THE KLUWER INTERNATIONAL SERIES

IN ENGINEERING AND COMPUTER SCIENCE ‘ MANAGIN G UNCERT, AINTY
| IN EXPERT SYSTEMS

éf f{ Ha coaloed | \
|

% _ by

R Jerzy W, Grzymala-Busse
University of Kansas

KLUWER ACADEMIC PUBLISHERS
w Boston/Dordrecht/London

24y

- 8

16 Managing Uncenainty in Expen Systems

quantifiers (V ,3),
parentheses and cotmmas) .)

Symbol ¥V means universal quantifier, "for all”, while'El mf:ans e;‘:is:elnrial
quantifier, “there exists”. The expression to which a quanluﬁer is applied is the
scope of the quantifier. An occurrence of an indjvic.luall variable x is bound lf.al'ld
only if it is either an occurrence (Vx) or (3x) or }Jvuhm the scope of a quantifier
(Vx) or (3x). Any other occurrence of a variable is a free occurrence. F‘or exam-
ple, in the expression (VX)(R(x) A S(7)), the scope of the quantifier is R(x) A
S(y), and thus x is a bound variable in both of its occurre’ml:es. The van.af)le 2
oceurs free, since even if it is within the scope of a quantifier, the quantifier is

not on'y. ‘
Thus, the following are expressions of predicate calculus:

Sue = likes (someone), i.e., someone likes Sue,
isnice (Ann), 3

Sue = likes (Ann) A Ann = likes (Sue),

(Vx) (1 2 fx),

(3x) (x 2 f(2)),

(Vx) @y) (1 2f) A (¢ 2A))).

f first order If quantifiers V and 3 are taken over indi-

Predicate calculus is o :
t not over functions or

viduals (i.e., they are of the form (¥x), (3someone)) bu
predicates.
The set of all the prece

predicate calculus. Terms are :
be obtained by finitely many applications of the following rules:

ding symbols is called the alphabet of the first-order
precisely those strings over the alphabet that may

1. Every constant is a term,

2, Every variable is a term,

3. 1f 1y, t3,0 [5 8TC LETMS and f is an n-ary function symbol,
f(11, 12,000 15) 18 @ tEFTOL)

then

From the preceding examples, none is a tert, Examples of terms are Ann,

someone, likes(Ann).
Atomic formulas are expressions of the form
P(ti: fases taks

i ex-
where P is an n-ary predicate symbol, 1y, 13, [8F€ LEFMS, and n 2 1. For

isni = ic formulas.
ample, isnice (Ann), 120,2=2are atmmlc . -
The well:formed formulas are expressions that can be built from mg ato.n}:c
formulas by the use of finitely many limes connective symbols and quantifier

symbols,

Chapler 2: Knowlgdge Representation . . S 17

13
¥

The preceding definitions describe the synfax (grammar) of the first-order
predicate caleulus. Credit for the semantics for the first-order predicale calculus
belongs to A. Tarski (1933). The concepis of truth and falsity in the first-order
predicate calculus are furnished by the following definitions.)

A domain is any nonempty set. Given a set X of well-formed formulas of
the firsi-order predicate calculus, an interpretation of X is a domain D together
with an assignment to each n-ary predicate symbol of an n-ary predicate on D, 10
each n-ary function symbol of an n-ary function on D, 1o each individual con-
stant symbol of a fixed element of D, and to the equality symbol = the identity
predicate = in D, where for a, b€ D, a = b is true if and only if a and b are the
same.

A well-formed formula of the firsi-order predicate calculus is satisfiable in a
domain D if and only if there exists an interpretation with domain D and as-
signments of elements of D to the free occurrences of individual variables in the
formula such that the resulting proposition is true. A well-formed formula is
valid in a domain D if and only if for every interpretation with domain D and ev-
ery assignment of elements of D to the free occurrences of individual variables in
the formula the resulting proposition is true. A well-formed formula is satisfi-
able if and only if it is satisfiable in some domain, and it is valid if and only if it
is valid in all domains. In propositional calculus valid formulas are tautologies.

Predicate calculus is characterized by completeness and soundness, but not
by decidability.

