4 a5, MP

B4 t · 1′ = t + t, B1, B3, Fact 4 a3, MP

B5 t · 2 = t + t, B4, abbreviation

4. We prove (t + s = 0⇒ (t = 0 ∩ s = 0)) by the following steps.

(s1) We apply the Principle of Mathematical Induction to A(y) : (x+ y = 0⇒
(x = 0 ∩ y = 0)) and prove

∀y(x + y = 0⇒ (x = 0 ∩ y = 0)). (21) 4ind

(s2) We apply the generalization rule (G) to (??) and get

∀x∀y(x + y = 0⇒ (x = 0 ∩ y = 0)). (22) 4gen

(s3) We repeat here the proof of P1’ of Fact 3. We apply it step by step to (22).
We eliminate the quantifiers ∀x∀y and replace variables x, y by terms t, s using
the tautology (15) (∀xA(x)⇒ A(t)) and Modus Ponens. Finally, we obtain the
proof of 4., i.e.

`PA (t + s = 0⇒ (t = 0 ∩ s = 0)).

We are going to prove now, as an example, the following.

Fact 7

Let n,m be any natural numbers.

(1) If m 6= n, then m 6= n.

(2) m + n = m + n and m ·mn = m · n are provable in PA .

(3) Any model for PA is infinite.
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Proof
Assume m 6= n, then m < n or n < m. Assume m < n. Her are major steps in
the formal proof of n 6= m.

The proof uses the Deduction Theorem which holds for the proof system H
(Remark 3) and so can be use in PA.

B1 m = n, Hyp

B2 0′′′′′′ = 0′′′′′ B2 is abbreviation of B2 for m applications of ′ on left side
of equation and n applications of ′ on the right

B3 0 = t′, for t = n−m− 1

We apply P4’ m times a=in a row. Then 0 = 0′′′′ with n−m applications of ′

on right side. Let t = n−m− 1. Since n > m, n−m− 1 ≥ 0. Thus, 0 = t′.

B4 0 6= t′, P3’

B5 0 = t′ ∩ 0 6= t′, B3, B4, tautology (A⇒ (B ⇒ (A ∩B))), MP

B6 (m = n⇒ 0 = t′ ∩ 0 6= t′), B1, B5, Deduction Theorem

B7 m 6= n B6, tautology ((A⇒ (C ∩ ¬C))⇒ ¬A), MP

The proof of the case n < m is similar and left to the reader.

(2) We use mathematical induction for natural numbers in the metalanguage
with respect to natural number n. Base case. m + 0 is m. By P3’ m = m + 0,
hence m + 0 = m + 0 and the base step holds.

Inductive step. Assume that m + n = m + n is provable. By P2’ and P6’ we
get (m + n)′ = m+ (n)′. But m + (n + 1) is (m + n)′ and n + 1 is (n)′. Hence,
m + (n + 1) = m + n + 1 and by mathematical induction m + n = m + n is
provable in ThPA, for all n,m. The proof that m ·mn = m · n is provable in
PA for all n,m is similar.

(3) By (2), in a model for PA the objects corresponding to numerals must be
distinct. But the set if numerals infinitely countable, so universe of any model
for PS must contain infinitely countable subset and hence is infinite.

An order relation can be introduced by in PA as follows.

d:ord Definition 8 (Order)

For any terms t, s of LPA, we write

t < s for a formula ∃w(w 6= 0 ∩ w + t = s),
where we choose w to be the first variable not in t or s,

t ≤ s for a formula t < s ∪ t = s,

t > s for a formula s < t,
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t ≥ s for a formula s ≤ t,

t 6< s for a formula ¬(t < s), and so on...

Then we prove properties of order relation, for example the following.

Fact 8

For any terms t, r, s of LPA, the following formulas are provable in PA.

o1 t ≤ t,

o2 (t ≤ s⇒ (s ≤ r ⇒ t ≤ r)),

o3 ((t ≤ s ∩ s ≤ t)⇒ t = s),

o4 (t ≤ s⇒ (t + r ≤ s + r)),

o5 (r > 0⇒ (t > 0⇒ r · t > 0)).

There are several stronger forms of the the Principle of Mathematical Induction
P9 (A(0)⇒ (∀x(A(x)⇒ A(x′)⇒ ∀xA(x)))) that are provable in PA. Here is
one of them.

Fact 9 (Complete Induction)

The following formula, called Complete Induction Principle is provable in PA.

(∀x∀z(z < x⇒ A(z))⇒ A(x))⇒ ∀xA(x)).

In plain English, Complete Induction Principle says:
consider a property P such that , for any x, if P holds for for all natural num-
bers less then x, then P holds for x also. Then P holds for all natural numbers.

We proved and cited only some of basic properties corresponding to properties
of arithmetic of natural numbers. There are many more of them, developed in
many Classical Logic textbooks. We refer the reader especially to the Mendelson
(1997) book that we found the most rigorous and complete. The proofs included
here are more precise and complete versions of few of the Mendelson’s proofs.

We selected and proved some direct consequences Peano Arithmetic axioms not
only because they are needed as the starting point for a strict development of
the the formal theory of arithmetic of natural numbers but also because they
are good examples of how one develops any formal theory.

From this point on one can generally translate onto the language LPA and
prove in the PA the results from any text on elementary number theory. Some
standard results of number theory are proved with the aid of theory of complex
variables and it os often not known whether elementary proofs (or proofs in PA
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can be given for such theorems. The statements of some other results of number
theory cannot even be formulated in PA.

Hence a natural question about the strength and expressive powers of PA is
a very important one. We will address it shortly in next section with con-
nection of the formulation and proofs of Gödel Theorems. Gödel, in order to
prove them developed the whole huge scientific apparatus which grew into new
field of Mathematics of Recursion Theory, and into another one of Theory of
Computation with input from Church and Turing.

We know by Ryll Nardzewski Theorem 1 that PA is not finitely axiomatizable.
We want to bring reader’s attention a finitely axiomatizable proper sub-theory
of PA, RR, that has the same expressive power with respect to the Gödel The-
orems. Here it is, as formalized and discussed in detail in Mendelson’s book.

