Cse352 AI Homework 2 Solutions

PART ONE

Classification: Characteristic and Discriminant Rules

Here are some **DEFINITIONS** from the Lecture Notes that YOU NEED for your Homework

Definition 1

Given a classification dataset DB with a set $A = \{a_1, a_2, ..., a_n\}$ of attributes and a **class attribute** C with values $\{c_1, c_2, ..., c_k\}$ (k classes), any expression; $a_1 = v_1 \Lambda ... \Lambda a_k = v_k$, where a_i in A, c_k in C and v_i are values of attributes is called a DESCRIPTION.

In particular, $\mathbf{C} = c_k$ is called a CLASS DESCRIPTION.

Definition 2

A CHARACTERISTIC FORMULA is any expression $C = c_k \implies a_1 = v_1 \Lambda \dots \Lambda a_k = v_k$, We write it shortly as

CLASS => DESCRIPTION

1

Definition 3

A DISCRIMINANT formula is any expression $a_1 = v_1 \Lambda \dots \Lambda a_k = v_k \implies C = c_k$ written shortly as DESCIPTION => CLASS

Definition 4

A characteristic formula CLASS => DESCRIPTION is called a CHARACTERISITIC RULE of the classification dataset DB iff it is TRUE in DB, i.e. when the following holds

{o: DESCRIPTION} \cap {o: CLASS} not= empty set

where {**o**: **DESCRIPTION**} is the set of all records of DB corresponding to the description **DESCRIPTION** and {**o**: **CLASS**} is the set of all records of DB corresponding to the description **CLASS**

Definition 5

A discriminant formula DESCRIPTION => CLASS is called a **DISCRIMINANT RULE** of DB iff it is **TRUE in DB**, i.e. the following two conditions hold

1. {o: DESCRIPTION} not= empty set

2. {o: DESCRIPTION} included in {o: CLASS}

PROBLEM 1: Given a dataset:

Recor	a 1	<i>a</i> ₂	<i>a</i> ₃	<i>a</i> ₄	С
d					
01	1	1	1	0	1
02	2	1	2	0	2
03	0	0	0	0	0
04	0	0	2	1	0
05	2	1	1	0	1

C – class attribute

Find {o :DESCRIPTION} for the following descriptions Write solution in space provided

Example: for description $a_1 = 2 a \Lambda a_2 = 1$ you have evaluate the set:

$$\{\mathbf{o}: \mathbf{a}_1 = 2 \land \mathbf{a}_2 = 1\} = \{\mathbf{o}_2, \mathbf{o}_5\}$$

1)
$$a_3 = 1 \Lambda a_4 = 0$$

a₃ = 1

Record	a1	a ₂	a 4	С
01	1	1	0	1
05	2	1	0	1

$a_2 =$	1	\ а₄	= 0
a	1 1	1 a4	

uj 111ui 0					
Record	a 1	a ₂	С		
01	1	1	1		
05	2	1	1		

$$\{o: a_3 = 1 \land a_4 = 0\} = \{o_1, o_5\}$$

2)
$$a_2 = 0 \Lambda a_3 = 2$$

$a_2 = 0$				
Record	a 1	a ₃	a 4	С
03	0	0	0	0
04	0	2	1	0

$${o: a_2 = 1 \ \Lambda \ a_3 = 2} = {o_4}$$

3) c=1

C=1				
Record	a ₁	a_2	a ₃	a 4
01	1	1	1	0
05	2	1	1	0

$${o: C = 1} = {o_1, o_5}$$

4) c=0

C=0 Record a_1 a₃ a3 **a**4 0 0 0 0 03 2 2 0 1 04

 ${o: C = 0} = {o_3, o_4}$

2: Given a dataset:

Recor	a 1	<i>a</i> ₂	a 3	a 4	С
d					

01	1	1	1	0	1
02	2	1	2	0	2
03	0	0	0	0	0
04	0	0	2	1	0
05	2	1	1	0	1

C - class attribute

For the following formulas use proper definitions stated above to determine (it means prove) whether they are or they are not DISCRIMINANT / CHARACTERISTIC RULES in our dataset

5)
$$a_1 = 1 \land a_2 = 1 \implies C = 1$$

DESCIPTION ⇒ CLASS DISCRIMINANT FORMULA

$a_1=1$				
Record	a ₂	a ₃	a4	С
01	1	1	0	1

$a_1 = 1 \Lambda a_2 = 1$			
Record	a ₃	a 4	С
01	1	0	1

C=1

Record	a ₁	a ₂	a ₃	a4
01	1	1	1	0
05	2	1	1	0

 $\{o : a_1 = 1 \land a_2 = 1\} = \{o_1 \}$ $\{o : DESCRIPTION\} \text{ not} = \emptyset$ $\{o : C = 1\} = \{o_1, o_5 \}$ $\{o : a_1 = 1 \land a_2 = 1\} = \{o_1 \} \subseteq \{o : C = 1\} = \{o_1, o_5 \}$ $\{o : DESCRIPTION\} \subseteq \{o : CLASS\}$ Rule in the dataset = true

