
CHAPTER 10

Predicate Automated Proof Systems
Completeness of Classical Predicate Logicch10

We define and discuss here a Rasiowa and Sikorski Gentzen style proof system
QRS for classical predicate logic. The propositional version of it, the RS proof
system, was studied in detail in chapter ??. These both proof systems admit a
constructive proof of completeness theorem. We adopt Rasiowa, Sikorski (1961)
technique of construction a counter model determined by a decomposition tree
to prove QRS completeness theorem 4. The proof, presented in section 3,
is a generalization of the completeness proofs of RS and other Gentzen style
propositional systems presented in details in chapter ??. We refer the reader to
this chapter as it provides a good introduction to the subject.

The other Gentzen type predicate proof system, including the original Gentzen
proof systems LK, LI for classical and intuitionistic predicate logics are ob-
tained from their propositional versions discussed in detail in chapter ??. It
can be done in a similar way as a generalization of the propositional RS the
predicate QRS system presented here. We leave these generalizations as an
exercises for the reader. That includes also the predicate language version of
Gentzen proof of cut elimination theorem, Hauptzatz (1935). The Hauptzatz
proof for the predicate classical LK and intuitionistic LI systems is easily ob-
tained from the propositional proof included in chapter??.

There are of course other types of automated proof systems based on different
methods of deduction.
There is a Natural Deduction mentioned by Gentzen in his Hauptzatz paper in
1935 and later fully developed by Dag Prawitz (1965). It is now called Prawitz,
or Gentzen-Prawitz Natural Deduction.
There is a Semantic Tableaux deduction method invented by Evert Beth (1955).
It was consequently simplified and further developed by Raymond Smullyan
(1968). It is now often called Smullyan Semantic Tableaux.
Finally, there is a Resolution. The resolution method can be traced back to Davis
and Putnam (1960). Their work is still known as Davis-Putnam method.The
difficulties of their method were eliminated by John Alan Robinson (1965) and
developed into what we call now Robinson Resolution, or just a Resolution.
There are many excellent textbooks covering each of these methods. We recom-
mend Melvin Fitting book First-order logic and automated theorem proving(2nd
ed.). Springer-Verlag(1996) as the one that not only covers all of them but also
discusses their relationships.

The Resolution proof system for propositional or predicate logic operates on a

1

set of clauses as a basic expressions and uses a resolution rule as the only rule
of inference. In section 4 we define and prove correctness of effective procedures
of converting any formula A into a corresponding set of clauses in both proposi-
tional and predicate cases. The correctness of propositional case is established
by theorem 5, of predicate case by theorem 6. In the first step of the predicate
procedure we define a process of elimination of quantifiers from the original
language. It is called Skolemization of the language and is presented in section
4.1. The correctness of the Skolemization is established by Skolem theorem
11. In the second step of the procedure we show how convert a quantifiers free
formula into logically equivalent set of clauses. It is presented with a proof of
correctness (theorem 13) in section 4.2.

1 QRS Proof System

We define components and semantics of the proof system QRS as follows.
Language L

We adopt a predicate (first order) language

L = L{∩,∪,⇒,¬}(P,F,C) (1) Q-lang

for P, F, C countably infinite sets of predicate, functional, and constant symbols
respectively.
Let F denote a set of formulas of L. The rules of inference of our system QRS
operate on finite sequences of formulas, i.e. elements of F∗ so we define the set
of expressions of of QRS as follows. Expressions E

We adopt as the set of expressions E of RS the set F∗, i.e.

E = F∗.

We will denote the expressions of QRS, i.e. the finite sequences of formulas by

Γ,∆,Σ,with indices if necessary.

In order to define the axioms LA and the set of rules of inference of QRS we
need to bring back some notions and to introduce some definitions.

An atomic formula of the predicate language L defined by (1) is any element
of A∗ (finite strings over the alphabet of L) of the form

R(t1, t2, ..., tn)

where R ∈ P,#R = n and t1, t2, ..., tn ∈ T.

The set of all atomic formulas is denoted by AF and is defined as

AF = {R(t1, t2, ..., tn) ∈ A∗ : R ∈ P, t1, t2, ..., tn ∈ T, n ≥ 1}. (2) atomic

2

We use symbols R,Q, P, ... with indices if necessary to denote the atomic for-
mulas.

Literals
We form a special subset LT ⊆ F of formulas, called a set of all literals, which
is defined as follows.

LT = {R : R ∈ AF} ∪ {¬R : R ∈ AF}. (3) p-literal

The atomic formulas (2) are called positive literals and the elements of the
second set of the above union (3), i.e. the negations of the atomic formulas are
called negative literals.

Indecomposable, Decomposable Formulas
A formula A ∈ F is indecomposable if and only if it is atomic or a negation of
an atomic formula, i.e. an literal. Otherwise A is decomposable.

Now we form finite sequences out of formulas (and, as a special case, out of
literals). We need to distinguish the sequences formed out of literals from the
sequences formed out of other formulas, so we adopt the following definition
and notaions.

Indecomposable, Decomposable Sequences
A sequence Γ is indecomposable if and only if is formed out of indecomposable
formulas only. Otherwise is decomposable.
We denote indecomposable sequences by by

Γ
′
, ∆

′
, Σ

′
, . . . with indices if necessary. (4) p-indec

By definition, Γ
′
, ∆

′
, Σ

′
. . . are finite sequences (empty included) formed out

of literals, i.e Γ
′
, ∆

′
, Σ

′
Γ
′
, ∆

′
, Σ

′ ∈ LT ∗.

We denote by
Γ, ∆, Σ, . . . with indices if necessary, (5) p-seq

the elements of F∗, i.e. we denote Γ, ∆, Σ finite sequences (empty included)
formed out of elements of F .

Logical Axioms LA

As the logical axiom of QRS we adopt any sequence of formulas which contains
a and its negation, i.e any sequence of the form

Γ1, A, Γ2, ¬A′ Γ3 or Γ1, ¬A, Γ2, A, Γ3 (6) qaxiom

for any literal A ∈ LT and any sequences Γ1,Γ2,Γ3 ∈ F∗ of formulas.

Rules of inference R (7) qrules

3

Group 1: Propositional Rules

Disjunction rules

(∪)
Γ
′
, A,B,∆

Γ′ , (A ∪B),∆
, (¬ ∪)

Γ
′
,¬A,∆ : Γ

′
,¬B,∆

Γ′ ,¬(A ∪B),∆

Conjunction rules

(∩)
Γ
′
, A,∆ ; Γ

′
, B,∆

Γ′ , (A ∩B),∆
, (¬ ∩)

Γ
′
,¬A,¬B,∆

Γ′ ,¬(A ∩B),∆

Implication rules

(⇒)
Γ
′
,¬A,B,∆

Γ′ , (A⇒ B),∆
, (¬ ⇒)

Γ
′
, A,∆ : Γ

′
,¬B,∆

Γ′ ,¬(A⇒ B),∆

Negation rule

(¬ ¬)
Γ
′
, A,∆

Γ′ ,¬¬A,∆

where Γ
′ ∈ LT ∗,∆ ∈ F∗, A,B ∈ F .

Group 2: Quantifiers Rules

(∃)
Γ
′
, A(t),∆,∃xA(x)

Γ′ ,∃xA(x),∆

where t is an arbitrary term.

(∀)
Γ
′
, A(y),∆

Γ′ ,∀xA(x),∆

where y is a free individual variable which
does not appear in any formula in the con-
clusion, i.e. in the sequence Γ

′
,∀xA(x),∆.

(¬∀)
Γ
′
,∃x¬A(x),∆

Γ′ ,¬∀xA(x),∆

4

(¬∃)
Γ
′
,∀x¬A(x),∆

Γ′ ,¬∃xA(x),∆

Γ
′ ∈ LT ∗,∆ ∈ F∗, A,B ∈ F .

Note that A(t), A(y) denotes a formula obtained from A(x) by writing t, y,
respectively, in place of all occurrences of x in A. The variable y in (∀) is called
the eigenvariable. The condition: where y is a free individual variable which
does not appear in any formula in the conclusion is called the eigenvariable
condition.

All occurrences of y in A(y) of the rule (∀) are fully indicated.

The Proof System QRS

Formally we define the proof system QRS as follows.

QRS = (L{¬,⇒,∪,∩}, E , LA, R), (8) def:qrs

where E = {Γ : Γ ∈ F∗}, LA contains logical axioms of the system defined by
(6), R is the set of rules of inference:

R = {(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬), (¬∀), (¬∃), (∀), (∃))}

defined by (7).

By a formal proof of a sequence Γ in the proof system QRS we understand
any sequence

Γ1, Γ2, Γn (9) fp

of sequences of formulas (elements of F∗), such that

1. Γ1 ∈ LA, Γn = Γ, and

2. for all i (1 ≤ i ≤ n) Γi ∈ LA, or Γi is a conclusion of one of the inference
rules of QRS with all its premisses placed in the sequence Γ1, Γ2, Γi−1.

We write, as usual,
`QRS Γ

to denote that Γ has a formal proof in QRS.

As the proofs in QRS are sequences (definition of the formal proof) of sequences
of formulas (definition of expressions E) we will not use ” ; ” to separate the
steps of the proof, and write the formal proof as Γ1; Γ2; Γn.

We write, however, the formal proofs in QRS as we did the propositional case
(chapter ??), in a form of trees rather then in a form of sequences, ie. in a form
of a tree, where leafs of the tree are axioms, nodes are sequences such that

5

each sequence on the tree follows from the ones immediately preceding it by one
of the rules. The root is a theorem. We picture, and write our tree-proofs with
the node on the top, and leafs on the very bottom, instead of more common
way, where the leafs are on the top and root is on the bottom of the tree. We
adopt hence the following definition.

p-tree Definition 1 (Proof Tree)

By a proof tree, or QRS- tree proof of Γ we understand a tree TΓ of sequences
satisfying the following conditions:

1. The topmost sequence, i.e the root of TΓ is Γ,

2. all leafs are axioms,

3. the nodes are sequences such that each sequence on the tree follows from the
ones immediately preceding it by one of the rules of inference (7).

We picture, and write our proof trees with the root on the top, and leafs on the
very bottom, instead of more common way, where the leafs are on the top and
root is on the bottom of the tree.