2.2 Production Systems

Production systems were first proposed by E. Post in 1943, but their current
form was introduced by A. Newell and H. A. Simon in 1972 for psychological
modeling and by B. G. Buchanan-and E. A. Feigenbaum in 1978 for expert sys-
tems. T T

A production system consists of

1. A knowledge base, also called a rhle base, containing production rules (or *
rules, or productions), ’

2. A data base, conlaining facts,

3. A rule interpreter, also called a rule application module, 10 control the
entire production system.

2.2.1 Production Rules

Production rules are units of knowledge of the form
If conditions

then actions,

18 Managing Uncertainty in Expert Systems

The condition part of the production rule is also called the IF part, premise,
antecedent, or left-hand side of the rule, while the action part of the rule is also
called the THEN part, conclusion, consequent, succedent, or right-hand side of
the rule. Actions are executed when conditions are true and the rule is fired.

The name production rule covers a whole spectrum of different concepts.
The first way to classify production rules is with respect to the restrictions on
logical connectives between conditions and actions. Usually production rules are
of the following form:

Cialan . . AC, A vA v .. VA,

where m, 1 2 1 (see Subsection 2.3.2 and the definition of the Kowalski form).

An atomic formula €, i=1,2,...,m,0r A, j=1,2,.,n, may be repre-
sented by a triple (entity, attribute, value); for example:

(person, weight, light),

(Jan, isnice, true), %
ar '

(mycar, battery, weak), \\

In some cases (e.g., when the entity is known, is not essental, or is unique)
triples may be replaced by pairs (dnnbulc value); for example:

(weight, small),

(isnice, true),
ar

(batlery, weak),

In the preceding examples attributes are unary functions or predicates, called
nominal descriptors in Dietterich and Michalski (1983). Auributes that are k-ary
functions or predicates for k > 1 are called structured descriptors in Dietterich and
Michalski (1983). Examples of atomic formulas expressed by structured
descriplors are

{((nodel, node2), arcs, 3),
((Lawrence, Topeka), distance, 20},

({(Ann, Sue), likes, true).
In many expert systems production rules the form
CinCan . aCr—o A vAyv . VA,
is reduced further to the list of the following forms
CinCin...nC, = A

or

CIACI/\ cie £ Cm =y Ag

Chapter 2: Knowledge Represenlation 19
ar

Cyan oyt e n T =3 Ay

The form Cy A C3A ... A Co ~> A is the Horn clause form. Using this
form, another production rule of the form

Cl W C2 - A
should be substituted by the following two production rules;
C; — A
and
CI — A

Another way to classify production rules is according to the kind of action,
In general, an action is to change the content of the data base. Producton rules
in which actions are restricted exclusively to add facts to the data base are called
inference rules.

In the case of production systems dealing wilh uncertainty, even more types
of production rules are determined by the corresponding approaches to uncer-
tainty, That will be discussed in the following chapters.

Note that production rules have names and may be equipped with additional
features, not always following from uncenainty. One of them may be a (ime
tag, to carry the information about the last time the production rule was used by
the interpreter.

2.2.2 Data Base

A data base holds facts, usnally in the form of triples (entity, atmhule value)-
where the entify is a constant; for example: .

(Jan, weight, light)

(car# 42, battery, weak).

The content of the data base, in general; is changed cyclically by an inter-
preter. The facts may have time tags, so that the time of their insertion into the
dara base can be determined. ‘

2.2.3 Rule Interpreter

The rule interpreter works iteratively in recognize-and-act cycles. In such a cy-
cle, the interpreter first maliches the condition part of the production rules against
the facts in a data base, recognizing all apphcable rules. Then it sclccts one of
the applicable rules and app!ies the rule (f res or e:cecu.res it), Asa result the ac-
tion part of the producuon rule is inserted into the data base and the content of

20 Managing Uncerainty in Expent Systems

l]}c: data base is changed by the rule. Then the interpreter goes to the next recog-
mzc-and-?cl cycle. .The interpreter stops its cycling when the problem is solved
or a state is reached in which no rules are applicable,

2.2.3.1 Pattern Matching

.Usually. the terms of conditions and actions of rules are writien as triples
(:lanL‘uy, auribute, value), where entities are variables, and facts are represented by
similar triples, although of a different type, because the entities are constants,
The problem of pattern marching arises, that is, matching triples of different
types. For example:

(person, yearly income, greater than $15,000)
A (person, value of house, greater than $30,000)
— (person, loan to get, less than $3,000)

is a production rule, while A

(John, yearly income, greater than $15,000)

(John, value of house, greater than $30,000)

are facts.