6)
$$C = 1 \implies a_1 = 0 \ \Lambda a_2 = 1 \ \Lambda a_3 = 1$$

CLASS ⇒ DESCRIPTION CHARACTERISTIC FORMULA

C=1				
Record	a ₁	\mathbf{a}_2	a ₃	a 4
01	1	1	1	0
05	2	1	1	0

 $a_1 = 0$

al 0				
Record	a ₂	a ₃	a 4	С
03	0	0	0	0
04	0	2	1	0

 $a_1 = 0 \Lambda a_2 = 1$ None $a_1 = 0 \Lambda a_2 = 1 \Lambda a_3 = 1$ None

 $\{ o : a_1 = 0 \land a_2 = 1 \land a_3 = 1 \} = \emptyset$ $\{ o : C = 1 \} = \{ o_1, o_5 \}$ $\{ o : a_1 = 0 \land a_2 = 1 \land a_3 = 1 \} = \emptyset \cap \{ o : C = 1 \} = \{ o_1, o_5 \} = \emptyset$ $\{ o : DESCRIPTION \} \cap \{ o : CLASS \} = \emptyset$

Rule in the Dataset = false

7) $C = 2 \implies a_1 = 1$

 $CLASS \Rightarrow DESCRIPTION$

CHARACTERISTIC FORMULA

C=2				
Record	a ₁	a ₃	a3	a 4
02	2	1	2	1

 $a_1=1$

$a_1 - 1$					
Record	a ₂	a 3	a 4	С	
01	1	1	0	1	

{o: $a_1 = 1$ }= {o₁ } {o: C = 2}= {o₂ } {o: $a_1 = 1$ }= {o₁ } \cap {o: C = 2}= {o₂} = Ø {o: DESCRIPTION} \cap {o: CLASS} = Ø

Rule in the Dataset = false

8)
$$C = 0 \implies a_1 = 1 \land a_4 = 0$$

CLASS ⇒ DESCRIPTION CHARACTERISTIC FORMULA

C=0				
Record	a ₁	a 3	a ₃	a 4
03	0	0	0	0
04	0	2	2	1

 $a_1=1$

Record	a_2	a ₃	a4	С
01	1	1	0	1

 $a_1 = 1 \Lambda a_4 = 0$

Record	a ₂	a3	С
0 ₁	1	1	1

$$\{o: C = 0 \} = \{ o_3, o_4 \} \{o: a_1 = 1 \land a_4 = 0\} = \{ o_1 \} \{o: C = 0 \} = \{ o_3, o_4 \} \cap \{o: a_1 = 1 \land a_4 = 0\} = \{ o_1 \} = \emptyset \{o: DESCRIPTION\} \cap \{o: CLASS\} = \emptyset$$

Rule in the Dataset = false

9)
$$a_1 = 2 \wedge a_2 = 1 \wedge a_3 = 1 \Rightarrow C = 0$$

DESCIPTION ⇒ CLASS DISCRIMINANT FORMULA

$a_1=2$				
Record	a ₂	a ₃	a 4	С
02	2	1	2	2
05	2	1	1	1

 $\begin{array}{l} a_1=2 \ \Lambda \ a_2=1 \\ \text{None} \end{array}$

 $a_1 = 2 \Lambda a_2 = 1 \Lambda a_3 = 1$ None

C=0 Record a_1 a₃ a3 **a**4 0 0 0 0 03 2 2 1 0 04

 $\{ o : a_1 = 0 \land a_2 = 1 \land a_3 = 1 \} = \emptyset$ $\{ o : DESCRIPTION \} = \emptyset$

Rule of Dataset = false

10)
$$a_1 = 0 \ \Lambda a_3 = 2 \Longrightarrow C = 1$$

DESCIPTION ⇒ CLASS DISCRIMINANT FORMULA

$a_1 = 0$				
Record	a ₂	a ₃	a 4	С
03	0	0	0	0
04	0	2	1	0

 $\frac{a1 = 0 \Lambda a3 = 2}{\text{Record}}$

Record	a ₂	a 4	С
03	0	0	0

C=1

Record	a ₁	a ₂	a ₃	a4
0 ₁	1	1	1	0
05	2	1	1	0

 $\{o: a_1 = 0 \land a_3 = 2\} = \{o_3\}$ $\{o: DESCRIPTION\} \text{ not} = \emptyset$ $\{o: C = 1\} = \{o_1, o_5\}$ $\{o: a_1 = 0 a_3 = 2\} = \{\emptyset\} \subseteq \{o: C = 1\} = \{o_1, o_5\}$ $\{o: DESCRIPTION\} \text{ not} \subseteq \{o: CLASS\}$