In particular cases, as in the propositional case, we will write our proof- trees
indicating additionally the name of the inference rule used at each step of the
proof. For example, if in a proof of a formula A from axioms (6) we use subse-
quently the rules

(∩), (∪), (∀), (∩), (¬¬), (∀), (⇒)

we represent the proof as the following tree denoted by TA.

TA

Formula A

| (⇒)

conclusion of (∀)

| (∀)

conclusion of (¬¬)

| (¬¬)

conclusion of (∩)∧
(∩)

6

conclusion of (∀)

| (∀)

axiom

conclusion of (∪)

| (∪)

conclusion of (∩)∧
(∩)

axiom axiom

Remark that the derivation trees don’t represent a different definition of a
formal proof. This remains the same in the Gentzen - style systems. Trees
represent a certain visualization for those proofs and any formal proof in any
system can be represented in a tree form.

2 QRS Decomposition Trees

The main advantage of the Gentzen proof systems lies not in a way we generate
proofs in them, but in the way we can search for proofs in them. That such
proof searches happens to be deterministic and automatic. We conduct such
search by treating inference rules as decomposition rules (see chapter ??) and
building decomposition trees.A general principle of building decomposition trees
is the following.

Decomposition Tree TΓ

For each Γ ∈ F∗, a decomposition tree TΓ is a tree build as follows.
Step 1. The sequence Γ is the root of TΓ and for any node ∆ of the tree we
follow the steps bellow.
Step 2. If ∆ is indecomposable or an axiom, then ∆ becomes a leaf of the
tree.
Step 3. If ∆ is decomposable, then we traverse ∆ from left to right to identify
the first decomposable formula B and identify inference rule treated as de-
composition rule determined uniquely by B. We put its left and right premisses
as the left and right leaves, respectively.
Step 4. We repeat steps 2 and 3 until we obtain only leaves or infinite branch.

In particular case when when Γ has only one element, namely a a formula A ∈ F ,
we define we call it a decomposition tree of A and denote by TA.

Here is a detailed definition of the decomposition tree for QRS.

QRS Decomposition Tree Definition (10) d:dtree

Given a formula A ∈ F , we define its decomposition tree TA as follows.

7

Observe that the inference rules of QRS are divided in two groups: propo-
sitional connectives rules and quantifiers rules. The propositional connectives
rules are: (∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), and (¬¬). The quantifiers rules are:
(∀), (∃), (¬∀) and (¬∃).

We define the decomposition tree in the case of the propositional rules and the
rules (¬∀), (¬∃) in the same way as for the propositional language (chapter ??).

The case of the rules (∀) and (∃) is more complicated, as the rules contain the
specific conditions under which they are applicable.

To define the way of decomposing the sequences of the form Γ
′
,∀xA(x),∆ or

Γ
′
,∃xA(x),∆, i.e. to deal with the rules (∀) and (∃) in a way which would

preserve the property of the uniqueness of the decomposition tree, we assume
that all terms form a one-to one sequence

t1, t2,, tn, (11) terms

Observe, that by the definition, all free variables are terms, hence all free vari-
ables appear in the sequence 11. Let Γ be a sequence on the tree in which the
first indecomposable formula has the quantifier ∀ as a main connective, i.e. Γ
is of the form Γ

′
,∀xA(x),∆. We write a sequence Γ

′
, A(x),∆ below it on the

tree, as its child, where the variable x has to fulfill the following condition.

call Condition 1 (∀)

x is the first free variable in the sequence 11 such that x does not appear in any
formula in Γ

′
,∀xA(x),∆.

Observe, that the condition 1 corresponds to the restriction put on the applica-
tion of the rule (∀).

If the main connective of Γ, i.e. the main connective of the first formula in Γ
which is not an literal, is (∃). In this case Γ is of the form Γ

′
,∃xA(x),∆, we

write a sequence Γ
′
, A(t),∆,∃xA(x) as its child, where the term t has to fulfill

the following condition.

cexists Condition 2 (∃)

t is the first term in the sequence 11 such that the formula A(t) does not appear
in any sequence which is placed above Γ

′
, A(t),∆,∃xA(x) on the tree.

The fact that the sequence 11 is one- to - one and the fact that, by the condi-
tions 1 and 2, we always chose the first appropriate term (variable) from this
sequence, guarantee that the decomposition process is also unique in the case

8

of the quantifiers rules (∀) and (∃).

From all above, and we conclude the following.

thm:tree Theorem 1

For any formula A ∈ F ,

(i) the decomposition tree TA is unique.

(ii) Moreover, the following conditions hold.

1. If TA is finite and all its leaves are axioms, then

`QRS A

and TA is a tree-proof of A in QRS.

2. If TA is finite and contains a non-axiom leaf, or TA is infinite, then

6 `QRS A.

2.1 Examples of Decomposition Trees

In all the examples below, the formulas A(x), B(x) represent any formula. But
there is no indication about their particular components, so they are treated as
indecomposable formulas.

Example 1

The decomposition tree TA of the de Morgan Law

(¬∀xA(x)⇒ ∃x¬A(x))

is the following.

TA

(¬∀xA(x)⇒ ∃x¬A(x))

| (⇒)

¬¬∀xA(x),∃x¬A(x)

| (¬¬)

∀xA(x),∃x¬A(x)

| (∀)

9

A(x1),∃x¬A(x)

where x1 is a first free variable in the sequence 11 such that x1 does not appear in

∀xA(x), ∃x¬A(x)

| (∃)

A(x1),¬A(x1),∃x¬A(x)

where x1 is the first term (variables are terms) in the sequence 11 such that ¬A(x1) does not

appear on a tree above A(x1),¬A(x1), ∃x¬A(x)

Axiom

The above tree TA ended with an axiom, so it represents a proof of

(¬∀xA(x)⇒ ∃x¬A(x))

in QRS, i.e. we proved that

`QRS (¬∀xA(x)⇒ ∃x¬A(x)).

Example 2

The decomposition tree TA of

(∀xA(x)⇒ ∃xA(x))

is the following.

TA

(∀xA(x)⇒ ∃xA(x))

| (⇒)

¬∀xA(x),∃xA(x)

| (¬∀)
¬∀xA(x),∃xA(x)

∃x¬A(x),∃xA(x)

| (∃)
¬A(t1),∃xA(x),∃x¬A(x)

where t1 is the first term in the sequence 11, such that ¬A(t1) does not appear on the tree

above ¬A(t1), ∃xA(x), ∃x¬A(x)

| (∃)

¬A(t1), A(t1),∃x¬A(x),∃xA(x)

where t1 is the first term in the sequence 11, such that A(t1) does not appear on the tree above

¬A(t1), A(t1), ∃x¬A(x), ∃xA(x)

Axiom

10

The above tree also ended with the axiom, hence we proved that

`QRS (∀xA(x)⇒ ∃xA(x)).

Example 3

The decomposition tree TA of

(∃xA(x)⇒ ∀xA(x))

is the following.

TA

(∃xA(x)⇒ ∀xA(x))

| (⇒)

¬∃xA(x),∀xA(x)

| (¬∃)

∀x¬A(x),∀xA(x)

| (∀)

¬A(x1),∀xA(x)

where x1 is a first free variable in 11 such that x1 does not appear in ∀x¬A(x), ∀xA(x)

| (∀)

¬A(x1), A(x2)

where x2 is a first free variable in 11 such that x2 does not appear in ¬A(x1), ∀xA(x), the

sequence 11 is one-to- one, hence x1 6= x2

Non - axiom

The decomposition tree, for any formula A is unique, so we conclude from the
fact that the above tree has a non-axiom branch that

6 `QRS (∃xA(x)⇒ ∀xA(x)).

Remark when constructing the following tree TA for the formula ∃xA(x) in
example 4 below we adopt on the right branch of the a tree in the the short-
hand notation instead of the repeating a similar reasoning performed on the left
branch.

e-tree Example 4

The decomposition tree TA of the formula ∃xA(x) is the following.

11

TA

∃xA(x)

| (∃)

A(t1),∃xA(x)

where t1 is the first term in the sequence 11, such that A(t1) does not appear on the tree above

A(t1), ∃xA(x)

| (∃)

A(t1), A(t2),∃xA(x)

where t2 is the first term in the sequence 11, such that A(t2) does not appear on the tree above

A(t1), A(t2), ∃xA(x), i.e. t2 6= t1

| (∃)

A(t1), A(t2), A(t3),∃xA(x)

where t3 is the first term in the sequence 11, such that A(t3) does not appear on the tree above

A(t1), A(t2), A(t3), ∃xA(x), i.e. t3 6= t2 6= t1

| (∃)

A(t1), A(t2), A(t3), A(t4),∃xA(x)

| (∃)

.....

| (∃)

.....

infinite branch

Obviously, the above decomposition tree is infinite, what proves that

6 ` QRS ∃xA(x).

We will find now the proof of the distributivity law

(∃x(A(x) ∩B(x))⇒ (∃xA(x) ∩ ∃xB(x)))

and show that we can’t prove in QRS the inverse implication

((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩B(x))).

Remark when constructing the following trees TA in examples 5, 6 adopt, as
we did in the previous example 4, the shorthand notation when the reasoning
is similar to the one presented in the example 4.

12

e-tree1 Example 5

The decomposition tree A of the first formula

(∃x(A(x) ∩B(x))⇒ (∃xA(x) ∩ ∃xB(x)))

is the following.

TA

(∃x(A(x) ∩B(x))⇒ (∃xA(x) ∩ ∃xB(x)))

| (⇒)

¬∃x(A(x) ∩B(x)), (∃xA(x) ∩ ∃xB(x))

| (¬∃)

∀x¬(A(x) ∩B(x)), (∃xA(x) ∩ ∃xB(x))

| (∀)

¬(A(x1) ∩B(x1)), (∃xA(x) ∩ ∃xB(x))

where x1 is a first free variable in the sequence 11 such that x1 does not appear in

∀x¬(A(x) ∩ B(x)), (∃xA(x) ∩ ∃xB(x))

| (¬∩)

¬A(x1),¬B(x1), (∃xA(x) ∩ ∃xB(x))∧
(∩)

¬A(x1),¬B(x1),∃xA(x)

| (∃)

¬A(x1),¬B(x1), A(t1),∃xA(x)

where t1 is the first term in the sequence 11,

such that A(t1) does not appear on the tree

above ¬A(x1),¬B(x1), A(t1), ∃xA(x) Observe,

that it is possible that t1 = x1, as A(x1) does

not appear on the tree above. By the definition

of the sequence 11, x1 is placed somewhere in

it, i.e. x1 = ti, for certain i ≥ 1. It means

that after i applications of the step (∃) in the

decomposition tree, we will get a step:

| (∃)

¬A(x1),¬B(x1), ...A(x1),∃xA(x)

¬A(x1),¬B(x1),∃xB(x)

| (∃)

¬A(x1),¬B(x1), B(t1),∃xB(x)

| (∃)

...

| (∃)

¬A(x1),¬B(x1), ...B(x1),∃xB(x)

13

All leaves of the above tree TA are axioms, what means that we proved

`QRS (∃x(A(x) ∩B(x))⇒ (∃xA(x) ∩ ∃xB(x))).