Before matching may be performed, the variable “person” must be assigned a
constant value, The assignment of the constant “John” to variable “person”
makes the first two patterns in the production rule identical to the corresponding
facts, Thus, the firing of the production rule in forward chaining causes the new
fact (John, loan to get, less than $3,000) to be added to the data base.

During a cycle performed by an interpreter; most of the time is spent on pat-
.ern matching. Thus it is important to find an efficient algorithm for pattern
natching. The most popular one is the Rete match algorithm (Forgy, 1982).
This algorithm takes advaniage of pattern similarity and temporal redundancy.
The former means that a rule is tested against the same contents of data base, and
some matching can be done at the same time because many patterns are similar,
The latter follows from the fact that the contents of the data :base, although
changed after each cycle, are modified only a little, Thus, for two consecutive
cycles, most of the, information necessary for pattern matching may be saved.
The Rete matching algorithm is used in the rule-based language OPS5, a lan-
guage used for programming expert systems.

2.2.3.2 Conflict Resolution

R.ecogtllition may be divided into selection and conflict resolution, where

“selection” means the identification of all applicable rules, based on pattern

n_]?_a‘trr:hing', and “conflict resolution” means the choice of which rule to fire.

_ Some approaches to conflict resolution are listed here—they may be used in
combination,

e e e T TP

-

Chapter 2; Knowledge Representation 21

« The most specific rule. Thus, if the facts in the data basc are P and Q
and the rules are P — R and P ~ Q — S, then both rules are applicable,
and the second should be fired, because its condition part is more detailed,

+ The rule using the mosi recent facis. Facts must have time tags,
« Mighest priority rule. Rules must have assigned priorities,

+ The first rule. Rules are linearly ordered and the least applicable rule is
fired,

« No rule is allowed to fire more than once on the basis of the same con-
tents of the data base. This eliminates firing the same rule all the time,

2.2.4 Forward Chaining

Forward chaining is also called dara-driven, bottom-up, ot antecedent chaining.
During the selection time of each cycle, the interpreter is looking for applicable
rules by matching condition parts of rules with the current contents of the data
base. It is necessary to recognize when to stop applying rules. The condition to
terminate the process is either when the goal is reached or when all possible facts

are already inferred from the initial data base.
Consider the following trivial example of a production system that might be

used in troubleshooting car problems. For simplicity, variables in rules are ig-
nored in the example, so that pattern maiching is not necessary. The rules are

R1. If the ignition key is on
and the engine won't start,
then the starting system (including the battery) is faulty.

R2. If the starting system (including the batiery) is faulty
and the headlights-work,
then the starter is faulty. .

R3. If the starting system (including\-ﬂne battery) is faulty
and the headlights do not work,
then the battery is dead.

R4. If the voltage test of the ignition switch shows 1 to 6 volts,
then the wiring between the ignition switch and the solenoid is

OK.

RS. If the wiring between the ignition switch and the solenoid is OK,
then replace the ignition switch.

Initially, the data base contains the following facts:
A. The ignition kc'y is on,

B. The engine won't start,

22 Managing Uncertainty in Expert Systems

Front Rear

R1 R4

Queue
Flgure 2.1 The Queus before the First Rule Firing

C. The headlights work,
D. The voltage test of the solenoid shows 1 to 6 volts,

In the example it is assumed that forward chaining is applied, and that a rule
is applicable only if its condition part is true and if its action part adds a new [act
to the data base. Moreover, rules are ‘grdered according to their names (i.e., R1
precedes R2, R2 precedes R3, etc.) and they are scanned by the interpreter in that
order. Applicable rules are sugcessively inserted into a queue on a first-come,
first-served basis, However, if g rule is already in the queue, then it is not in-
serted again. Conflict resolution is-taken into account by firing the rule removed
from the front of the queue. The goal is inferring all possible facts from the ini-
tial data base,

Initially, the applicable rules are R1 and R4, and they are inserted at the end
of the queue, as illustrated by Figure 2.1,

Rule R1 is remaved from the front of the queue and fired. Thus the new fact

E. The starting systemn (including the battery) is faulty

is added to the data base.

In the second cycle produced by the interpreter, rules are classified as fol-
lows:

+ Rule R1 is no longer applicable, since its action part would add E (o the
data base, and it is already there.