T16. Robinson System RR (23) def:RR

Language

The language of RR is the same as the language of PA, i.e.

LRR = L{¬,⇒,∪,∩}({=}, {′, +, ·}, {0}).

Specific Axioms

r1 x = x,

r2 (x = y ⇒ y = x),

r3 (x = y ⇒ (y = z ⇒ x = z)),

r4 (x = y ⇒ x′ = y′),

r5 (x = y ⇒ (x + z = y + z ⇒ z + x = z + y)),

r6 (x = y ⇒ (x · z = y · z ⇒ z · x = z · y)),

r7 (x′ = y′ ⇒ x = y),

r8 0 6= x′,

r9 (x 6= 0⇒ ∃y x = y′),

r10 x + 0 = x,

r11 x + y′ = (x + y)′,

r12 x · 0 = 0,

r13 x · y′ = x · y + x,

r14 (y = x · z + p ∩ ((p < x ∩ y < x · q + r) ∩ r < x)⇒ p = r).

for any x, y, z, p, q, r ∈ V AR,
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Axioms r1 - r13 are due to Robinson (1950), hence the name. Axiom r14 is due
to Mendelson (1973). It expresses the uniqueness of remainder. The relation <
is as defined by definition 8.

Gödel showed that there are closed formulas of the language LPA of PA that
are neither provable nor disprovable in PA, if PA is consistent. Hence there is
a formula that is true under standard interpretation but is not provable in PA.
We also see that the incompleteness of PA cannot be attributed to omission
of some essential axiom but has deeper underlying causes that apply to other
theories as well. Robinson proved in 1950, that the Gödel Theorems hold his
system RR. In particular RR has the same incompleteness property as PA.

3 Consistency, Completeness, Gödel Theorems

Formal theories because of their precise structure became themselves an ob-
ject of of mathematical research. The mathematical theory concerned with the
study of formalized mathematical theories is called metamathematics, the name
introduced by Hilbert. The most important open problems of metamathemat-
ics introduced by Hilbert as a part of the Hilbert Program were concerned with
notions of consistency, completeness, and decidability. The answers to Hilbert
problems were given by Gödel in1930 in a form of his two theorem that are some
of the most important and influential results on twentieth century mathematics.
We will discuss here these notions and Gödel’s results.

There are two definitions of consistency; semantical and syntactical.

The semantical one is based on the notion of a model and says, in plain English:
a theory is consistent if the set of its specific axioms has a model.

The syntactical one uses the notion of provability and says: a theory is con-
sistent if one can’t prove a contradiction in it.

We have used, in the proof two of the completeness theorem for propositional
logic (chapter ??) the syntactical definition of consistency. In chapter ??,
section about the reduction predicate logic to propositional logic we used the
semantical definition. Both were defined for propositional semantics. We
extend now these definitions to the predicate language, predicate semantics,
and formal theories. In order to distinguish these two definitions we call the
semantic one model-consistent, and syntactic one just consistent.

th-model Definition 9 (Model for a Theory)

Given a first order theory (definition 3)

T = (L, F , LA, SA, R).
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Any structure M = [M, I] that is a model for the set SA of the specific axioms
of T , i.e. such that M |= SA, is called a model for the theory T .

def:Tcons Definition 10 (Model - Consistent Theory)

A first order theory T = (L, F , LA, SA, R) is model - consistent if and
only if it has a model.

Consider the Peano Arithmetics PA and a structureM = [M, I] for its language

LPA = L{¬,⇒,∪,∩}({=}, {′, +, ·}, {0}),

such that the universe M is the set N of natural numbers (nonnegative integers)
and the interpretation I is defined as follows

(1) the constant symbol 0 is interpreted as a natural number 0,

(2) the one argument function symbol ′ (successor) is interpreted as successor
operation (addition of 1) on natural numbers; succ(n) = n + 1,

(3) the two argument function symbols +, · are interpreted as ordinary addition
and multiplication in N,

(4) the predicate symbol ”=” is interpreted as equality relation in N.

def: sM Definition 11 (Standard Model)

We denote M = [N, I] for I defined by (1) - (4) as

M = [N, =, succ, +, · ] (24) standM

and call it a standard model for PA. The interpretation I defined by (1) -
(4) is called a standard interpretation.

Any model for PA in which the predicate symbol ”=” is interpreted as equality
relation in N that is not isomorphic to the standard model is called a nonstan-
dard model for PA.

Observe that if we recognize that the set N of natural numbers with the standard
interpretation, i.e. the structure (24) to be a model for PA, then, of course, PA
is consistent (model-consistent). However, semantic methods, involving a fair
amount of set-theoretic reasoning, are regarded by many (and were regarded
as such by Gödel) as too precarious to serve as basis of consistency proofs.
Moreover, we have not proved formally that the axioms of PA are true under
standard interpretation; we only have taken it as intuitively obvious. Hence for
this and other reasons it is common practice to take the model-consistency of
PA as un explicit, unproved assumption and to adopt, after Gödel the following
syntactic definition of consistency.

27



def:Tcons Definition 12 (Consistent Theory)

Given a theory T = (L, F LA, SA, R).
Let T be the set (5) of all provable formulas in T .

The theory T is consistent if and only if there is no formula A of the
language LSA such that

`T A and `T ¬A. (25) con

We also write the condition (25) as

A ∈ T and ¬A ∈ T.

Directly from definition 12 we get the definition of inconsistency.
We list it separately for its importance to the proof of the Gödel Theorem 4.

def:Tincon Definition 13 (Inconsistent Theory)

The theory T = (L, F , LA, SA, R) is inconsistent if and only if there is
a formula A of the language LSA such that

`T A and `T ¬A.

Observe that the definitions 12, 13 have purely syntactic meaning. They express
the common intuition what proper provability should mean. They say that a
provability (formal theory) is a good one (consistent) only when one can’t prove
a formula and its negation; and is inconsistent when it is possible to prove a
contradiction in it.