We construct now, as the last example, a decomposition tree TA of the formula
((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩B(x))).

e-tree2 Example 6

The decomposition tree of the formula

((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩B(x)))

is the following.

TA

((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩B(x)))

| (⇒)

¬(∃xA(x) ∩ ∃xB(x))∃x(A(x) ∩B(x))

| (¬∩)

¬∃xA(x),¬∃xB(x),∃x(A(x) ∩B(x))

| (¬∃)

∀x¬A(x),¬∃xB(x),∃x(A(x) ∩B(x))

| (∀)

¬A(x1),¬∃xB(x),∃x(A(x) ∩B(x))

| (¬∃)

¬A(x1),∀x¬B(x),∃x(A(x) ∩B(x))

| (∀)

¬A(x1),¬B(x2),∃x(A(x) ∩B(x))

By the reasoning similar to the reasonings in the previous examples we get that x1 6= x2

| (∃)

¬A(x1),¬B(x2), (A(t1) ∩B(t1)),∃x(A(x) ∩B(x))

where t1 is the first term in the sequence 11, such that (A(t1) ∩ B(t1)) does not appear on the

tree above ¬A(x1),¬B(x2), (A(t1) ∩ B(t1)), ∃x(A(x) ∩ B(x)) Observe, that it is possible that

t1 = x1, as (A(x1) ∩ B(x1)) does not appear on the tree above. By the definition of the

14

sequence 11, x1 is placed somewhere in it, i.e. x1 = ti, for certain i ≥ 1. For simplicity, we

assume that t1 = x1 and get the sequence:

¬A(x1),¬B(x2), (A(x1) ∩B(x1)),∃x(A(x) ∩B(x))∧
(∩)

¬A(x1),¬B(x2),

A(x1),∃x(A(x) ∩B(x))

Axiom

¬A(x1),¬B(x2),

B(x1),∃x(A(x) ∩B(x))

| (∃)

¬A(x1),¬B(x2), B(x1),

(A(x2) ∩B(x2)),∃x(A(x) ∩B(x))

where x2 = t2 (x1 6= x2) is the

first term in the sequence 11, such that

(A(x2) ∩ B(x2)) does not appear on the

tree above ¬A(x1),¬B(x2), (B(x1), (A(x2) ∩

B(x2)), ∃x(A(x)∩B(x)). We assume that t2 =

x2 for the reason of simplicity.∧
(∩)

¬A(x1),

¬B(x2),

B(x1), A(x2),

∃x(A(x) ∩B(x))

| (∃)

...∧
(∩)

...

| (∃)

...

| (∃)

infinite branch

¬A(x1),

¬B(x2),

B(x1), B(x2),

∃x(A(x) ∩B(x))

Axiom

The above decomposition tree TA contains an infinite branch what means that

6`QRS ((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩B(x))).

15

3 Proof of QRS Completeness
sec:cproof

Our main goal is to prove the Completeness Theorem for QRS. The proof of
completeness theorem presented here is due to Rasiowa and Sikorski (1961), as
is the proof system QRS. We adopted their proof to propositional case in chap-
ter ??.The completeness proofs, in the propositional case and in predicate case,
are constructive as they are based on a direct construction of a counter model
for any unprovable formula. The construction of the counter model for the un-
provable formula A uses the decomposition tree TA. We call such constructed
counter model a counter model determined by the tree TA. Rasiowa-Sikorski
type of constructive proofs of counter models determined by the tree decompo-
sition trees relay heavily of the notion of a strong soundness. We define it here
(definition 8), adopting chapter ?? general definition to our case.

Given a first order language L (1) with the set V AR of variables and the set
F of formulas. We define, after chapter ?? a notion of a model and a counter-
model of a formula A of L and then extend it to the the set F∗ establishing the
semantics for QRS.

Definition 2 (Model)

A structure M = [M, I] is called a model of A ∈ F if and only if

(M, v) |= A

for all assignments v : V AR −→M .
We denote it by

M |= A.

M is called the universe of the model, I the interpretation.

Definition 3 (Counter - Model)

A structure M = [M, I] is called a counter- model of A ∈ F if and only if there
is v : V AR −→M , such that

(M, v) 6|= A.

We denote it by
M 6|= A.

The definition of the first order logic tautology is the following.

Definition 4 (Tautology)

For any A ∈ F , A is called a (predicate) tautology and denoted by

|= A

16

if and only if all structures M = [M, I] are models of A, i.e.

|= A if and only if M |= A

for all structures M = [M, I] for L.

Directly from the above definition we get the following, simple fact.

Fact 1 (Counter Model)

For any A ∈ F , A is not a tautology (6|= A) if and only if there is a counter -
modelM = [M, I] of A, i.e. we can define M, I, and v such that ([M, I], v) 6|= A.

d:G Definition 5

For any sequence Γ ∈ F∗, by
δΓ

we understand any disjunction of all formulas of Γ.

d:qsem Definition 6 (QRS Semantics)

A structure M = [M, I] for L is called a model of a Γ ∈ F∗ and denoted by

M |= Γ

if and only if
M |= δΓ.

The sequence Γ is a predicate tautology if and only if the formula δΓ is a predicate
tautology, i.e.

|= Γ if and only if |= δΓ.

Our goal now is to prove the completeness theorem for QRS.The correctness of
the proof we present depends on the strong soundness of the rules of inference
of rules of inference defined as follows.

qr-ss Definition 7 (Strongly Sound Rules)

Given a predicate language (1) proof system S = (L, E , LA,R) An inference rule
r ∈ R of the form

(r)
P1 ; P2 ; ; Pm

C

is strongly sound if the following condition holds for any structureM = [M, I]
for L.

M |= {P1, P2, .Pm} if and only if M |= C. (12) q-rss

17

We say it less formally that a rule (r) is strongly sound if the conjunction of
its premisses is logically equivalent with the conclusion, i.e.

P1 ∩ P2 ∩ . . . ∩ Pm ≡ C. (13) sr-e

q-strong Definition 8 (Strongly Sound System)

A predicate language (1) proof system S = (L, E , LA,R) is strongly sound if
and only if all logical axioms LA are tautologies and all its rules of inference
r ∈ R are strongly sound.

Theorem 2 (Strong Soundness)thm:qss

The proof system QRS (8) is strongly sound.

Proof
We have already proved in chapter ?? strong soundness of the propositional
rules. The quantifiers rule are strongly sound by straightforward verification
and is left as an exercise.

The strong soundness property is stronger then soundness property, hence also
the following holds.

thm:qsound Theorem 3 (Soundness Theorem)

For any Γ ∈ F∗,
if `QRS Γ, then |= Γ.

In particular, for any formula A ∈ F ,

if `QRS A, then |= A.

Q-compl Theorem 4 (Completeness Theorem)

For any Γ ∈ F∗,
`QRS Γ if and only if |= Γ.

In particular, for any formula A ∈ F ,

`QRS A if and only if |= A.

Proof
We have to prove the inverse implication to the soundness theorem 3. We need
to prove the formula A case only because the case of a sequence Γ can be reduced
to the formula case. Namely, the disjunction of all formulas in Γ. I.e. we prove
the implication:

if |= A, then `QRS A.

18

We do it, as in the propositional case, by proving the opposite implication

if 6`QRS A then 6|= A.

This means that we want prove that for any formula A, unprovability of A in
QRS (6`QRS A), allows us to define its counter- model. The counter- model
is determined, as in the propositional case, by the decomposition tree TA. By
theorem 1 each formula A, generates its unique decomposition tree TA and A
has a proof only if this tree is finite and all its end sequences (leaves) are axioms.
Moreover, it says that we have two cases to consider:

(C1) the tree TA is finite and contains a leaf which is not axiom, or

(C2) the tree TA is infinite.

We will show how to construct a counter- model for A in both cases: a counter-
model determined by a non-axiom leaf of the decomposition tree TA, or a
counter- model determined by an infinite branch of TA.

Proof in case (C1): TA is finite and contains a non- axiom leaf.

Before describing a general method of constructing the counter-model deter-
mined by the decomposition tree TA we describe it, as an example, for a case of
a formula

(∃xA(x)⇒ ∀xA(x)),

and its particular case

(∃x(P (x) ∩R(x, y))⇒ ∀x(P (x) ∩R(x, y))) (14) ex

for P , R one and two argument predicate symbols, respectively.

We construct the counter model for the formula (14) as follows.

First we build its decomposition tree:

TA

(∃x(P (x) ∩R(x, y))⇒ ∀x(P (x) ∩R(x, y)))

| (⇒)

¬∃x(P (x) ∩R(x, y)),∀x(P (x) ∩R(x, y))

| (¬∃)

∀x¬(P (x) ∩R(x, y)),∀x(P (x) ∩R(x, y))

| (∀)

¬(P (x1) ∩R(x1, y)),∀x(P (x) ∩R(x, y))

19

where x1 is a first free variable in 11 such that x1 does not appear in

∀x¬(P (x) ∩ R(x, y)), ∀x(P (x) ∩ R(x, y))

| (¬∩)

¬P (x1),¬R(x1, y),∀x(P (x) ∩R(x, y))

| (∀)

¬P (x1),¬R(x1, y), (P (x2) ∩R(x2, y))

where x2 is a first free variable in the sequence 11 such that x2 does not appear in

¬P (x1),¬R(x1, y), ∀x(P (x) ∩ R(x, y)), the sequence 11 is one-to- one, hence x1 6= x2

∧
(∩)

¬P (x1),¬R(x1, y), P (x2)

x1 6= x2, Non-axiom

¬P (x1),¬R(x1, y), R(x2, y)

x1 6= x2, Non-axiom

There are two non-axiom leaves. In order to define a counter-model for (14)
determined by the tree TA we need to chose only one of them. Let’s choose the
leaf

LA = ¬P (x1),¬R(x1, y), P (x2). (15) leaf

We use the non-axiom leaf LA to define a structure M = [M, I] and an
assignment v, such that

(M, v) 6|= A.