Rule in the Dataset = false

PART TWO: Decision Tree Learning 1

Here is the TRAINING DATA SET FOR THE HOMEWORK: Class Attribute: Buys Computer

Age	Income	Studen	Credit	Buys
		t	Rating	Computer
<=30	High	No	Fair	No
<=30	High	No	Excellent	No
314	High	No	Fair	Yes
0				
>40	mediu	No	Fair	Yes
	m			
>40	Low	Yes	Fair	Yes
>40	Low	Yes	Excellent	No
314	Low	Yes	Excellent	Yes

0				
<=30	mediu	No	Fair	No
	m			
<=30	Low	Yes	Fair	Yes
>40	mediu	Yes	Fair	Yes
	m			
<=30	mediu	Yes	Excellent	Yes
	m			
314	mediu	No	Excellent	Yes
0	m			
314	High	Yes	Fair	Yes
0				
>40	mediu	No	Excellent	No
	m			

Problem 1

Use the Training Data to create two decision trees:

Tree 1 : Build the decision tree using **general majority voting heuristic**, defined as follows:

You CAN use MAJORITY Vote for the majority class at any table at any level of the tree – when you choose so.

Use **CREDIT RATING** as the **root attribute**, and nodes attributes of your own choice;

Write down all the rules determined by your tree in the **predicate** form

2. EVALUATE predictive accuracy for the set of your rules with respect to the TEST Dataset below

SHOW WORK.

Tree 2 Use Basic ID3 algorithm

Use INCOME as root attribute, and nodes attributes of your choice;

2. Write down all the rules determined by your tree in the **predicate form**

3. EVALUATE predictive accuracy for the set of your rules with respect to the TEST Dataset below SHOW WORK.

TEST DATA SET

Ob	Δœ	Incom	Studen	Credit_Ratin	Clas
j	Age	e	t	g	S
1	<=30	High	Yes	Fair	Yes
2	314 0	Low	No	Fair	Yes
3	314 0	High	Yes	Excellent	No
4	>40	Low	Yes	Fair	Yes
5	>40	Low	Yes	Excellent	No
6	<=30	Low	No	Fair	No

Problem 2

Create test data sets of at least 6 records for your sets of rules rules corresponding to Tree 1 and Tree 2 that guarantees 100% predictive accuracy.

PROVE that your Example is correct.

Extra Credit

EVALUATE Information Gain for 2 attributes on one NODE of your tree.

You must show work, not a final number; in fact you can write proper formulas for its computation without evaluating (calculator) the numbers.

I want to SEE if you understand the formulas.

SOLUTIONS

ATTENTION: TREES PUBLISHED here MAY have MISTAKES!! YOu have to find what and where they are is wrong - I explained it in class many times It is an exercise for proper application Of the **Decision Tree Algorithm TERMINATING Conditions.**

Also In the case of the **general voting heuristic** Evebody can have different anwrrs of the one published here

Tree 1 and Rules from Tree 1

Use general voting heuristic, defined as follows: You CAN use MAJORITY Vote for the majority class at any table at any level of the tree – when you choose so

Training Data:

Age	Income	Student	Credit Rating	Buys Computer
<=30	High	No	Fair	No
<=30	High	No	Excellent	No
3140	High	No	Fair	Yes
>40	Medium	No	Fair	Yes
>40	Low	Yes	Fair	Yes
>40	Low	Yes	Excellent	No

3140	Low	Yes	Excellent	Yes
<=30	Medium	No	Fair	No
<=30	Low	Yes	Fair	Yes
>40	Medium	Yes	Fair	Yes
<=30	Medium	Yes	Excellent	Yes
3140	Medium	No	Excellent	Yes
3140	High	Yes	Fair	Yes
>40	Medium	No	Excellent	No

We choose Credit Rating as the root attribute

		Credit Rating					
			Fair			Excellent	t. /
Age	Income	Student	Buys Computer		Age	Income	
<=30	High	No	No		<=30	High	
3140	High	No	Yes		>40	Low	
>40	Medium	No	Yes		3140	Low	
>40	Low	Yes	Yes		<=30	Medium	
<=30	Medium	No	No		3140	Medium	
<=30	Low	Yes	Yes		>40	Medium	
>40	Medium	Yes	Yes				١
3140	High	Yes	Yes				
						St	u