* Rule R2 is applicable, and it is added to the end of the queue,

Front Rear
R4 R2
Queue

Figure 2.2 The Queue before the Second Rule Firing

,b“"

"

o

T ML T TR =

Chapter 2: Knowledge Representation 23

Front Rear

R2 R5

Queue
Figure 2.3 The Queue before the Third Rule Firing

+ Rule R3 is not applicable; rule R4 is applicable, but it is already in the
queue; rule RS is not applicable,

Finally the queue contains two rules, R4 and R2, as illustrated by Figure
2.2. Rule R4 is removed from the front of the queue and fired, so thal the new
fact

F. The wiring between the ignition swilch and the solenoid is OK

is added to the data base.
During the third cycle, after scanning the rules, rule RS is inserted at the end

of the queue (see Figure 2.3), Rule R2 is removed from the front of the queue
and fired, producing the new fact

G. The starter is [aulty,

which is then added to the data base.

As the interpreter discovers in the next cycle, no new rule may be inserted at
the end of the queue, as the queue is represented by Figure 2.4. Rule R5 is re-
moved from the front of the queue and fired, producing the new fact

H. Replace the ignition switch,
which is then added to the data base,

In the next cycle there are no applicable rules, nor are there any rules re-
maining in the queue from earlier cycles, so the interpreter halts the computa-

tion.
It can be'seen that rules R1, R2, R3, R4, and RS might be fired in different

Front = Rear

R5

Queus

Figure 2.4 The Queue before the Fourth Rule Firing

Initial Content of Data Base

R4

R1

RS

‘ABCDEF

ABCDFH

ABCDEG

R2
[ABCDEFG] (ABCDEFH] (ABCDEFGJ' (ABCDEFH], (ABCDEFG)

[}BCDEFGHJ (}BCDEFG%] [ABCDEHma [}BCDEFGQ) (}BGDEFG;)

Figure 2.5 Search Space

ABCDEFH

ABCDEFGH

Vi ot

Figure 2.6 An Inference Network for Rule R1

sequences, The search space for the problem is presented in Figure 2.5, where
nodes represent current contents of the data base and arcs depict applicable rules.

From Figure 2.5 it follows that with initial contents of the data base rules,
R1 or R4 may fire. If the fired rule is R4, then rules R1 or R5 may fire, and so
on.
The preceding sets of facts and rules may be represented by an inference net-
work, a concept discussed in Duda et al. (1979). In the inference network, facts
are viewed as nodes and rules as arcs. For example, rule R1, which says

Figure 2.7 An Inference Network

26

Managing Uncertainty in Expert Systems

Flgure 2.9 Breadth-First Search

Chapter 2: Knowledge Representation 217

If A and B then E

is presented in Figure 2.6.

The minor arc, connecting arrows from A (o E and from B to E, indicates
the and connective, which appears in rule R1 between facts A and B. The infer-
ence network illustrating the preceding example is presented in Figure 2.7, where
I denotes the following fact:

The battery is dead.

" Inference networks are helpful in solving problems associated with produc-
tion systems. In some systems handling uncertainty, inference networks are used
as useful models of knowledge propagation (see Section 4.2).

2.2.5 Depth-First and Breadth-First Search

The tree in Figure 2.5 may be traversed starting at the root and then following
the leftmost path (o a leaf, then starting from the last choice-point, again follow-
ing the leftmost path to a leaf, and so on. This is depicted in Figure 2.8,

Another way of traversing the same tree is. presented in Figure 2.9, Now
the earliest choice-point is picked first, so that all nodes on a given level are vis-
ited from left to right before going on to.the next level. ; ‘

The main disadvantage of the depth-first search is that before the identifica-
tion of the shortest path, many other long paths may be traced,. The advantage is
the simplicity of the implementation. _Another advantage of .the depth-first
search is at the same time the disadvantage of the breadth-first search, pamcly,
the breadth-first search needs more memory, since all nodes at a given level 1o
the left and all nodes at the preceding level must be memorized. The advantage
of the breadth-first method is that the firsi-found solution is always the shortest

path,
2.2.6 Backward Chaining

In backward chaining, also called goal-driven, top-down, or consequent chaining,
the production sysiem establishes whether a goal is supported by the data base.
For example, the goal is fact F. First, it should be checked whether F is in the
data base. If so, F is supported by the data base. If not, but — F is in the data
base, the goal should be rejected. If neither F nor — F is in'the data base, appli-
cable rules are determined, In backward chaining, applicable rules are recog-
nized by matching action parts of rules with fact F. Let R be an applicable rule,
selected by the interpreter. The condition part Cy A C2A ... A C,, of rule R is
now checked against the data base. If all Cy.Cyq, ..., C,, after the substitu-
tions determined by matching, are in the data base, the solution is reached and
is true. Let’s say that C is any of C;, C3, C,, (again, after corresponding
substitutions). If — C is present in the data base, then K cannot be used and an-
other rule should be selected, [f neither C nor — C can be found in the data base,