Such defined M is called a counter - model determined by the tree TA.

We take a the universe of M the set T of all terms of our language L, i.e. we
put

M = T.

We define the interpretation I as follows. For any predicate symbol Q ∈
P,#Q = n we put that QI(t1, . . . tn) is true (holds) for terms t1, . . . tn if and
only if the negation ¬QI(t1, . . . tn) of the formula Q(t1, . . . tn) appears on the
leaf LA and QI(t1, . . . tn) is false (does not hold) for terms t1, . . . tn otherwise.

For any functional symbol f ∈ F,#f = n we put fI(t1, . . . tn) = f(t1, . . . tn).

It is easy to see that in particular case of our non-axiom leaf (15)

LA = ¬P (x1), ¬R(x1, y), P (x2)

PI(x1) is true (holds) for x1, and not true for x2. RI(x1, y) is true (holds) for
x1 any for any y ∈ V AR.

20

We define the assignment v : V AR −→ T as identity, i.e., we put v(x) = x for
any x ∈ V AR.

Obviously, for such defined structure [M, I] and the assignment v we have that

([T, I], v) |= P (x1), ([T, I], v) |= R(x1, y), and ([T, I], v) 6|= P (x2).

We hence obtain that

([T, I], v) 6|= ¬P (x1),¬R(x1, y), P (x2).

This proves that such defined structure [T, I] is a counter model for a non-
axiom leaf (15). By the strong soundness of QRS) (theorem 2) the structure
M = [T, I] is also a counter- model for the formula (14), i.e. we proved that

6|= (∃x(P (x) ∩R(x, y))⇒ ∀x(P (x) ∩R(x, y))).

C1: General Method
Let A be any formula such that 6`QRS A.

Let TA be a decomposition tree of A. By the fact that 6`QRS and C1, the tree
TA is finite and has a non axiom leaf

LA ⊆ LT ∗. (16) T-leaf

By definition, the leaf LA contains only atomic formulas and negations of atomic
formulas.

We use the non-axiom leaf LA (16) to define a structure M = [M, I] an
assignment v : V AR −→ M , such that (M, v) 6|= A. Such defined structure M
is called a counter - model determined by the tree TA.

Structure M Definition (17) def:cmod

Given LA. We define a structure

M = [M, I] (18) c-mod

and an assignment v : V AR −→M as follows.

1. We take a the universe of M the set T of all terms of our language L’ i.e.
we put

M = T.

2. For any predicate symbol Q ∈ P,#Q = n,

QI ⊆ Tn

is such that QI(t1, . . . tn) holds (is true) for terms t1, . . . tn if and only if the
negation ¬Q(t1, . . . tn) of the formula Q(t1, . . . tn) appears on the leaf LA and
QI(t1, . . . tn) does not hold (is false) for terms t1, . . . tn otherwise.

21

3. For any constant c ∈ C, we put cI = c, for any variable x, xI = x.
For any functional symbol f ∈ F,#f = n,

fI : Tn −→ T

is identity function, i.e. we put

fI(t1, . . . tn) = f(t1, . . . tn)

for all t1, . . . tn ∈ T.

4. We define the assignment v : V AR −→ T as identity, i.e. we put for
all x ∈ V AR v(x) = x. Obviously, for such defined structure [T, I] and the
assignment v we have that

([T, I], v) 6|= P if formula P appears in LA,

([T, I], v) |= P if formula ¬P appears in LA.

This proves that the structureM = [T, I] and assignment v defined by (18) are
such that

([T, I], v) 6|= LA.

By the strong soundness (theorem 2) of QRS

(([T, I], v) 6|= A.

This proves M 6|= A and we proved that

6|= A.

This ends the proof of the case C1.

Proof in case (C2): TA is infinite.

The case of the infinite tree is similar, even if a little bit more complicated.
Observe first that the rule (∃) is the only rule of inference (decomposition) which
can ”produces” an infinite branch. We first show how to construct the counter-
model in the case of the simplest application of this rule, i.e. in the case of the
formula

∃xP (x)

where P is an one argument relational symbol. All other cases are similar to
this one. The infinite branch BA in this case consists of all elements of the
decomposition tree:

TA

∃xP (x)

22

| (∃)

P (t1),∃xP (x)

where t1 is the first term in the sequence 11, such that P (t1) does not appear on the tree above

P (t1), ∃xP (x)

| (∃)

P (t1), P (t2),∃xP (x)

where t2 is the first term in the sequence 11, such that P (t2) does not appear on the tree above

P (t1), P (t2), ∃xP (x), i.e. t2 6= t1

| (∃)

P (t1), P (t2), P (t3),∃xP (x)

where t3 is the first term in the sequence 11, such that P (t3) does not appear on the tree above

P (t1), P (2), P (t3), ∃xP (x), i.e. t3 6= t2 6= t1

| (∃)

P (t1), P (t2), P (t3), P (t4),∃xP (x)

| (∃)

.....

| (∃)

.....

The infinite branch of TA, written from the top, in oder of appearance of for-
mulas is

BA = {∃xP (x), P (t1), A(t2), P (t2), P (t4),}

where t1, t2, is a one - to one sequence (11) of all elements of the set T of all
terms.

This means that the infinite branch B contains with the formula ∃xP (x) all its
instances P (t), for all terms t ∈ T.

We define the structureM = [M, I] and valuation v following the definition 17.
We take as the universe M the set T of all terms, and now in our case we define
PI as follows: PI(t) holds if ¬P (t) ∈ BA and PI(t) does not hold if P (t) ∈ BA.

23

It is easy to see that for any formula P (t) ∈ B,

([T, I], v) 6|= P (t).

But the P (t) ∈ B are all instances ∃xP (x), hence

([T, I], v) 6|= ∃xP (x).

C2: General Method
Let A be any formula such that 6`QRS A.

Let TA be an infinite decomposition tree of a formula A. Let BA the infinite
branch of TA, written from the top, in order of appearance of sequences Γ ∈ F∗
on it, where Γ0 = A.

BA = {Γ0, Γ1, Γ2, . . . Γi, Γi+1, . . . } (19) branch

We define a set LF ⊆ F of all indecomposable formulas appearing in at least
one Γi, i ≤ j, i.e.

LF = {B ∈ LT : there is Γi ∈ BA, such that B is in Γi}. (20) b-indec

Note, that the following holds.
(1) If i ≤ i′ and an indecomposable formula appears in Γi, then it also appears
in Γi′ .
(2) Since none of Γi, is an axiom (6), for every atomic formula (2) P ∈ AF , at
most one of the formulas P and ¬P is in LF (20).

Counter Model Definition
Let T be the set of all terms. We define the structureM = [T, I] and valuation
v in the set T as in the definition 17, with the interpretation of predicates Q ∈ P
defined as follows.

For any predicate symbol Q ∈ P,#Q = n, QI ⊆ Tn is such that:

(1) QI(t1, . . . tn) does not hold (is false) for terms t1, . . . tn if and only if

QI(t1, . . . tn) ∈ LF

and
(2) QI(t1, . . . tn) does holds (is true) for terms t1, . . . tn if and only if

QI(t1, . . . tn) 6∈ LF .

This proves that the structure M = [T, I] is such that

M 6|= LF . (21) c-ind

To prove that 6|= A it suffices that

M 6|= A. (22) c-A

24

For this purpose we first introduce, for any formula A ∈ F , an inductive defini-
tion of the order ord A of the formula A.
(1) If A ∈ AF , then ord A = 1.
(2) If ord A = n, then ord ¬A = n+ 1. (3) If ord A ≤ n and ord B ≤ n,
then ord (A ∪B) = ord (A ∩B) = ord (A⇒ B) = n+ 1.
(4) If ord A(x) = n, then ord ∃xA(x) = ord ∀xA(x) = n+ 1.

We conduct the proof of (23) by contradiction. Suppose that (23) does not hold,
i.e. assume that

M |= A. (23) m-A

Consider now a set MF of all formulas B appearing in one of the sequences Γi

of the branch BA, such that
M |= B. (24) m-B

We write the the set MF formally as follows.

MF = {B ∈ F : for some Γi ∈ BA, B is in Γi and M |= B}. (25) M-set

Observe that by assumption (23) and the definition (25), the formula A is in
MF and hence MF 6= ∅.

Let B′ be a formula in MF such that ord B′ ≤ ord B for every B ∈MF . There
exists Γi ∈∈ BA that is of the form Γ′, B′,∆ with an indecomposable Γ′.
We have that B′ can not be of the form

¬∃xA(x) or ¬∀xA(x) (26) n-Q

for if (26) is in MF , then also formula ∀x¬A(x) or ∃x¬A(x) is in MF and the
orders of the two formulas are equal.

We carry the same order argument and show that B′ can not be of the form

(A∪B),¬(A∪B), (A∩B),¬(A∩B), (A⇒ B),¬(A⇒ B),¬¬A,∀xA(x). (27) n-r

The formula B′ can’t be of the form

∃xB(x) (28) n-ex

since then there exists term t and j such that i ≤ j, B′(t) appears in Γj and
the formula B(t) satisfies (24). Thus B(t) ∈ MF and ordB(t) < ordB′. This
contradicts the definition of B′.

Since B′ is not of the form (26), (27), (28), B′ is indecomposable. Thus B′ ∈ LF
(20), and consequently by (21),

M 6|= B′.

On the other hand B′ by definition is in the set MF and hence is one o the
formulas satisfying (24), i.e.

M 6|= B′.

25

This contradiction proves that (23) M 6|= A and hence we proved

6|= A.

This ends the proof of the Completeness Theorem 4 for QRS.

4 Skolemization and Clauses
sec:skolem

The resolution proof system for propositional and predicate logic operates on a
set of clauses as a basic expressions and uses a resolution rule as the only
rule of inference.