General Majority Voting = Yes

No					Yes	
Age	Income	Buys		Age	Income	Buys
		Computer				Computer
<=30	High	No		>40	Low	No
3140	Medium	Yes		3140	Low	Yes
>40	Medium	No		<=30	Medium	Yes

Student

Student

No

Yes

Yes

Yes

No

No

Buys Computer

No

No

Yes

Yes

Yes

No

General Majority Voting = No

General Majority Voting = Yes

2. Rules

R1. Credit Rating(x, Fair) ⇒ buysComputer(x, Yes)
R2. Credit Rating(x, Excellent) Λ Student(x, No) ⇒ buysComputer(x, No)
R3. Credit Rating(x, Excellent) Λ Student(x, Yes) ⇒
buysComputer(x, Yes)

Tree 2 and Rules from Tree 2

Age	Income	Student	Credit Rating	Buys Computer
<=30	High	No	Fair	No
<=30	High	No	Excellent	No
3140	High	No	Fair	Yes
>40	Medium	No	Fair	Yes
>40	Low	Yes	Fair	Yes
>40	Low	Yes	Excellent	No
3140	Low	Yes	Excellent	Yes
<=30	Medium	No	Fair	No
<=30	Low	Yes	Fair	Yes
>40	Medium	Yes	Fair	Yes
<=30	Medium	Yes	Excellent	Yes
3140	Medium	No	Excellent	Yes
3140	High	Yes	Fair	Yes
>40	Medium	No	Excellent	No

				Income
		I	.ow	Medium
Age	Student	Credit Rating	Buys Computer	
>40	Yes	Fair	Yes	
>40	Yes	Excellent	No	
3140	Yes	Excellent	Yes	
<=30	Yes	Fair	Yes	

	High		
Age	Student	Credit Rating	Buys Computer
<=30	No	Fair	No
<=30	No	Excellent	No
3140	No	Fair	Yes
3140	Yes	Fair	Yes

Age Student		Credit Rating	Buys	
			Computer	
>40	No	Fair	Yes	
<=30	No	Fair	No	
>40	Yes	Fair	Yes	
<=30	Yes	Excellent	Yes	
3140	No	Excellent	Yes	
>40	No	Excellent	No	

R1. Income(x, Low) Λ Age(x, <=30) \Rightarrow buysComputer(x, Yes) R2. Income(x, Low) Λ Age(x, 31...40) \Rightarrow buysComputer(x, Yes) R3. Income(x, Low) Λ Age(x, >40) Λ CreditRating(x, Fair) \Rightarrow buysComputer(x, Yes) R4. Income(x, Low) Λ Age(x, >40) Λ CreditRating(x, Excellent) \Rightarrow buysComputer(x, No) R5. Income(x, Medium) Λ Student(x, No) Λ Age(x, <=30) \Rightarrow buysComputer(x, No) R6. Income(x, Medium) Λ Student(x, No) Λ Age(x, 31...40) \Rightarrow buysComputer(x, Yes) R7. Income(x, Medium) Λ Student(x, No) Λ Age(x, >40) $\Lambda \Rightarrow$ buysComputer(x, Yes) R8. Income(x, Medium) Λ Student(x, No) Λ Age(x, >40) Λ CreditRating(x, Excellent) \Rightarrow buysComputer(x, No) R9. Income(x, Medium) Λ Student(x, Yes) \Rightarrow buysComputer(x, Yes) R10. Income(x, High) Λ CreditRating(x, Fair) Λ Age(x, <=30) \Rightarrow buysComputer(x, No) R11. Income(x, High) \wedge CreditRating(x, Fair) \wedge Age(x, 31...40) \Rightarrow buysComputer(x, Yes) R12. Income(x, High) Λ CreditRating(x, Fair) Λ Age(x, >40) \Rightarrow buysComputer(x, No) R13. Income(x, High) Λ CreditRating(x, Excellent) \Rightarrow buysComputer(x, No)

Obj	Age	Income	Student	Credit_Ratin	Class
				g	
1	<=30	High	Yes	Fair	Yes
2	3140	Low	No	Fair	Yes
3	3140	High	Yes	Excellent	No
4	>40	Low	Yes	Fair	Yes
5	>40	Low	Yes	Excellent	No
6	<=30	Low	No	Fair	No