Here is one of basic characterization of consistent theories.

thm:cons Theorem 2 (Consistent)

A theory T = (L, F , LA, SA, R) based on the proof system H = (L, F , LA, R)
defined by (1) is consistent if and only if there is a formula A of the language
LSA such that

A 6∈ T.

Proof
Let denote by CC the consistency condition in the definition 12 and by CT
consistency condition in the theorem 2.

1. We prove implication ” if CC, then CT”.
Assume not CT. This means that A ∈ T for all formulas A,

A ∈ T and ¬A ∈ T. (26) c1

In particular there is B such that and B ∈ T and ¬B ∈ T and not CC holds.
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2. We prove implication ” if CT, then CD”.
Assume not CD. This means that there is A of LSA, such that A ∈ T. By
definition 12 all tautologies are derivable in T. Hence

(((A ∩B)⇒ C)⇒ ((A⇒ (B ⇒ C)))), ((A ∩ ¬A)⇒ C) ∈ T, (27) t1

for all A,B,C ∈ F . In particular, when B = ¬A we get that

(((A ∩ ¬A)⇒ C)⇒ ((A⇒ (¬A⇒ C)))) ∈ T. (28) t2

Applying MP (27) and (28) we get

((A⇒ (¬A⇒ C))) ∈ T. (29) t3

Applying MP twice to (29) and (26) we get that C ∈ T, for all C. We proved
not CT. This ends the proof of 2. and of the theorem.

Theorem 2 often serves a following definition of consistency.

d:cons2 Definition 14

A theory T is consistent if and only if T 6= FSA, i.e. there is A of LSA, such
that A 6∈ T.

The next important characterization of a formal theory is the one of its complete-
ness understood as the ability of proving or disapproving any of its statements,
provided it is correctly formulated ‘ in its language.

def: comp Definition 15 (Complete Theory)

A theory T = (L, F , LA, SA, R) is complete if and only if for any closed
formula (sentence) A of the language LSA,

`T A or `T ¬A. (30) c2

We also write the condition (30) as

A ∈ T or ¬A ∈ T. (31) c3

Directly from definition 15 we get the definition of incompleteness.
We list it separately for its importance to the proof of the Gödel Incompleteness
Theorem 3, Theorem 6.

def:incomp Definition 16 (Incomplete Theory)

A theory T is incomplete if and only if there is a closed formula (sentence)
A of the language LSA, such that

6`T A and 6`T ¬A. (32) c4
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We also write the condition (32) as

A 6∈ T and ¬A 6∈ T.

Any sentence A with the property (32) is called an independent, or undecid-
able sentence of the theory T.

By definition 16, in order to prove that a given theory T is incomplete we have
to construct a sentence A of LSA and prove that either A nor ¬A has a proof
in it.

We are now almost ready to discuss Gödel Theorems. One of the most (if not
the most) comprehensive development with detailed and strict proofs of all what
is needed to carry proofs of Gödel Theorems can be found the Mendelson (1984)
book. The Gödel Theorems chapter is over 50 pages long, technically sound and
beautiful. We are confident that our readers, at this stage of our book are ready
and able to follow Mendelson’s or other authors work.

We present here a short, high level approach adopting style of Smorynski’s chap-
ter in the Handbook of Mathematical Logic, Studies in Logic and Foundations
of Mathematics, Volume 20 (1977). The chapter also is over 40 pages long (it
seems to be a norm when one wants to really prove Gödel’s results). It is writ-
ten in a very condensed and general way and concentrates on presentation of
modern results. It assumes that readers are already familiar with the traditional
approach so beautifully presented in Mendelson’s book, but I encourage readers
to reach for it, as it is, in its own style a very interesting work.

We also want to bring to readers attention that the introduction to the Smoryn-
ski’s chapter contains an excellent discussion of Hilbert Program and its rela-
tionship to Gödel’s results. It gives an explanation why and how devastating
Gödel Theorems were to the optimism reflected in Hilbert’s Consistency and
Conservation Programs.

3.1 Hilbert’s Conservation and Consistency Programs
sec:HP

Hilbert proposed his Conservation Program and Consistency Programs as re-
sponse to L.E.J. Brouwer and Herman Weyl (1920) believe and propagation
of their believes that existence (as early as 1908) of Zermello’s paradoxes free
axiomatization of set theory makes the need for investigations (and proof) into
consistency of mathematics superfluous. Hilbert decided to intervene. He wrote:

” .... they (Brouwer and Weil) would chop and mangle the science. If we would
follow such a reform as the one they suggest,we would run the risk of losing a
great part of our most valuable treasures!”

Hilbert stated his Conservation Program as follows: To justify the use o
abstract techniques he would show - by as simple and concrete a means as
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possible - that the use of abstract techniques was conservative - i.e. that any
concrete assertion one could derive by means of such abstract techniques would
be derivable without them.

We follow Smorynski’s clarification of some of Hilbertian jargon whose exact
meaning was never defined by Hilbert. We hence talk, in the domain of mathe-
matics, about finitistically meaningful statements and finitistic means of proof.

By the finitistically meaningful statements we mean for example identities of
the form

∀x(f(x) = g(x)),

where f, g are reasonably simple functions, for example primitive recursive. We
will call them real statements. Finitistic proofs correspond to computations or
combinatorial manipulations.

More complicated statements are called ideal ones and, as such, have no mean-
ing, but can be manipulated abstractly and the use of ideal statements and
abstract reasoning about them would not allow one to derive any new real
statements, i.e. none which were not already derivable To refute Weyl and
Brouwer, Hilbert required that this latter conservation property itself be finitis-
tically provable.

Hilbert’s Consistency Program asks to devise a finitistic means of proving
the consistency of various formal systems encoding abstract reasoning with ideal
statements.

The Consistency Program is a natural outgrowth and successor to the Conser-
vation Program. There are two reason reasons for this.
R1. Consistency is the assertion that some string of symbols is not provable.
Since derivations are simple combinatorial manipulations, this is a finitistically
meaningful and ought to have a finitistic proof.