!hen C is a subgoal and the preceding procedure should start again the same way
it is described for /. If no applicable rule exists and the truth of F is nol estab-
lished, the system may ask the user to provide additional facts or rules.

As an example, the same set of rules R1, R2, R3, R4, and R5 and initial
colmff:{n; of the data base as in Section 2.2.4 will be considered. The action of
rule

The battery is dead

will be denoted by [.

The goal is H A I. First, /{ will be considered. "H is not in the data base.
The only rule whose action part matches / is RS.

_ The condition part of R5 is F. F is not in the data base, so it is a subgoal.
_The only rule with the action part matching F is R4. The condition part of R4
is D, and it is in the data base, so F is supported, and hence # is supported.
Next / must be checked. [is not in the data base, so applicable rules are sought.
The only such rule is R3. The condition part of R3 is = C A E. C is in the
data base, hence R3 can not be used. Because this is the only applicable rule io
match /, [is not supported by the data base and the entire goal should be rejected.

Usually backward chaining is executed as depth-first search. Backward
chaining is used in applications with a large amount of data (e.g. in medital di-
agnosis). If the goal is to infer a specific fact, forward chaining may waste time,
inferring a lot of unnecessary facts. On the other hand, during backward chaining
a very large tree of possibilities may be constructed.

Forward and backward chainings are two basic forms of inference in produc-
tion systems. However, mixed strategies are frequently used in practice. For ex-
amplé, given facts and rules, forward chaining may be used initially ahd then
backward chaining is applied to find other facts that support the same goal,

2.2.7 Metaruies

Metarules are rules about rules. They may be domain-specific, like

If the car does not start,
then first check the set of rules about the fuel system,

or domain-free, i.e., not related to the specific domain, like

It the rules given by the owner’s manual apply
and the rules given by the textbook apply,
then check first the rules given by the owner's manual.

Metarules reduce computation time by eliminating futile séarching for a so-
lution, The reduction may be achieved by pruning unnecessary paths in the
search space, i.e., by ignoring such paths.

S AT e ol ot

228 Forward and Backward Reasoning Versus
Chaining

Forward and backward chaining were described previously. Both concepls are re-
lated to the way rules are activated by the interpreter.

On the other hand, the way reasoning is done depends on how the entire
program is organized or what the problem-solving surategy is. If that stralegy is
bottom-up, the reasoning is forward. If it is top-down, the reasoning is back-
ward (see Jackson 1986).

For example, XCON, an expert system designed Lo configure VAX comput-
ers, uses forward chaining and backward reasoning. The main goal, to configure
a system, is divided into subgoals, to configure its components, and so on.
Thus, the reasoning is backward.

2.2.9 Advantages and Disadvantages of
Production Systems

The most obvious advantage of production systems is their modularity. Produc-
tion rules are the independent pieces of knowledge, so that they may be easily
added to or deleted from the knowledge base. The knowledge of experts is ex-
pressed in a natural way using rules, and then the rules may be easily understood
by people not involved in expert system building.

The disadvantages follow from the inefficiency of big production systems
with rules that are not organized in any kind of structure and from the fact that
algorithms are difficult to follow. Still, rule-based expert systems are the most
popular among all such systems.

2.3 Semantic Nets

Semantic nets and frames belong to a class of knowledge representations ealled
“slot and filler” or “structured objeet”. Semantic nets were first used by M. R,
Quillian in 1968. At the same time,"B. 1. Raphael independently used the con-
cept as a model of human memory. Semantic nets proved their usefulness in
representation of natural language sentences,

A semantic net is a directed labeled graph, in which nodes represent entifies,
such as objects and situations, and arcs represent binary relations between enti-

Professor In the W isa r Professor in the

Department of College of Liberal
Computer Science J L

Arts and Sciences

Figure 2.10 An jsa Arc

Professor in the

—[Department of

Smith W et

Compuler Sclence

Flgure 2,11 An inst Arc

ties. Labels on nodes and arcs represent their names,

2.3.1 Basic Properties

One of the key ideas in artificial intelligence is the isa hierarchy. The concept
may be expressed using two predicates, isa (“is a”)-and ins¢ (“is an instance of™).
The former indicates that a class is a specific case of another class, while the lat-
ter says that a specific element belongs to a class, In both cases, objects of a
specific nature inherir properties of objects of a more general nature.