The goal of this part is to define an effective process of transformation of
any formula A of a predicate language L = L{¬,∪,∩,⇒}(P,F,C) into a certain
corresponding set of clauses CA. This is done in two stages.
S1. We convert any formula A of L into an open formula A∗ of a language L∗ by
a process of elimination of quantifiers from the original L. The method is due
to T. Skolem (1920) and is called Skolemization. The resulting formula A∗ is
equisatisfiable with A: it is satisfiable if and only if the original one is satisfiable
(Skolem Theorem 11).

The stage S1. is performed as the first step in a Resolution based automated
theorem prover and is described in section 4.1.

S2. We define a proof system QRS∗ based on the language L∗ and use it
transform any formula A∗ of L∗ into an logically equivalent set of clauses CA∗

(theorem 13).

The final result of stages S1. and S1 is the set CA of clauses corresponding to
the formula A, called a clausal form of A (theorem 6.

The transformation process for any propositional formula A into its logically
equivalent set CA of clauses follows directly from the use of the propositional
system RS (theorem 5).

.

def:clause Definition 9 (Clauses)

Given a language L, propositional or predicate.

1. A literal as an atomic, or a negation of an atomic formula of L. We denote
by LT the set of all literals of L.

2. A clause C is a finite set of literals.Empty clause is denoted by {}.

3. We denote by C any finite set of all clauses.

C = {C1, C2, . . . Cn},

26

for any n ≥ 0.

G-clause Definition 10

Given a propositional or predicate language L, and a sequence Γ ∈ LT ∗. A
clause determined by Γ is a set form out of all elements of the sequence Γ
We we denote it by CΓ.

Example 7

In particular,
1. if Γ1 = a, a,¬b, c,¬b, c and Γ2 = ¬b, c, a, then CΓ1

= CΓ2
= {a, c,¬b}.

2. If Γ1 = ¬P (x1),¬R(x1, y), P (x2),¬P (x1),¬R(x1, y), P (x2) and
Γ2 = ¬P (x1),¬R(x1, y), P (x2), then CΓ1

= CΓ2
= {¬P (x1),¬R(x1, y), P (x2)}.

The semantics for clauses is basically the same as for the sequences. We define
it as follows.

d:C Definition 11 Given a propositional or predicate language L. For any clause
C, write δC for a disjunction of all literals in C.

d:qsem Definition 12 (Clauses Semantics)

LetM = [M, I] be a structure for a predicate language L, or a truth assignment
v in case of L propositional.

M is called a model for a clause C (predicate or propositional), (M |= C) if
and only if

M |= δC .

M is called a model for a set C of clauses (M |= C) if and only if

M |= δC for all clauses C ∈ C.

A-eq Definition 13 (Equivalence)

A formula A of a language L is equivalent with a set set C of clauses (A ≡ C)
if and only if A ≡ σC, where σC is a conjunction of all formulas δC for all
clauses C ∈ C.

thm:ceq1 Theorem 5 (Formula-Clauses Equivalency)

For any formula A of a propositional language L, there is an effective procedure
of generating a corresponding set CA of clauses such that

A ≡ CA (29)

27

Proof
Let L = L{¬,∪,∩,⇒}. Given A ∈ F , we use the RS system (chapter ??) to build
the decomposition tree TA. We form clauses out of the leaves of the tree TA,
i.e. for every leaf L we create a clause CL determined by L (definition 10). We
put

CA = {CL : L is a leaf of TA}.

Directly from the strong soundness (13) of rules of inference of RS and the
definition 13 we get A ≡ CA. This ends the proof for the propositional case.

Consider a decomposition tree of a formula (((a⇒ b) ∩ ¬c) ∪ (a⇒ c))

TA

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

| (∪)
((a ⇒ b) ∩ ¬c), (a ⇒ c)∧

(∩)

(a ⇒ b), (a ⇒ c)

| (⇒)

¬a, b, (a ⇒ c)

| (⇒)

¬a, b,¬a, c

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c

Example 8

For the formula (((a⇒ b) ∩ ¬c) ∪ (a⇒ c)) and the tree TA, the leaves are
L1 = ¬a, b,¬a, c and CL1

= {¬a, b, c} and
L2 = ¬c,¬a, c and CL2

= {¬c,¬a, c}. The set of clauses is

CA = {{¬a, b, c}, {¬c,¬a, c}}.

By theorem 5, A ≡ CA. Semantically it means, by definition 13,

A ≡ (((¬a ∪ b) ∪ c) ∩ ((¬c ∪ ¬a) ∪ c)).

thm:ceq2 Theorem 6 (Clausal Form)

For any formula A of a predicate language L, there is an effective procedure of
generating an open formula A∗ of a quantifiers free language L∗ and a set CA∗

of clauses such that
A∗ ≡ CA∗ . (30) C-prop

The set CA∗ of clauses of L∗ with the property (30) is called a clausal form
of the formula A of L.

28

Proof
Given a formula A of a language L. The open formula A∗ of the quantifiers free
language L∗ is obtained by the Skolemization process. The effectiveness and
correctness of the process follows from PNF theorem 10 and Skolem theorem
11 described in section 4.1.

As the next step, we define (section 4.2) a proof system QRS∗(43) based on
the quantifiers free language L∗. The system QRS∗ is a version of the system
QRS (8) restricted to its Propositional Rules. At this point we carry the proof
in a similar way to the proof in the propositional case (theorem 5). Namely, for
any formula A∗ of L∗ obtained from A of L we construct its the decomposition
tree TA∗ . We form clauses out of the leaves of the tree TA∗ , i.e. for every leaf
L we create a clause CL determined by L and we put

CA∗ = {CL : L is a leaf of TA∗}.

This is the clausal form of the formula A of L by theorem 13 proved in section
4.2. To complete the proof we need now to develop results of the section 4.1
and the section 4.2.

4.1 Prenex Normal Forms and Skolemization
sec:prenex

We remind the following important notion.

Term t is free for x in A(x). Let A(x) ∈ F and t be a term, A(t) be a result
of substituting t for all free occurrences of x in A(x).

We say that t is free for x in A(x), if no occurrence of a variable in t
becomes a bound occurrence in A(t).

In particular, if A(x), A(x1, x2, ..., xn) ∈ F and t, t1, t2, ..., tn ∈ T, then

A(x/t), A(x1/t1, x2/t2, ..., xn/tn)

or, more simply just

A(t), A(t1, t2, ..., tn)

denotes the result of replacing all occurrences of the free variables x, x1, x2, ..., xn,
by the terms t, t1, t2, ..., tn, respectively, assuming that t, t1, t2, ..., tn are free for
x, x1, x2, ..., xn, respectively, in A.

The assumption that t is free for x in A(x) while substituting t for x, is
important because otherwise we would distort the meaning of A(t). This is
illustrated by the following example.

29

Example 9

Let t = y and A(x) be
∃y(x 6= y).

Obviously t is not free for y in A. The substitution of t for x produces a formula
A(t) of the form

∃y(y 6= y),

which has a different meaning than ∃y(x 6= y).

Here are more examples illustrating the notion: t is free for x in A(x).

Example 10

Let A(x) be a formula
(∀yP (x, y) ∩Q(x, z))

and t be a term f(x, z), i.e. t = f(x, z).

None of the occurrences of the variables x, z of t is bound in A(t), hence we say
that t = f(x, z) is free for x in (∀yP (x, y) ∩Q(x, z)).

Substituting t on a place of x in A(x) we obtain a formula A(t) of the form

(∀yP (f(x, z), y) ∩Q(f(x, z), z)).

Example 11

Let A(x) be a formula
(∀yP (x, y) ∩Q(x, z))

The term t = f(y, z) is not free for x in A(x) because substituting t = f(y, z)
on a place of x in A(x) we obtain now a formula A(t) of the form

(∀yP (f(y, z), y) ∩Q(f(y, z), z))

which contain a bound occurrence of the variable y of t (∀yP (f(y, z), y)).

The other occurrence (Q(f(y, z), z)) of y is free, but it is not sufficient, as for
term to be free for x, all occurrences of its variables has to be free in A(t).

Another important notion we will use here is the following notion of similarity
of formulas.

Intuitively, we say that A(x) and A(y) are similar if and only if A(x) and A(y)
are the same except that A(x) has free occurrences of x in exactly those places
where A(y) has free occurrences of y.

30

Example 12

The formulas ∃z(P (x, z)⇒ Q(x)) and ∃z(P (y, z)⇒ Q(y)) are similar.

The formal definition of this notion follows.

Definition 14 (Similarity)

Let x and y be two different variables. We say that the formulas A(x) and
A(x/y) are similar and denote it by

A(x) ∼ A(x/y)

if and only if y is free for x in A(x) and A(x) has no free occurrences of y.

Example 13

The formulas A(x): ∃z(P (x, z)⇒ Q(x, y)) and A(x/y): ∃z(P (y, z)⇒ Q(y, y))
are not similar; y is free for x in A(x), but the formula A(x/y) has a free
occurrence of y.

Example 14

The formulas A(x): ∃z(P (x, z)⇒ Q(x, y)) and A(x/w): ∃z(P (w, z)⇒ Q(w, y)
are similar; w is free for x in A(x) and the formula A(x/w) has no free
occurrence of w.

Directly from the definition we get the following.

lemm Lemma 1

For any formula A(x) ∈ F , if A(x) and A(x/y) are similar A(x) ∼ A(y), then

∀xA(x) ≡ ∀yA(y),

∃xA(x) ≡ ∃yA(y).

We prove, by the induction on the number of connectives and quantifiers in a
formula A the following.

th:rep Theorem 7 (Replacement Theorem)

For any formulas A,B ∈ F , if B is a sub-formula of A, if A∗ is the result of
replacing zero or more occurrences of B in A by a formula C, and B ≡ C, then
A ≡ A∗.

Directly from lemma 1 and replacement theorem 7 we get that the following
theorem holds.

31

bvar Theorem 8 (Change of Bound Variables)

For any formula A(x), A(y), B ∈ F , if A(x) and A(x/y) are similar, i.e. A(x) ∼
A(y), and the formula ∀xA(x) or ∃xA(x) is a sub-formula of B, and B∗ is the
result of replacing zero or more occurrences of A(x) in B by a formula ∀yA(y)
or ∃yA(y), then B ≡ B∗.

defapart Definition 15 (Naming Variables Apart)

We say that a formula B has its variables named apart if no two quantifiers
in B bind the same variable and no bound variable is also free.