R2. Proving a consistency of a formal system encoding the abstract concepts
already establishes the conservation result!

Reason R1 is straightforward. We will discuss R2 as it is particularly important.

Let’s denote by R a formal systems encoding real statements with their finitistic
proofs and by I the ideal system with its abstract reasoning.

Let A be a real statement ∀x(f(x) = g(x)).

Assume `I A. Then there is a derivation d of A in I. But, derivations are
concrete objects and, for some real formula P (x, y) encoding derivations in I,

`R P (d, pAq),

where pAq is some code for A.

Now, if A were false, one would have f(a) 6= g(a) for some a and hence

`R P (c, p¬Aq)
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for some c. In fact, one would have a stronger assertion

`R (f(x) 6= g(x)⇒ P (cx, p¬Aq)).

But, if R proves consistency of I, we have

`R ¬(P (d, pAq) ∩ P (c, p¬Aq)),

whence `R f(x) = g(x), with free variable x, i.e. `R ∀x(f(x) = g(x)).

To make the above argument rigorous, one has to define and explain the basics
of encoding, the assumptions on the the formula P (x, y) and to deliver the whole
argument is a formal rigorous way, i.e. to develop rigorously the whole appa-
ratus developed originally by Gödel and needed for the proofs of his theorems.
We bring it here because it clearly invited Hilbert to establish his Consistency
Program. Since Consistency Program was as broad as the general Conservation
Program and, since it was more tractable, Hilbert fixed on it asserting:

”if the arbitrary given axioms do not contradict each other through their conse-
quences, then they are true, then the objects defined through the axioms exist.
That, for me, is the criterion og truth and existence”.

The Consistency Program had as its goal the proof, by finitistic means of the
consistence of strong systems. The solution would completely justify the use of
abstract concepts and would repudiate Brouwer and Weyl.
Gödel proved that it couldn’t work.

3.2 Gödel Incompleteness Theorems
sec:GT

In 1920, while in his twenties, Kurt Gödel announced that Hilbert’s Consistency
Program could not be carried out. He had proved two theorems which gave a
blow to the HIlbert’s Program but on the other hand changed the face of math-
ematics establishing mathematical logic as its strong and rapidly developing
discipline.

Loosely stated these theorems are:

thm:G1 Theorem 3 (First Incompleteness Theorem)

Let T be a formal theory containing arithmetic. Then there is a sentence A in
the language of T which asserts its own unprovability and is such that:

(i) If T is consistent, then 6`T A.

(ii) If T is ω- consistent, then 6`T ¬A.

thm:G2 Theorem 4 (Second Incompleteness Theorem)

Let T be a consistent formal theory containing arithmetic. Then

6`T ConT ,
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where ConT is the sentence in the language of T asserting the consistency of T.

Observe that the Second Incompleteness Theorem destroys the Consistency Pro-
gram. It states that R can’t prove its own consistency, so obviously it can’t prove
consistency of I.

Smorynski argument that the First Incompleteness Theorem destroys the Con-
servation Program is as follows. The the sentence A is real and is easily seen
to be true. It asserts its own unprovability and is indeed unprovable. Thus the
Conservation Program cannot be carried out and, hence, the same must hold
for the Consistency Program.

M.Detlefsen in the Appendix of his book ”Hilbert Program: An Essay on Math-
ematical Instrumentalism”, Springer, 2013, argues that Smorynski’s argument
is ambiguous, as he doesn’t tell us whether it is unprovability in R or unprov-
ability in I. We recommend to the reader interested a philosophical discussion
of Hilbert Program to read this Appendix, if not the whole book.

We will now formulate the Incompleteness Theorems in a more precise formal
way and describe the main ideas behind the their proofs.

Arithmetization and Encoding (33) arithm

Observe that that in order to formalize the Incompleteness Theorems one has
first to ”translate” the sentences A and ConT into the language of T . For the
First Incompleteness Theorems 3 one needs to to ” translate ” a self-referring
sentence ”I am not provable in a theory T”; for the Second Theorem 4 the
self-referring sentence is ”I am consistent”.

The assumption in both theorems is that T contains arithmetic means usually it
contains the Peano Arithmetic PA (11), or even its sub-theory RR (23), called
Robinson System. In this case the final product of such ”translation” must be
a sentence A or sentence ConT of the language LPA of PA, usually written as

LPA = L({=}, {′, +, ·}, {0}).

This ”translation” process into the language of some formal system containing
arithmetic is called arithmetization and encoding, or encoding for short. We
define a notion of arithmetization as follows.

An arithmetization of a theory T is a one-to-one function g from the set of
symbols of the language of T, expressions (formulas) of T, and finite sequences
of expressions of T (proofs) into the set of positive integers. The function g
must satisfy the following conditions.
(1) g is effectively computable;
(2) there is an effective procedure that determines whether any given positive
integer n is in the range of g and, if n is in the range of g, the procedure finds
the object x such that g(x) = m.

33



Arithmetization, i.e. a method of associating numbers with symbols, expres-
sions, and sequences of expressions was originally devised by Gödel in 1931 in
order to arithmetize Peano Arithmetic PA and encode the arithmetization pro-
cess PA in order to formulate and to prove his Incompleteness Theorems 3,
4.

Functions and relations whose arguments and values are natural numbers are
called the number-theoretic functions and relations.

In order to arithmetize and encode in a formal system, say PA we have to

1. associate numbers with symbols symbols of the language of the system, asso-
ciate numbers with expressions, and sequences of expressions of the language of
the system (arithmetization, encoding of basic syntax, and encoding of syntax)

2. replace assertions about the system by number-theoretic statements, and ex-
press these number-theoretic statements within the formal system itself ( arith-
metization,, encoding).

We want the number - theoretic function to be representable PA and the pred-
icates to be expressible in PA, i.e. their characteristic functions to be repre-
sentable in PA.