For example, a class represented by a professor in the Department of Com-
puter Science is a subclass of the class represented by a professor in the College
of Liberal Arts and Sciences. On the other hand, Smith is an instance of a class
represented by a professor in the Department of Computer Science. This is
illustrated by Figures 2.10 and 2.11),

Semantic nets are natural representations for domains where reasoning is
based on property inheritance. A simple example is presented in Figure 2,12
As shown, Smith uses CSNET, has a Ph.D. degree, and teaches CS 747,

A problem arises when we (ry to represent n-ary relations using semantic
nets, For example, one wishes to express not only that Smith teaches CS 747,
but also that he uses the textbook “AI" and that the location of his course is
room 111 in Green Hall. To do that, an additional node is necessary, (o repre-
sent the 4-ary relation “teaching”, as illustrated by Figure 2,13,

/4

2.3.2. Extended Semantic Nets

A version of semantic nets, extended semantic nets, was introduced in Deliyanni
and Kowalski (1979). The main idea is based on “clausal form", introduced by
R. A. Kowalski, also known as the “Kowalski clausal form” (Frost, 1986).

A clause in the Kowalski form is an expression of the form

C| ACZA.../\CM'—)K]VKZV ...VK",
where €, Cy, ..., Cn, K1, K3, ..., K, are atomic formulas, m > 0 and n 2 0.

The atomic formulas C,, C,, ..., C,, are called conditions, and atomic formulas
K, Ky, ..., K, are called conclusions,

teaches

&5 748—*—(Smith
{eaches

P.h.D. degree

University

Professor in the

Professor in the "}
College:of

Liberal Arts and
Sciences

Professor in the
Depanment of
Computer Science

inst

teaches

inst
inst i
(CourseHcs 737}——(White
inst

Professor in the
Department of

Math 51 H Young

Mathematics

Figure 2.12 A Property inheritance

: 32 Managing Uncertainty in Expert Systems

isdonethrough

inst

Teaching

dD isin

|

(Course) .

isodoneby

isdonein

isdonewith
: Room 111

inst
" (Green Hall)

inst

(' Building)

Figure 2.13 Reprasentation of 4-ary Reélation

For m = 0 the form is reduced to

oK vK,v.. vk,

and is interpreted as

KlVKEV - VK,‘.

When n = 0, then the form

CinConwinlCp—

is interpreted as the denial of Cy A Cy A ...

~ C,, and written as

_"(Cl /\Cg/\ /\Cm).

If m=n=0, then the form should be interpreted as a fallacy.

teaches

{ Smith)

Figure 2.14 Conclusion Arc

- CS 747)

Chapter 2. Knowledge Representation 23

teaches

Figure 2.15 Condition Arc

In extended semantic nets, nodes represent terms, and arcs can represent bi-
nary relations. Two different types of arcs are used. Components of a condition
are connected by the broken arrow, while components of a cohclusion are con-
nected by the ordinary arrow. Thus, the clause

— Smith teaches CS 747
is represented by Figure 2.14, while
Smith teaches CS 760 —

meaning that Smith does not teach CS 760, is represenied by Figure 2.15.
Figure 2,16 illustrates the clause

Smith inst professor — (Smith inst male v Smith inst female).

An example of the extended semantic net is presented in Figure 2,17. This
net represents the following set of clauses:

— Martin likes Robin,
— Robin likes comn,
— com isa food,

Robin inst bird — Robin hasa beak,

Frofessor [esmces===

Flgure 2.16 A Clause

34 Managing Uncertainty in Expert Systems

inst

Figure 2.17 An Extended Semantic Net

1
1
i
i
!
]

Martin likes cormn —,

2.3.3 Concluding Remarks

An example of the application of semantic nets o expert systems is
PROSPECTOR, developed by Stanford Research Institule between 1974 and
1083. PROSPECTOR, a rule-based expert system (like KAS, a shell derived
from it) uses a semantic net to organize production rules.