We can now use theorem 8 to prove its more general version.

apart Theorem 9 (Naming Variables Apart) Every formula A ∈ F is logically
equivalent to one in which all variables are named apart.

We use the above theorems plus the equational laws for quantifiers (31) to prove,
as a next step a so called a Prenex Form Theorem 10.
In order to do so we first we define an important notion of prenex normal
form of a formula.

closure Definition 16 (Closure of a Formula)

By a closure of a formula A we mean a closed formula A′ obtained from A
prefixing in universal quantifiers all those variables that a free in A; i.e. if
A(x1, , xn) then A′ ≡ A is

∀x1∀x2....∀xnA(x1, x2,, xn)

Example 15

Let A be a formula (P (x, y) ⇒ ¬∃z R(x, y, z)), its closure A′ ≡ A is
∀x∀y(P (x, y)⇒ ¬∃z R(x, y, z)).

defPNF Definition 17 (Prenex Normal Form)

Any formula A of the form

Q1x1Q2x2....QnxnB

where each Qi is a universal or existential quantifier, i.e. for all 1 ≤ i ≤ n,
Qi ∈ {∃,∀}, xi 6= xj for i 6= j, and B contains no quantifiers, is said to be
in prenex normal form (PNF).
We include the case n = 0 when there are no quantifiers at all.

32

We assume that the formula A in PNF is always closed. If it is not closed
we form its closure (definition 16) instead. We prove that, for every formula
A, we can effectively construct a formula B that is in the prenex normal form
PNF and A ≡ B.

thmPNF Theorem 10 (PNF Theorem)

There is an effective procedure for transforming any formula A ∈ F into a
logically equivalent formula A′ in the prenex normal form PNF.

Proof
We use theorems 7, 8, 9, theorem 15, and the following logical equivalences (31)
proved in chapter ??.

Equational Laws of Quantifiers (31) eq-law

∀x(A(x) ∪B) ≡ (∀xA(x) ∪B) (32) 1

∀x(A(x) ∩B) ≡ (∀xA(x) ∩B) (33) 2

∃x(A(x) ∪B) ≡ (∃xA(x) ∪B) (34) 3

∃x(A(x) ∩B) ≡ (∃xA(x) ∩B) (35) 4

∀x(A(x)⇒ B) ≡ (∃xA(x)⇒ B) (36) 5

∃x(A(x)⇒ B) ≡ (∀xA(x)⇒ B) (37) 6

∀x(B ⇒ A(x)) ≡ (B ⇒ ∀xA(x)) (38) 7

∃x(B ⇒ A(x)) ≡ (B ⇒ ∃xA(x)) (39) 8

where B is a formula such that B does not contain any free occurrence of x.

The formal procedure is defined by induction on the number k of occurrences of
connectives and quantifiers in A. We show now how it works in some particular
cases.

33

Exercise 1

Find a prenex normal form PNF of a formula A: (∀x(P (x)⇒ ∃xQ(x)).

Solution

We find PNF in the following steps.

Step 1: Rename Variables Apart

By the theorem 8 we can make all bound variables in A different, i.e. we
transform A into an equivalent formula A′

∀x(P (x)⇒ ∃yQ(y)).

Step 2: Pull out Quantifiers

We apply the equational law

(C ⇒ ∃yQ(y)) ≡ ∃y (C ⇒ Q(y))

to the sub-formula B : (P (x)⇒ ∃yQ(y)) of A′ for C = P (x), as P(x) does
not contain the variable y. We get its equivalent formula B∗ : ∃y(P (x)⇒
Q(y)). We substitute now B∗ on place of B in A′ and get a formula

A′′ : ∀x∃y(P (x)⇒ Q(y))

such that A′′ ≡ A′ ≡ A.

A′′ is a required prenex normal form PNF for A.

e:pnf Exercise 2 Find a prenex normal form PNF formula A′ for the formula A:

(∃x∀y R(x, y)⇒ ∀y∃x R(x, y))

Solution
Step 1: Rename Variables Apart
Take a sub- formulaB(x, y) : ∀y∃x R(x, y) ofA, getB(x/z, y/w) : ∀z∃w R(z, w)
and replace B(x,y) by B(x/z, y/w) in A and get

(∃x∀y R(x, y)⇒ ∀z∃w R(z, w))

Step 2: Pull out quantifiers
We use corresponding equational laws of quantifiers (36), 37) to pull out first
quantifiers ∃x∀y and get the following

A′ : ∀x∃y((R(x, y)⇒ ∀z∃w R(z, w))),

34

such that A′ ≡ A. Now we pull quantifiers ∀z∃w in (R(x, y)⇒ ∀z∃w R(z, w))
and get the prenex normal form PNF formula

A′′ : ∀x∃y∀z∃w ((R(x, y)⇒ R(z, w))),

such that A′′ ≡ A′ ≡ A.

Observe we can also perform a different Step 2 by pulling first the quantifiers
∀z∃w and then quantifiers ∀x∃y and obtain another PNF A′′′ for A:

A′′′ : ∀z∃w∀x∃y (R(x, y)⇒ R(z, w)).

We will show now how any formula A in its prenex normal form PNF we can
transformed it into a corresponding open formula A∗.

The open formula A∗ belongs to a richer language then the initial language to
which the formula A belongs. The transformation process adds new constants,
called Skolem constants, and new function symbols, called Skolem function
symbols to the initial language.

The whole process is called the skolemisation of the initial language L, the such
build extension of the initial language is called a Skolem extension of L,.

Skolem Procedure of Elimination of Quantifiers (40) q-proc

Given a formula A of the language L = L{¬,∪,∩,⇒}(P,F,C) in its prenex normal
form PNF, i.e.

A = Q1x1Q2x2 . . . QnxnB(x1, x2, . . . xn) (41) pnf

where each Qi is a universal or existential quantifier, i.e. for all 1 ≤ i ≤ n,
Qi ∈ {∃,∀}, xi 6= xj for i 6= j, and B(x1, x2, . . . xn) contains no quantifiers.

We describe now a procedure of elimination of all quantifiers from the formula
A (41) and hence transforming it into a corresponding open formula A∗.

We assume that the formula A = Q1x1Q2x2 . . . QnxnB(x1, x2, . . . xn) is closed.
If it is not closed we form its closure instead.

We considerer 3 cases.
Case 1
All quantifiers Qi for 1 ≤ i ≤ n are universal, i.e. the closed formula A is

∀x1∀x2 . . . ∀xnB(x1, x2, . . . , xn)

We replace the formula A by the open formula A∗:

B(x1, x2, , xn).

35

Case 2
All quantifiers Qi for 1 ≤ i ≤ n are existential, i.e. the closed formula A is

∃x1∃x2....∃xnB(x1, x2, . . . xn)

We replace the formula A by the open formula A∗:

B(c1, c2, , cn)

where c1, c2, , cn and new individual constants, all different, added to
our original language L. We call such constants added to the language Skolem
constants

Case 3
The quantifiers are mixed . We assume that A is closed. If it is not closed we
form its closure instead. We eliminate quantifiers one by one and step by step
depending on first, and consecutive quantifiers.

Given a closed PNF formula A

Q1x1Q2x2 . . . QnxnB(x1, x2, . . . xn)

Step 1 Elimination of Q1x1

We have two possibilities for the first quantifier Q1x1, namely P1 Q1x1 is uni-
versal or P2 Q1x1 is existential.

Consider P1
First quantifier in A is universal, i. e. A is

∀x1Q2x2 . . . QnxnB(x1, x2, . . . xn)

We replace A by a formula A1 :

Q2x2 . . . QnxnB(x1, x2, . . . xn)

We have eliminated the quantifier Q1 in this case.

Consider P2
First quantifier in A is existential, i. e. A is

∃x1Q2x2 . . . QnxnB(x1, x2, . . . xn)

We replace A by a formula A1 :

Q2x2 . . . QnxnB(b1, x2, . . . xn)

where b1 is a new constant symbol added to our original language L. We
call such constant symbol added to the language Skolem constant symbol.

36

We have eliminated the quantifier Q1 in this case. We have covered all cases
and this ends the Step 1.

Step 2 Elimination of Q2x2.

Consider now the PNF formula A1 from Step1- P1

Q2x2 . . . QnxnB(x1, x2, . . . xn)

Remark that the formula A1 might not be closed.

We have again two possibilities for elimination of the quantifier Q2x2, namely
P1 Q2x2 is universal or P2 Q2x2 is existential.

Consider P1
First quantifier in A1 is universal, i.e. A1 is

∀x2Q3x3 . . . QnxnB(x1, x2, x3, . . . xn)

We replace A1 by the following A2

Q3x3 . . . QnxnB(x1, x2, x3, . . . xn)

We have eliminated the quantifier Q2 in this case.

Consider P2
First quantifier in A1 is existential, i.e. A1 is

∃x2Q3x3 . . . QnxnB(x1, x2, x3, . . . xn)

Observe that now the variable x1 is a free variable in B(x1, x2, x3, . . . xn) and
hence in A1.
We replace A1 by the following A2

Q3x3 . . . QnxnB(x1, f(x1), x3, . . . xn)

where f is a new one argument functional symbol added to our original
language L. We call such functional symbols added to the original language
Skolem functional symbols.
We have eliminated the quantifier Q2 in this case.

Consider now the PNF formula A1 from Step1 - P2

Q2x2Q3x3 . . . QnxnB(b1, x2, . . . xn)

Again we have two cases.

37

Consider P1
First quantifier in A1 is universal, i.e. A1 is

∀x2Q3x3 . . . QnxnB(b1, x2, x3, . . . xn)

We replace A1 by the following A2

Q3x3 . . . QnxnB(b1, x2, x3, . . . xn)

We have eliminated the quantifier Q2 in this case.
Consider P2
First quantifier in A1 is existential, i.e. A1 is

∃x2Q3x3 . . . QnxnB(b1, x2, x3, . . . xn)

We replace A1 by A2

Q3x3 . . . QnxnB(b1, b2, x3, . . . xn)

where b2 6= b1 is a new Skolem constant symbol added to our original language
L.
We have eliminated the quantifier Q2 in this case. We have covered all cases
and this ends the Step 2. Step 3 Elimination of Q3x3

Let’s now consider, as an example formula A2 from Step 2; P1 i.e. the formula

Q3x3 . . . QnxnB(x1, x2, x3, . . . xn)

We have again 2 choices to consider, but will describe only the following.