The study of representability of functions in PA leads to the class of number-
theoretic functions that turn out to be of great importance in mathematical
logic, namely the x primitive recursive and recursive functions. Their definition
and study in a form of a Recursion Theory is an important field of mathe-
matics and of computer science which developed out of the Gödel proof of the
Incompleteness Theorems.

We prove that the class of recursive functions is identical with the class of func-
tions representable in PA, i.e. we prove: every recursive function is representable
in PA and every function representable in PA is recursive.

The representability of primitive recursive and recursive functions in S in gen-
eral and in PA in particular plays crucial role in the encoding process and
consequently in the proof of Gödel Theorems.

The details of arithmetization and encoding are as complicated and tedious as
fascinating but are out of scope of our book. We recommend again, Mendelson
book ”Introduction to Mathematical Logic”, 4th ed.Chapman&Hall (1997) as
the one with the most comprehensive and detailed presentation.

Theories T and S (34) d:TS

We assume at this moment that T is some fixed, but for a moment unspecified
consistent formal theory. We also assume that encoding is done in some fixed
theory S and that T contains S, i.e. the language of T is an extension of the
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language of S and
S ⊆ T,

i.e. for any formula A,
if `S A, then `T A. (35) as:TS

We also assume that T and S contain as constants only numerals (definition 7)

0, 1, 2, 3, . . . ,

and T contains infinitely countably many functional and predicate symbols.

Usually S is taken to be a formal theory of arithmetic, but sometimes S can be
a weak set theory. But in any case S always contains numerals.

We also assume that theories T and S as defined by (34) are such that the
following Principles of Encoding (36) hold.

Principles of Encoding for T and S (36) code

The mechanics, conditions and details of encoding for T and S for S being Peano
Arithmetic PA or its sub-theory Robinson Arithmetic RR (??) are beautifully
presented in in the smallest detail in Mendelson book.

The Smorynski’s approach we discuss here covers a larger class of formal theories
and uses a more general and modern approach. We can’t include all details but
we are convinced that at this stage the reader will be able to follow Smorynski’s
chapter in the Encyclopedia. The chapter is very well and clearly written and
is now classical. We wholeheartedly recommend it as a future reading.

We also follow Smorynski approach explaining what is to be encoded, where it
is to be encoded, and which are the most important encoding and provability
conditions needed for the proofs of the Incompleteness Theorems. We encourage
reader to read the chapter for follow details.

We first encode the syntax of T in S.
Since encoding takes place in S, it has a sufficient supply of constants (countably
infinite set of numerals

0, 1, 2, 3, . . . ,

and closed terms to be used as codes.

We assign to each formula A of the language of T a closed term,

pAq

called the code of A. If A(x) is a formula with a free variable x, then the code
pA(x)q is a closed term encoding the formula A(x), with x viewed as a syntactic
object and not as a parameter.

We do it recursively, first we assign codes (unique closed terms from S) to its
basic syntactic objects, i.e. elements of the alphabet of the language of T.
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Terms and formulas are finite sequences of these symbols and derivations (formal
proofs) are finite sequences of formulas. It means that S have to be able to encode
and manipulate finite sequences. We use for such encoding a class primitive
recursive functions and relations. We assume S admits a representation of these
functions and relations and finish encoding syntax.

S will also have to have certain function symbols and we have to be able to
encode them.

1. S must have we functional symbols, neg, impl, etc., corresponding to the
logical connectives and quantifiers, such that, such that, for all formulas A,B
of the language of T,

`S neg(pAq), `S impl(pA⇒ Bq), etc.

An operation of substitution of a variable x in a formula A(x) by a term t is of
a special importance in logic, so it must be represented in S, i.e.

2. S must have in a functional symbol sub that represents the substitution
operator, such that for any formula A(x) and term t with codes pA(x)q, ptq,
respectively,

`S sub(pA(x)q, ptq) = pA(t)q. (37) subs

Iteratation of sub allows one to define sub3, sub4, sub5, . . . , such that

`S subn(pA(x1, . . . , xn)q, pt1q, . . . , ptnq) = pA(t1, . . . , tn)q.

Finally, we have to encode derivations in S , i.e.

3. S has to have in a binary relation ProvT (x, y), such that for closed terms
t1, t2,

`S ProvT (t1, t2) if and only if t1 is a code of a derivation in T of the formula
with a code t2.

We read ProvT (x, y) as ”x proves y in T ” or ” x is a proof of y in T”.
It follows that for some closed term t,

`T A if and only if `S ProvT (t, pAq).

We define
PrT (y) ⇔ ∃xProvT (x, y) (38) d:Pr

and obtain a predicate asserting provability.

However, it is not always true

` T A if and only if `S PrT (pAq),

unless S is fairly sound (to be defined separately).
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The encoding can be carried out, however, in such a way that the following
conditions essential to the proofs of the Incompleteness Theorems hold for any
sentence A of T.

Derivability Conditions (Hilbert-Bernays, 1939) (39) DC

D1 `T A implies `S PrT (pAq).

D2 `S ((PrT (pAq)⇒ PrT (pPrT (pAq)q))).

D3 `S ((PrT (pAq) ∩ PrT (p(A⇒ B)q))⇒ PrT (pBq)).

Proof of the Incompleteness Theorems (40) proof

The following theorem 5 is essential to the proof of the Incompleteness Theo-
rems. It is called historically Diagonalization Lemma or Fixed Point Theorem
and both names are used interchangeably. The fist name as is historically older,
important for convenience of references and the second name is routinely used
in computer science community.

Mendelson (1977) believes that the central idea was first explicitly mentions by
Carnap who pointed out in 1934 that the result was implicit in the work of
Gödel (1931). Gödel was not aware of Carnap work until 1937.

The theorem 5 is called Diagonalization Lemma because the argument used in
its proof has some resemblance to the the diagonal arguments used by Cantor
in 1891. He first used it proving that there are infinite sets that can not be put
in one-to-one correspondence with the set on natural numbers. He then used
its generalization in the proof of his famous Cantor Theorem: for every set X,
its set of all subsets has a larger cardinality than X itself (see chapter ??).