Inference in semantic nets is based on inheritance, but some other mecha-
nisms are used as well, e.g,, matching a fragment of the net with the entire net.

2.4 Frames

The concept of a frame as used here was introduced by M. Minsky in 1975. A
frame system is a generalization of a semantic net. Frames are designed for hold-
ing clusters of knowledge. They are similar to semantic nets because frames are
also linked together in a net,

Originally, frame representations were used as part of pattern-recognition
syslems, especially for understanding of natural language.

2.4.1 Basic Concepts

A frame is a data structure (o represent an entity or an entity class. It contains a
collection of memaory areas called sfors. Slots may have different sizes and may
be filled by pieces of different kinds of knowledge.

e R e R

Chapter 2: Knowledge Representalion 35

Contents of slots may be categorized into declarative and procedurc‘JI.
Declarative content may be represented by aitributes and their values, descrip-
tions, or graphical explanaiions, poiniers 1o other frames, collections of rules,

and other frames.

Narme .
Professor in the Department of Gomputer Science
Value: Procedure.
Slot. Age If-wrong
Condition 18 < Age 70
Slot: Ph.D.in
Slot: Tenure
Slot: Promotion
rules
Slot: Languages :
known English
Nams &
Full Professor 7
Value: Procedure.
Slot. Age) . ‘
Condition
Glot: Ph.D.in
Slot: Tenure Ye_s
Slot. Promotion
rules
Slet: Languages '
known English

Finura 2.18 Gensric Frames

36 Managing Uncertainty in Expert Systems
Name
John Smith
Value: Procedure:

Slot. Age 45

Condition
Slot; _ Ph.D.in CS
Slot: __Tenure Yes
Slet: Promolion

rules 4
Slet: Languages

known English

Flgure 2.19 A Specitic Frame

Some slots may contain, in addition, procedures that are triggered when the
value of the attribute of that slot is changed. These procedures may have names
like “If-added", “If-removed"”, "If-needed”, and so on. They represent the procedu-
ral aspect of the slot content. Such procedures are called demons.

Frames are labeled by their names. When a frame represents a general con-
cep, the frame is called generic. Frames containing specific information are said
to be specific or instantiated, Examples of generic frames are given in Figure
2.18, and an example of a specific frame is presented in Figure 2.19.

Slot "languages known™ in the frame “Professor in the Department of Com-
puter Science” already has one of the possible values filled, i.e., “English”.
Such a value will occur in any instantiation of that frame and is called a generic
value. Each frame from Figure 2.20 inherits that value.

Slot “tenure” in the frame “Full Professor” is filled by “Yes". It is expected
that a full professor has tenure, so such a value is called a default value. If dur-
ing the instantiation of that frame for a specific professor, it tumed out that the
status of "tenure” is “No”, the default value will be changed.

In the frame “Professor in the Department of Computer Science”, slot “Age”
is furnished with a condition 18 < Age < 70. An attempt 1o fill that slot with a
value nol satisfying the condition may trigger the attached procedure “If-wrong”
and ask the user whether the value really is not an error in filling.

Frames may be linked together in taxonomical structures like semantic nets,
using the same arcs “isa” and “inst”, as shown in Figure 2.20.

Frame systems may be used to organize production rules, so the resulting
knowledge representation is Aybrid. Thus, rules are no longer unorganized, and

Chapter 2: Knowledge Representation

37"

Professor in the
Department of
Computer
Science

Full Associate Assistant
Professor Professor Professor

inst

John Smith

Flgure 2.20 A Frame System

in one system advantages of both types of knowledge representation may be bal-
anced.

2.4.2 Inference

Some types of inference can be made using frames. The first type of inference is
based on structural properties of frames and taxonomical structures of a system.
Same methods nse inheritance. as in semantic nets. For examole. eeneric and

38 Managing Uncentainty in Expert Systems

default values of a frame are inferred as values of corresponding slots in all
frames linked (o that frame by "isa” or “inst” links.

Another (ype may be based on recognition of illegal values of a slot. In
such a situation, the system may exclude the illegal value and call the user for
help.

A third type of inference is done by frame malching, i.e., looking for a
frame in the frame system maiching a given frame. In practice, a perfect match
is difficult to accomplish, so the goal is to have as good a maich as possible.