P2 First quantifier in A2 is existential, i. e. A2 is

∃x2Q4x4 . . . QnxnB(x1, x2, x3, x4, . . . xn)

Observe that now the variables x1, x2 are free variables in B(x1, x2, x3, . . . xn)
and hence in A2.

We replace A2 by the following A3

Q4x3 . . . QnxnB(x1, x2, g(x1, x2), x4 . . . xn)

where g is a new two argument functional symbol added to our original
language L.
We have eliminated the quantifier Q3 in this case.

Step i
At each Step i, for 1 ≤ i ≤ n), we build a binary tree of possibilities:

38

P1 Qixi is universal or P2 Qixi is existential and as result we obtain a
formula Ai with one less quantifier. The elimination process builds a sequence
of formulas

A, A1, A2, . . . , An = A∗

where the formula A belongs to our original language

L = L{¬,∪,∩,⇒}(P,F,C),

the formula A∗ belongs to its Skolem extension language (42) defined as
follows.

Definition 18

The language L∗ obtained from L by the quantifiers elimination procedure (40)
is is called a Skolem extension of L.

L∗ = L{¬,∪,∩,⇒}(P,F ∪ SF, C ∪ SC). (42) Slang

Observe that in the elimination process (40) a universal quantifier intro-
duces free variables in the formula B(x1, x2, . . . xn). The elimination of an
existential quantifier that follows universal quantifiers introduces a new func-
tional symbol with number of arguments equal the number of universal quanti-
fiers preceding it.

The resulting is an open formula A∗ of Skolem extension language L∗. By
PNF theorem 10, for any formula A of L its PNF formula (41) exists and is
logically equivalent with A. We hence introduce the following definition.

skolemiz Definition 19 (Skolemization)

Given a formula A of L.
A formula A∗ of the Skolem extension language L∗ (42) obtained from a PNF
form of A by the Skolem Procedure (40) is called a Skolem form of the formula
A and the process obtaining it is called a Skolemization of A.

Sex Exercise 3 Let A be a PNF formula

∀y1∃y2∀y3∃y4 B(y1, y2, y3, y4, y4).

Find the Skolem form of A (the formula B(y1, y2, y3, y4, y4) is quantifiers
free).

Solution
We eliminate ∀y1 and get a formula A1

∃y2∀y3∃y4 B(y1, y2, y3, y4).

39

We eliminate ∃y2 by replacing y2 by h(y1) where h is a new one argument
functional symbol added to our original language L.
We get a formula A2

∀y3∃y4 B(y1, h(y1), y3, y4).

We eliminate ∀y3 and get a formula A3

∃y4 B(y1, h(y1), y3, y4).

We eliminate ∃y4 by replacing y4 by f(y1, y3), where f is a new two argument
functional symbol added to our original language L.
We get a formula A4 that is our resulting open formula A∗

B(y1, h(y1), y3, f(y1, y3)).

Exercise 4

Let now A be a PNF formula

∃y1∀y2∀y3∃y4∃y5∀y6 B(y1, y2, y3, y4, y4, y5, y6)

Find the Skolem form of A (the formula B(y1, y2, y3, y4, y4, y5) is quantifiers
free).

Solution
We eliminate ∃y1 and get a formula A1

∀y2∀y3∃y4∃y5∀y6 B(b1, y2, y3, y4, y4, y5, y6)

where b1 is a new constant symbol added to our original language L.
We eliminate ∀y2, forally3 and get a formulas A2, A3; here is the formula A3

∃y4∃y5∀y6 B(b1, y2, y3, y4, y4, y5, y6)

We eliminate ∃y4 and get a formula A4

∃y5∀y6 B(b1, y2, y3, g(y2, y3), y5, y6)

where g is a new two argument functional symbol added to our original
language L.
We eliminate ∃y5 and get a formula A5

∀y6 B(b1, y2, y3, g(y2, y3), h(y2, y3), y6)

where h is a new two argument functional symbol added to our original
language L.
We eliminate ∀y6 and get a formula A6 that is the resulting open formula A∗

B(b1, y2, y3, g(y2, y3), h(y2, y3), y6).

40

The correctness of the Skolemization process is established by the Skolem
theorem 11. It states informally that the formula A∗ obtained from a formula
A via the Skolemization is satisfiable if and only if the original one is satisfiable.
We define this notion formally as follows.

.

eqsat Definition 20 (Equisatisfiable)

For any formulas A of L and B of the Skolem extension L∗ (42) of L,
we say that A and B are equisatisfiable if and only if the following conditions
are satisfied.

1. Any structureM of L can be extended to a structureM∗ of L∗ and following
implication holds.

If M |= A, then M∗ |= B.

2. Any structureM∗ of L∗ can be restricted to a structureM of L and following
implication holds.

If M∗ |= B, then M |= A.

thm:Sk Theorem 11 (Skolem Theorem)

Let L∗ be the Skolem extension (42) of a language L.
Any formula A of L and its Skolem form A∗ of L∗ are equisatisfiable.

4.2 Clausal Form of Formulas
Q-C

Let L∗ be the Skolem extension of L, i.e. L∗ does not contain quantifiers. We
define a proof system QRS∗ as an open formulas language version of QRS that
includes only its Group 1: Propositional Rules of (7).

We denote the set of formulas of L∗ by OF to stress the fact that all its formulas
are open and define QRS∗ formally as follows.

QRS∗ = (L∗, E , LA, R), (43) Qrs

where E = {Γ : Γ ∈ OF∗}, LA is defined by (6), and R contains Group 1:
Propositional Rules (7):

(∪)
Γ
′
, A,B,∆

Γ′ , (A ∪B),∆
, (¬ ∪)

Γ
′
,¬A,∆ : Γ

′
,¬B,∆

Γ′ ,¬(A ∪B),∆

(∩)
Γ
′
, A,∆ ; Γ

′
, B,∆

Γ′ , (A ∩B),∆
, (¬ ∩)

Γ
′
,¬A,¬B,∆

Γ′ ,¬(A ∩B),∆

41

(⇒)
Γ
′
,¬A,B,∆

Γ′ , (A⇒ B),∆
, (¬ ⇒)

Γ
′
, A,∆ : Γ

′
,¬B,∆

Γ′ ,¬(A⇒ B),∆

(¬ ¬)
Γ
′
, A,∆

Γ′ ,¬¬A,∆

where Γ
′ ∈ LT ∗,∆ ∈ OF∗, A,B ∈ OF .

For any formula A ∈ OF we define, as we did in chapter ?? its decomposition
tree TA as follows.

Decomposition tree TA

Step 1. The formula A is the root of TA and for any node ∆ of the tree we
follow the steps bellow.
Step 2. If ∆ in indecomposable, then ∆ becomes a leaf of the tree.
Step 3. If ∆ is decomposable, then we traverse ∆ from left to right to identify
the first decomposable formula B. In case of a one premisses rule we put is
premise as a leaf; in case of a two premisses rule we put its left and right
premisses as the left and right leaves, respectively.

Step 4. We repeat steps 2 and 3 until we obtain only leaves.

We adopt the definition 12 to QRS∗ and the language L∗.

d:Qsem Definition 21 (Semantics)

For any sequence Γ of formulas of L∗, any structure M = [M, I] for L∗,

M |= Γ if and only if M |= δΓ,

where δΓ denotes a disjunction of all formulas in Γ.

The semantics for clauses is basically the same as for the sequences. We define
it, after definition 5, as follows.

Q-Csem Definition 22 (Clauses Semantics)

For any clause C of the language L∗ (definition 9), δC denotes a disjunction of
all literals in C.
For any finite set of clauses C of L∗, any structureM = [M, I] for L∗, and any
C ∈ C,

1. M |= C if and only if M |= δC .

2. M |= C if and only if M |= δC for all C ∈ C.

3. (A ≡ C) if and only if A ≡ σC,
where σC is a conjunction of all formulas δC for all clauses C ∈ C.

42

Obviously, all rules of QRS∗ are strongly sound (definition 7) and theorem 2
holds for QRS∗, i.e. we have the following.

Theorem 12 (Strong Soundness)thm:Qss

The proof system QRS∗ is strongly sound.

We are going to prove now that any formula A of L∗ can be transformed into
in logically equivalent set of clauses.

thm:Ceq Theorem 13 (Formula-Clauses Equivalency)

For any formula A of L∗, there is an effective procedure of generating a set of
clauses CA of L∗ such that

A ≡ CA (44) C-eq

Proof
Given A ∈ OF . Here is the two steps procedure. S1. We construct (finite and
unique) decomposition tree TA. S2. We form clauses out of the leaves of the
tree TA, i.e. for every leaf L we create a clause CL determined by L (definition
10) and we put

CA = {CL : L is a leaf of TA}.

Directly from the strong soundness of rules of inference of QRS∗ (theorem 12)
and the semantics for clauses definition 22 we get that

A ≡ CA.

Exercise 5

Find he set CA of clauses for the following formula A.

(((P (b, f(x))⇒ Q(x)) ∪ ¬R(z)) ∪ (P (b, f(x)) ∩R(z))))

Solution
S1. We construct the decomposition tree for A as follows

TA

(((P (b, f(x)) ⇒ Q(x)) ∪ ¬R(z)) ∪ (P (b, f(x)) ∩R(z)))

| (∪)
(((P (b, f(x)) ⇒ Q(x)) ∪ ¬R(z)), (P (b, f(x)) ∩R(z))

| (∪)
(P (b, f(x)) ⇒ Q(x)),¬R(z), (P (b, f(x)) ∩R(z))

| (⇒)

43

¬P (b, f(x)), Q(x),¬R(z), (P (b, f(x)) ∩R(z))∧
(∩)

¬P (b, f(x)), Q(x),¬R(z), P (b, f(x)) ¬P (b, f(x)), Q(x),¬R(z), R(z)

S2. The leaves of TA are

L1 = ¬P (b, f(x)), Q(x), ¬R(z), P (b, f(x)) and
L2 = ¬P (b, f(x)), Q(x), ¬R(z), R(z).