In mathematics, a fixed-point theorem is a name of a theorem saying that a
function f under some conditions, will have a at least one fixed point, i.e. a
point x such that f(x) = x.

The theorem 5 says that for any formula A in the language of theory T with
one free variable there is a sentence B such that the formula (B ⇔ A(pBq)) is
provable in T .

Intuitively, B is a self-referential sentence saying that B has property A. The
sentence B can be viewed as a fixed point of the operation assigning to each
formula A the sentence A(pBq). Hence the name Fixed Point Theorem.

Theorem 5 proves the existence of self-referential sentences in certain formal
theories of natural numbers. These sentences then, in turn, are to be used to
prove Gödel’s Incompleteness Theorems. Here it is.

thm:diag Theorem 5 (Diagonalization Lemma)
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Let T, S be theories defined by (34).
Let A(x) be a formula in the language of T with x as the only free variable.
Then there is a sentence B such that

`S (B ⇔ A(pBq)).

NOTE: If A,B are not in the language of S, then by `S (B ⇔ A(pBq)) we
mean that the equivalence is proved in the theoryS′ in the language of T whose
only non-logical axioms are those of S.

Proof
Given A(x), let (C(x)⇔ A(sub(x, x)) be a diagonalization of A(x).

Let m = pC(x)q and B = C(m).

Then we claim
`S (B ⇔ A(pBq)).

For, in S, we see that

B ⇔ C(m)⇔ A(sub(m,m))

⇔ A(sub(pC(x)q, m) (since m = pC(x)q)

⇔ A(pC(m)q)⇔ A(pBq) by (37)) and B = C(m).

This proves (we leave details to the reader as a homework exercise)

`S (B ⇔ A(pBq)).

thm:Inc1 Theorem 6 (First Incompleteness Theorem)

Let T, S be theories defined by (34).
Then there is a sentence G in the language of T such that:

(i) 6`T G.

(ii) under an additional assumption, 6`T ¬A.

Proof
Applying Diagonalization Lemma 5 for a formula A(x) being ¬PrT (x), where
PrT (x) is defined by (38) we get that there is a sentence G such that

`S (G⇔ ¬PrT (pGq)).

By the assumed property (35) in the definition (34) of T, S we have that also

`T (G⇔ ¬PrT (pGq)). (41) prop
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( i) We conduct the proof by contradiction. Assume `T G.
Observe that `T G implies `T PrT (pGq) by D1 and (35). This and the above
(41) contradicts the consistency of T .

(ii) The additional assumption is assuming that the converse implication to D1
holds, i.e that `T PrT (pGq) implies `T G.

We conduct the proof by contradiction. Assume `T ¬G.
Hence `T ¬¬PrT (pBq)) so we have that `T PrT (pBq)). By the additional
assumption it implies that `T G what contradicts contradicting the consistency
of T .
This ends the proof.

Observe that the sentence G is equivalent in T to an assertion that G is unprov-
able in T. In other words it says ” I am not provable in T” and hence theorem
6 is a strict mathematical formalization of the intuitively stated theorem 3. We
call G the Gödel’s sentence.

thm:Inc2 Theorem 7 (Second Incompleteness Theorem)

Let T, S be theories defined by (34).
Let ConT be a sentence ¬PrT (pCq)), where is C is any contradictory statement.
Then

6`T ConT .

Proof
Let G the Gödel’s sentence of the First Incompleteness Theorem 6.
We prove that

`T (ConT ⇔ G) (42) G=Con

and use it to prove that 6`T ConT . We conduct the proof by contradiction.
Assume `T ConT . By (42) `T (ConT ⇔ G), so `T G what contradicts the
First Incompleteness Theorem 6.

To complete the proof we have to to prove now (42). We know by Logic 1 that

`T (ConT ⇔ G) if and only if `T (ConT ⇒ G) and `T (G⇒ ConT ).

1. We prove the implication `T (G⇒ ConT ).
By definition of ConT we have to prove now

`T (G⇒ ¬PrT (pCq)). (43) impl1

The formula C is a contradiction, so (C ⇒ G) is a predicate tautology. Hence
`T (C ⇒ G) and by D1

`S PrT (p(C ⇒ G)q).
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We write D3 for A = PrT (pCq) and B = `S PrT (p(C ⇒ G)q) and obtain
that

`S ((PrT (pCq) ∩ PrT (p(C ⇒ G)q))⇒ PrT (pGq)). (44) 2

We have by Logic 2

`S (PrT (pCq)⇒ (PrT (pCq) ∩ PrT (p(C ⇒ G)q))). (45) 3

We get from (45), (44), and Logic 3

`S (PrT (pCq)⇒ PrT (pGq)). (46) 4

We apply Logic 4 (contraposition) to the above (46) and get

`S (¬PrT (pGq)⇒ ¬PrT (pCq)). (47) 5

Observe that we by the property (41) in the proof of the First Incompleteness
Theorem 3 we have

`S (G⇒ ¬PrT (pGq)). (48) 6

We put (47) and (48) together and get

`S (G⇒ ¬PrT (pGq)) and `S (¬PrT (pGq)⇒ ¬PrT (pCq)).

Applying Logic 4 to the above we get `S (G ⇒ ¬PrT (pCq)). But by C is by
definition ConT and hence we have proved the `S (G⇒ ConT ) and hence also

`T (G⇒ ConT ).

2 . We prove now `T (ConT ⇒ G), i.e. the implication

`T (¬PrT (pCq)⇒ G). (49) impl2

Here is a concise proof. We leave it to the reader as an exercise to write a
detailed version.

By D2,
`S ((PrT (pGq)⇒ PrT (pPrT (pGq)q))).