Predictive Accuracy for Tree 1

Obj 1: Fits - must say which rule

Obj 2: Fits Fits - must say which rulke

Obj 3: Fails R3

Obj 4: Fits Fits - must say which rule Obj 5: Fails R3 Obj 6: Fails R1

3 Passed/out of 6=50% Predictive Accuracy

Obj	Age	Income	Student	Credit_Ratin	Class
				g	
1	<=30	High	Yes	Fair	Yes
2	3140	Low	No	Fair	Yes
3	3140	High	Yes	Excellent	No
4	>40	Low	Yes	Fair	Yes
5	>40	Low	Yes	Excellent	No
6	<=30	Low	No	Fair	No

Predictive Accuracy for Tree 2

Obj 1 Fails R10

Obj Fits - must say which rule

Obj 3 Fits - must say which rule

Obj 4 Fits - must say which rule

Obj 5 Fits - must say which rule

Obj 6 Fails R1

4 Passed/out of 6=66.7% Predictive Accuracy

Problem 2 Solution for Tree 1

Obj	Age	Income	Student	Credit_Ratin	Class
				g	
1	<=30	Low	Yes	Fair	Yes

2	3140	Low	Yes	Fair	Yes
3	3140	High	Yes	Excellent	Yes
4	3140	Medium	No	Fair	Yes
5	>40	Medium	No	Excellent	No
6	<=30	Low	No	Fair	Yes

- Obj 1 Fits must say which rule
- Obj 2 Fits I must say which rule
- Obj 3 Fits] must say which rule
- Obj 4 Fits must say which rule
- Obj 5 Fits must say which rule
- Obj 6 Fits must say which rule

6 Passed/out of 6=100% Predictive Accuracy

Problem 2 Solution for Tree 2

Obj	Age	Income	Student	Credit_Ratin	Class
				g	
1	<=30	Low	Yes	Fair	Yes
2	>40	High	Yes	Excellent	No
3	3140	High	Yes	Excellent	No
4	>40	Low	No	Fair	Yes
5	>40	Medium	Yes	Excellent	Yes
6	3140	Low	No	Excellent	Yes

- Obj 1 Fits must say which rule
- Obj 2 Fits I must say which rule
- Obj 3 Fits] must say which rule
- Obj 4 Fits must say which rule
- Obj 5 Fits must say which rule

Obj 6 Fits - must say which rule

6 Passed/out of 6=100% Predictive Accuracy

EXTRA CREDIT Solution

Node Selected: Income-Medium

P Class: buys_Computer=Yes N Class: buys_Computer=No

Records at Node Attributes examined Student Credit Rating

Age	Studen	Credit	Buys
	t	Rating	Compute
			r
>40	No	Fair	Yes
<=30	No	Fair	No
>40	Yes	Fair	Yes
<=30	Yes	Excellent	Yes
314	No	Excellent	Yes
0			
>40	No	Excellent	No

 $Info(D) = I(4,2) = (-4/6)\log_2(4/6) - (2/6)\log_2(2/6) = -0.667\log_2(0.667) - 0.333\log_2(0.333) = -0.667(-0.584) - 0.333(-1.586) = +0.390 + 0.528 = 0.918$ Info_{Student}(D) = (2/6)I(2,0) + (4/6)I(2,2)

 $I(2,0) = (-2/2)\log_2(2/2) - (0/2)\log_2(0/2) = -1\log_2(1) - 0\log_2(0) = -1(0) - 0(0) = 0 - 0 = 0$

 $I(2,2) = (-2/4)\log_2(2/4) - (2/4)\log_2(2/4) = -0.5\log_2(0.5) - 0.5\log_2(0.5) = -1(-1) - 0(-1) = 1 - 0 = 1$

 $Info_{Student}(D) = (2/6)I(2,0) + (4/6)I(2,2) = 0.333(0) + 0.667(1) = 0 + 0.667 = 0.667$

Info(D)-Info_{Student}(D)=0.918-0.667=0.251=Information Gain for Student Attribute at Node

 $Info_{Credit_Rating}(D) = (3/6)I(2,1) + (3/6)I(2,1)$

 $I(2,1) = (-2/3)\log_2(2/3) - (1/3)\log_2(1/3) = -0.667\log_2(0.667) - 0.333\log_2(0.333) = -0.667(-0.584) - 0.333(-1.586) = +0.390 + 0.528 = 0.918$

Info_{Credit Rating}(D)=(3/6)I(2,1)+(3/6)I(2,1)=0.5(0.918)+.5(0.918)=0.459+0.459=0.918

Info(D)- Info_{Credit_Rating}(D)=0.918-0.918=0=Information Gain for Credit_ Rating Attribute at Node

Information Gain on Student is Greater than on Credit Rating