The corresponding clauses are
C1 = {¬P (b, f(x)), Q(x),¬R(z), P (b, f(x))} and
C2 = {¬P (b, f(x)), Q(x),¬R(z), R(z)}.

The set of clauses is

CA = {{¬P (b, f(x)), Q(x),¬R(z), P (b, f(x)}, {¬P (b, f(x)), Q(x),¬R(z), R(z)}.

Definition 23 Clausal Form Given a formula A of the language L and its
Skolem form A∗ of L∗. The set CA∗ of clauses such that

A∗ ≡ CA∗

s called a clausal form of the formula A of L.

Exercise 6 Find the clausal form of a formula A:

(∃x∀y (R(x, y) ∪ ¬P (x))⇒ ∀y∃x ¬R(x, y)).

Solution
Step 1: We rename variables apart in A and get a formula A′:

(∃x∀y (R(x, y) ∪ ¬P (x))⇒ ∀z∃w ¬R(z, w)).

Step 2: We use Equational Laws of Quantifiers (36), (37)t o pull out ∃x and ∀y
and get a formula A′′:

(∀x∃y ((R(x, y) ∪ ¬P (x))⇒ ∀z∃w ¬R(z, w)).

Step 3: We use Equational Laws of Quantifiers (36), (37)t o pull out ∃x and ∀y
and get a formula A′′′:

(∀x∃y ((R(x, y) ∪ ¬P (x))⇒ ∀z∃w ¬R(z, w)).

Step 4: We use Equational Laws of Quantifiers (38), (39)t o pull out ∃z and ∀w
from the sub formula ((R(x, y) ∪ ¬P (x))⇒ ∀z∃w ¬R(z, w)) and get a formula
A′′′′ This is the prenex normal form PNF of A.

(∀x∃y∀z∃w ((R(x, y) ∪ ¬P (x))⇒ ¬R(z, w)). (45) Apnf

44

Step 5: We perform the Skolemization Procedure (40) to (45). Observe (45)
that the formula is of the form of the formula of exercise 3. We follow the
exercise and eliminate ∀x and get a formula A1

∃y∀z∃w ((R(x, y) ∪ ¬P (x))⇒ ¬R(z, w)).

We eliminate ∃y by replacing y by h(x) where h is a new one argument
functional symbol added to our original language L.
We get a formula A2

∀z∃w ((R(x, h(x)) ∪ ¬P (x))⇒ ¬R(z, w)).

We eliminate ∀z and get a formula A3

∃w ((R(x, h(x)) ∪ ¬P (x))⇒ ¬R(z, w)).

We eliminate ∃w by replacing w by f(x, z), where f is a new two argument
functional symbol added to our original language L.
We get a formula A4 that is our resulting open formula A∗

A∗ : ((R(x, h(x)) ∪ ¬P (x))⇒ ¬R(z, (x, z))). (46) Ask

Step 6: We build the decomposition tree TA∗ for (46).

TA∗

((R(x, h(x)) ∪ ¬P (x))⇒ ¬R(z, f(x, z)))

| (⇒)

¬(R(x, h(x)) ∪ ¬P (x)), ¬R(z, f(x, z))∧
(¬∪)

¬R(x, h(x)),¬R(z, f(x, z)
¬¬P (x), ¬R(z, f(x, z))

| (¬¬)

P (x), ¬R(z, f(x, z))

Step 7: The leaves of TA∗ are

L1 = ¬R(x, h(x)),¬R(z, f(x, z) and L2 = P (x), ¬R(z, f(x, z)).

The corresponding clauses are
C1 = {¬R(x, h(x)),¬R(z, f(x, z)} and
C2 = {P (x), ¬R(z, f(x, z))}.

Step 8: The clausal form of the formula A

(∃x∀y (R(x, y) ∪ ¬P (x))⇒ ∀y∃x ¬R(x, y))

is the set of clauses

CA∗ = { {¬R(x, h(x)),¬R(z, f(x, z)}, {P (x), ¬R(z, f(x, z))} }.

45

5 Homework Problems
Hch10

1. Given a predicate (first order) language (1), i.e. L = L{∩,∪,⇒,¬}(P,F,C).
Let QRS de a proof system (8). For any formulas A,B of L, we define:

`QRS A ≡ B it and only if `QRS (A⇒ B) and `QRS (B ⇒ A).

Show that for any formulas A(x), B(x) with a free variable x the following
holds.
Remider: 1. you treat A(x), B(x) as atomic foprmulas, 2.you must trans-
form formulas with restricted domain quantifiers into proper formulas of
L.

(i) `QRS ∀x (A(x) ∩B(x)) ≡ (∀xA(x) ∩ ∀xB(x))

(ii) `QRS ∃x (A(x) ∪B(x)) ≡ (∃xA(x) ∪ ∃xB(x)).

(iii) `QRS ¬∀B(x) A(x) ≡ ∃B(x).

(iv) `QRS ¬∃B(x) A(x) ≡ ∀B(x)¬A(x).

(v) `QRS ¬∀xA(x) ≡ ∃x¬A(x).

(vi) `QRS ¬∃xA(x) ≡ ∀x¬A(x).

(vii) `QRS (∀x(B(x)⇒ A(x))⇒ (∃x B(x)⇒ ∃x (B(x) ∩A(x))))

2. Show that for any formulas A(x), B B where B does not contain any free
occurrence of x the following holds.

(i) `QRS ∀x(A(x) ∩B) ≡ (∀xA(x) ∩B).

(ii) `QRS ∀x(A(x) ∪B) ≡ (∀xA(x) ∪B).

(iii) `QRS ∃x(A(x)⇒ B) ≡ (∀xA(x).

(iv) `QRS ∃x(A(x)⇒ B) ≡ (∀xA(x).

3. Prove that following formulas are not provable in QRS.
Remider: you must transform formulas with restricted domain quantifiers
into proper formulas of L.

(i) ∃C(x)(A(x) ∪B) 6≡ (∃C(x)A(x) ∪B).

(ii) ∀C(x)(A(x) ∩B) 6≡ (∀C(x)A(x) ∩B).

(iii) ∃C(x)(A(x)⇒ B) 6≡ (∀C(x)A(x)⇒ B).

(iv) ∃C(x)(B ⇒ A(x)) 6≡ (B ⇒ ∃xA(x)).

4. Prove that following formulas are not provable in QRS.

(i) (∃x ¬A(x)⇒ ∀x A(x))

(ii) (∀x∃y A(x, y)⇒ ∃x∀y A(x, y)).

(iii) (∃x∃y A(x, y)⇒ ∃y A(y, y)).

(iv) (∀x∃y A(x, y)⇒ ∃y A(y, y)).

(v) (∀x (A(x)⇒ B(x))⇒ (∀x A(x)⇒ ∃x B(x))).

46

5. Prove that following formulas are not provable in QRS.

(i) A1 : ∀x¬∃y(P (x, g(y, y)) ∪ P (x, g(g(y, y), d))).

(ii) A2 : (¬∀yP (f(x, y), c)⇒ (P (x, c) ∪ P (y, c)))

(iii) A3 : ∀x(P (x)⇒ ∃yQ(x, y)).

(iv)A4 : ∀x¬∃y(P (x) ∩ ¬Q(x, y)).

6. Find counter-models determined by the decomposition trees TAi for the
following formulas Ai, i = 1, 2, 3, 4.

(i) A1 : ∀x¬∃y(Q(x, g(y)) ∪R(x, f(x, y), c))).

(ii) A2 : (¬∀yR(f(x, y), c)⇒ (Q(x, c) ∪Q(y, c)))

(iii) A3 : ∀x(P (x)⇒ ∃yQ(x, y)).

(iv)A4 : ∀x¬∃y(P (x) ∩ ¬Q(f(x, y))).

7. Find prenex normal form PNF of the following formulas.
Reminder: We assume that the formula A in PNF is always closed. If it
is not closed we form its closure (definition 16) instead.

(i) (∀x(P (x)⇒ ¬∀yP (y))⇒ (∃x R(x, y)⇒ ∃y (R(x, y) ∩ P (y)))).

(ii) ((∀xQ(x)⇒ (∃xR(x) ∪ ¬∀xQ(x)))⇒ (¬∃xQ(x) ∩R(x))).

(iii) (∀x R(f(x, y), c)⇒ (∃xR(f(x, y), c))∩¬R(f(x, y), c))⇒ (¬∀x R(f(x, y), c)⇒
∃x R(f(x, y), c))).

(iv) ((∃R(y)P (y)⇒ Q(x))⇒ (P (y)⇒ ∃xQ(x)))

8. Find a Skolem form of the following formulas (the formulaB(y1, y2, y3, y4, y4)
is quantifiers free).

(i) ∀y1∀y2∀y3∃y4 B(y1, y2, y3, y4, y4).

(ii) ∃y1∃y2∀y3∃y4 B(y1, y2, y3, y4, y4).

(iii) ∃y1∀y2∃y3∃y4 B(y1, y2, y3, y4, y4).

(iv) ∀y1∀y2∃y3∃y4 B(y1, y2, y3, y4, y4).

9. Find the clausal form of the following formulas.

(i) (∀x(P (x)⇒ ¬∀yP (y))⇒ (∃x R(x, y)⇒ ∃y (R(x, y) ∩ P (y)))).

(ii) ((∀xQ(x)⇒ (∃xR(x) ∪ ¬∀xQ(x)))⇒ (¬∃xQ(x) ∩R(x))).

(iii) (∀x R(f(x, y), c)⇒ (∃xR(f(x, y), c))∩¬R(f(x, y), c))⇒ (¬∀x R(f(x, y), c)⇒
∃x R(f(x, y), c))).

(iv) ((∃R(y)P (y)⇒ Q(x))⇒ (P (y)⇒ ∃xQ(x)))

10. Find the set of clauses logically equivalent to clausal form of the following
formulas.

(i) (((a⇒ b) ∩ ¬c) ∪ (a⇒ c)).

(ii) ((a ∪ b)⇒ ¬a) ∪ (¬a⇒ ¬c)).

47

(iii) (¬(¬a => (a ∩ ¬b)) => (¬a ∩ (¬a ∪ ¬b))).
(iv) (¬(a ∩ b)⇒ (¬a ∪ ¬b)).
(v) (((¬a⇒ (b ∩ c)) ∩ ¬(c ∪ a)) ∪ (a⇒ c))

48