This implies
`S (PrT (pGq)⇒ PrT (p¬Gq)),

by D1, D3, since `S (G⇒ ¬PrT (pGq)).
This yields

`S ((PrT (pGq)⇒ PrT (p(G ∩ ¬G)q)),

by D1, D3, and logic properties, which imples

`S ((PrT (pGq)⇒ PrT (pCq)),

by D1, D3, and logic properties. By Logic 4 (contraposition)

`S (¬PrT (pGq)⇒ ¬PrT (pCq)),
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which is `S (ConT ⇒ G) and hence also

`T (ConT ⇒ G).

This ends the proof.

We prove now, as an exercise and reminder, the steps in the proof of part 1.
that follow the predicate logic properties, hence the name Logic. The discovery
of needed properties and their proofs for the part 2. is left as a homework
exercise.

Remark 4

By definition 3 the theories T, S are based on a complete proof system for pred-
icate logic and by the monotonicity of classical consequence everything provable
there is provable in T, S. In particular all predicate tautologies are provable in
T and in S.

L1 Logic 1

Given a complete proof system H, for any formulas A,B of the language of H,

` (A⇔ B) if and only if ` (A⇒ B) and ` (B ⇒ A).

Proof
1. We prove implication if ` (A⇔ B), then ` (A⇒ B) and ` (B ⇒ A).
Directly from provability of a tautology ((A ⇔ B) ⇒ ((A ⇒ B) ∩ (B ⇒ A))),
assumption ` (A⇔ B), and MP we get ` ((A⇒ B)∩(B ⇒ A)). Consequently,
from ` ((A⇒ B) ∩ (B ⇒ A)), provability of tautologies ((A ∩B)⇒ A), ((A ∩
B)⇒ B) and MP applied twice we get ` (A⇒ B),` (B ⇒ A).

2. We prove implication if ` (A⇒ B) and ` (B ⇒ A), then ` (A⇔ B).
Directly from provability of tautology ((A ⇒ B) ⇒ ((B ⇒ A) ⇒ (A ⇔ B))),
assumption ` (A⇒ B),` (B ⇒ A), MP applied twice we get ` (A⇔ B).

L2 Logic 2 Given a complete proof system H, for any formulas A,B of the lan-
guage of H,

` (A⇒ (A ∪B)) and ` (A⇒ (B ∪A)).

Proof Directly from predicate tautologies (A⇒ (A ∪B)), (A⇒ (B ∪A)) and
completeness.

L3 Logic 3

Given a complete proof system H, for any formulas A,B of the language of H,

if ` (A⇒ B) and ` (B ⇒ C), then ` (A⇒ C).
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Proof From completeness and predicate respective tautology we get

` ((A⇒ B)⇒ ((B ⇒ C)⇒ (A⇒ C))). (50) l3

Assume (A⇒ B). Applying MP to (50) twice we get the proof of (A⇒ C).

L4 Logic 4

Given a complete proof system H, for any formulas A,B of the language of H,

` (A⇒ B) if and only if ` (¬B ⇒ ¬A).

Proof Directly from predicate tautology ((A⇒ B)⇔ (¬B ⇒ ¬A)), complete-
ness and MP.

Guniq Observation 2

We proved, a part of proof of the Second Incompleteness Theorem 7 the equiv-
alence (42) which says that the self-referential Gödel sentence G which asserts
its own unprovability is equivalent to the sentence asserting consistency. Hence,
the sentence G is unique up to provable equivalence (42) and we can say that G
is the sentence that asserts its own unprovability.

ω-consistency

We used, in the part (ii) of the First Incompleteness Theorem 6, an additional
assumption that `T PrT (pGq) implies `T G, instead of a habitual assumption
of ω-consistency.

The concept of ω-consistency was introduced by Gödel for purpose of stating
assumption needed for the proof of his First Incompleteness Theorem 3. The
modern researchers proved that the assuption of the ω-consistency can be re-
placed, as we did, by other more general better suited for new proofs conditions.

Informally, we say that T is ω- consistent if the following two conditions are
not satisfied for any formula A:

(i) `T ∃xA(x);

(ii) `T ¬A(n) for every natural number n.

Formally, ω-consistency can be represented (in varying degrees of generality) by
(modification of) the following formula

(PrT (p∃xA(x)q)⇒ ∃x ¬PrT (p¬A(x)q)). (51) omega

3.3 The Formalized Completeness Theorem

Proving completeness of a proof system with respect to a given semantics is the
first and most important goal while developing a logic and was the central focus
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of our study. So we now conclude our book with presentation the formalized
completeness theorem 8. We discuss its proof and show how to use it to give new
type of proofs, called model-theoretic proofs, of the incompleteness theorems for
Peano Arithmetic PA, i.e. for the case when S = PA.

Formalizing the proof of completeness theorem for classical predicate logic from
chapter ?? within PA we get the following.

Cthm Theorem 8 (Hilbert-Bernays Completeness Theorem)

Let U be a theory with a primitive recursive set of axioms.
There is a set TrM of formulas such that in PA+ConU one can prove that this
set TrM defines a model M of U :

`PA+ConU
∀x(PrU (x)⇒ TrM (x)) (52) Cmodel

Moreover the set TrM is of type ∆2.

The Hilbert-Bernays Completeness Theorem 8 asserts that modulo ConU , one
can prove in PA the existence of a model of U whose truth definition is of
type ∆2. Its proof is just an arithmetization of the Henkin proof presented
in chapter ??. Following the Henkin proof one adds to the language of U an
infinite primitive recursive set of new constants

c0, c1, c2 . . . ,

and adds the axiom (Henkin Axiom)

(∃xA(x)⇒ A(cA[x])) (53) Ha

for each formula A(x). One then enumerates sentences

A0, A1, A2, . . . (54) sent

in this augmented language and defines a complete theory by staring with Uand
adding at each step n a sentence An, or ¬An according to whether An is con-
sistent with what has been chosen before or not.

The construction is then described within PA. Assuming ConU one can also
prove that the construction never terminates. The resulting set of sentences
forms a complete theory which by axioms (53) forms a model of U. Inspection
shows that the truth definition TrM of type ∆2.

The Hilbert-Bernays Completeness Theorem 8 makes possible to conduct new
type of proofs of the incompleteness theorems, model- theoretic proofs. Gödel
chose as the self-referring sentence a syntactic statement ” I do not have a
proof”. He did not want (and saw difficulties with) to use the sentence involving
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the notion of truth, i.e. the sentence ”I am not true”. The new proofs use exactly
this and this is why they are called model-theoretic proofs.

Dana Scott was the first to observe that one can give a model- theoretic
proof of the First Incompleteness Theorem. Here is the theorem and his short
proof.

PA-scott Theorem 9 (First Incompleteness Theorem)

Let PA be a Peano Arithmetic.
There is a sentence G of PA, such that

(i) 6`PA G;

(ii) 6`PA ¬G.

Proof
Assume PA is complete. Then, since PA is true, `PA ConPA and we can
apply the completeness theorem 8 to obtain a formula TrM which gives a truth
definition for the model of PA. Observe that once PA is complete we have that
PrPA is TrM . We choose G by

`PA (G⇔ ¬TrM (pGq)). (55) modG

We claim 6`PA G, 6`PA ¬G. For if `PA G, then `PA TrM (pGq)). By (??)
`PA ¬G. Contradiction. Similarly, `PA ¬G implies `PA G.

Observe that the sentence G as defined by (55) asserts ”I am not true”.

Scott ’s proof differs from the proof of the First Incompleteness Theorem 6 not
only by the choice of the model- theoretic method, but also by be a choice of
the model- theoretic sentence G.

Let’s compare these two independent sentences G:
the classic syntactic one of theorem 6 representing statement ” I do not have
a proof” and
the model- theoretic one of theorem 9 representing statement ”I am not true”.

G-comp Property 1

The sentence GS of the First Incompleteness Theorem 6 asserting its own prov-
ability is
(i) unique up to provable equivalence (Observation 2);
(ii) the sentence is Π1 and hence true.

The sentence G of the First Incompleteness Theorem 6 asserting its own falsity
in the model constructed is
(iii) not unique - for the following implication holds

if (G⇔ ¬TrM (pGq)), then (¬G⇔ ¬TrM (p¬Gq)).
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(iv) the sentence is ∆2 (theorem 8, and, by (iii) there is no obvious way od
deciding its truth or falsity.

Georg Kreisler was the first to present a model- theoretic proof of the
following.

PA-Kreisel Theorem 10 (Second Incompleteness Theorem)

Let PA be a Peano Arithmetic. 6`PA ConPA.

The proof is uses, as did the proof of Hilbert-Bernays Completeness Theorem
8 the arithmetization of Henkin proof of completeness theorem presented in
chapter ??. The proof is carried by contradiction. We assume `PA ConPA.
Then we show, for any presentation of the Henkin proof construction (as given
by encoding, the enumeration of sentences (54) . . . etc.) there is a number m
such that, for any model N of PA, the sequence of models determined by the
given presentations must stop after fewer then m steps with a model in which
ConPA is false.

4 Homework Problems

1. Follow the proof of Fact 2 for the case of axioms P1 and C1 to prove the
case of axioms P2 and C2.

2. Prove the case of axioms P2, C2 and axioms P23, C3 of the Fact 2.

3. Prove Fact 2 in case of axioms P5, C5 and axioms P8, C8 of the Fact 2.

4. Complete the proof of Fact 2 or all cases.

5. We proved that the property P1′ of Fact 3 is a generalization of axiom P1
of PA (11, i.e. it is provable in PA.

(i) Write detailed proofs of properties P2′ − P5′ in PA.

(i) Write detailed proofs of properties P6′ − P8′ in PA.

6. Follow the definition 8 and prove the following formulas pre provable in
PA for ant terms t, r, s.

(i) t 6< t.

(ii) (t < s⇒ (s < r ⇒ t < r)).

(iii) (0 < 1), (1 < 2), (2 < 3), (3 < 4), . . . .

(iv) 0 ≤ t.

(v) t ≤ t.

(vi) (t ≤ r ∪ r ≤ t).

(vii) (t ≤ r ⇒ (r ≤ t⇒ t = r)).
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7. Follow the definition 8 and prove the following formulas pre provable in
PA for ant terms t, r, s.

(i) (t ≤ s⇒ (s ≤ r ⇒ t ≤ r)),

(ii) (t ≤ s⇒ (t + r ≤ s + r)),

(ii) (r > 0⇒ (t > 0⇒ r · t > 0)).

8. Let RR be the Robinson System (23). Show that RR is a proper sub-
theory of PA by finding a model of RR that is not a model for PA.

9. Let RR be the Robinson System (23). Let n,m be any natural numbers.
Prove the following holds in RR.

(i) If m 6= n, then m 6= n.

(ii) m + n = m + n and m ·mn = m · n are provable in RR .

(ii) Any model for RR is infinite.

10. Here us the reasoning we used explaining Hilbert Consistency Program.

” Let A be a real statement ∀x(f(x) = g(x)). Assume `I A. Then there
is a derivation d of A in I. But, derivations are concrete objects and, for
some real formula P (x, y) encoding derivations in I, `R P (d, pAq), where
pAq is some code for A.
Now, if A were false, one would have f(a) 6= g(a) for some a and hence
`R P (c, p¬Aq) for some c. In fact, one would have a stronger assertion
`R (f(x) 6= g(x) ⇒ P (cx, p¬Aq)). But, if R proves consistency of I, we
have

`R ¬(P (d, pAq) ∩ P (c, p¬Aq)),

whence `R f(x) = g(x), with free variable x, i.e. `R ∀x(f(x) = g(x)).”

(i) Write down a detailed proof of correctness of the last part of reasoning:

”But, if R proves consistency of I, we have

`R ¬(P (d, pAq) ∩ P (c, p¬Aq)),

whence `R f(x) = g(x), with free variable x, i.e. `R ∀x(f(x) = g(x)).”

(ii) List, prove and use proper Logic Properties similar to properties Logic
1 - Logic 4 in the proof of Theorem 7.
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