2.4.3 Advantages and Disadvantages of Frame
Systems

The main advantage of frame systems follows from the fact that a single
frame represents an entity or an entity class by a cluster of knowledge. A frame
system represents a number of valuable aspects of the nature of knowledge, such
as a laxonomy, generic values, and default values. Moreover, both procedural
and declarative knowledge can be represented,

The main disadvantages are lack of a formal theory of frames and lack of a
uniform way to deal with uncertainty. Frame representation of knowledge, fre-
guently used in conjunction with production rule representation, is used in many
expert systems and shells, \

Exercises

1. For forward chaining write an algorithm, in pseudo-Pascal or pseudo-Lisp, or
a program, in Pascal or Lisp, to build a tree representing search space, using

a. Depth-first approach,
b. Breadth-first approach.

2. A production system is described as follows:
Rules

R1.A 88 =€,
R2ZAA=D—E,
R3.CA-D—E,
R4, CAD—=F,
RS,EAF =L,
RG. En H =3 =G,
R7.EA—H -G,
R8. [T — J,
RS.J — K.

S e i i e

Chapter 2: Knowledge Repressntation 39

Conflict Resolution

i. Rules are ordered according (o their names.
ii. The first applicable rule is selected.
iii. During each session, each rule may be fired once.
a. Tell what the content of the data base is after forward-chaining session if

the initial content of the data base is
(A,B,~D,—H,1},

b. As (a), but the inidal content is
(A,B,D,E.I],

Tell whether the goal [L) is supported by the following content of the
data base

c.

{A,B,— D, E]}

(use backward chaining),
d. As (c), but the goal is K, L] and the content is
[A, =D, = H,I).

3. A production system is described as follows:
Rules

R1.AAB—=C, _
R2. —A = H,
R3.BAD — —C,
R4.DAE—-G,
RS, C~1,

R6. —-CAG =1,
R7.~CAG— 1,
R8. —B A D = J,
R9. [J.

Conflict Resolution

i. Rules are ordered according to their names.
ii. The first applicable rule is selected.
iii. During each session, each rule may be fired once.

40 i
Managing Uncertainty in Expert Systems

a. Tell whether tl i i

Lol e ier the goal [H) is supported by the following content of the

A, -C,D,E)

(use backward chaining),

b. As (a), but the goal is
/1.

4. A production system is described as follows:

Rules

Rl.AAB - D,
R2. —A = F,

R3. —A AB ——E,
R4, BAC —E,
R5.D - G,
R6.DAE =1,
R7.D A—E— H,
R8.EAF - H,
RO. —E — G.

Conflict Resolution

i Rules are ordered according to their names.
i, The first applicable rule is selected.
iii. During each session, each rule may be fired once.
Tell whether the goals

a. (G),

b. (],

c. (1}

are supported by the following content of data base:
(—4,8,Cl.

Use backward chaining.

5. A production system is described as follows:
Rules

Rl1.AAB = E,

of rules by the interpreter, applicable rules are pu
After scanning, a rule popped from the top of th
session, any rule may be fired once.

Chaptar 2: KNOWIEaYE moptwr s .

R2.AAC - F,
R3, —A AB D,
R4. —A A—B 2 E,
RS.BAC—F,
R6. =B A =C = —F,
R7.D ~—F = H,
R8.DAF =0,
R9.EAF— H,
R10.EA—F = G.

Conflict Resolution

Rules are ordered according to their names. During each scanning of the list
shed into a stack successively.

e stack is fired. During each

a. Tell what the content of the data base is after the forward chaining ses-
sion if the initial content of the data base is

(A, B, Cl,
b. Tell whether the goal (G} 18 supported by the following content of the
data base
(-4, =8, —C)
(use packward chaining),
c. As (b), but the goal is - *
{H]).

6. A production systetn is described as follb\Q/s
Rules

Rl.A/\BH)—LD,
R2.AAB - —E,
RB.A:‘\—\B—?D,
R4. ~A A~ B—D,
R5. —A A C = —E,
R6.-’\Bf\—1c—)E.
R’].EK\—'\D—‘)G,
R8. ~E AD — G,

40 Managing Uncertainty in Expert Systems
a, '(l;;,[l: I\;l?;lher the goal (H) is supported by the following conlent of the
(A, =C,D, E)
{use backward chaining),
b. As (a), but the goal is
[/} .

4, A production system is described as follows:
Rules

RILAAB D,
R2. —A — F,

R3. —A A B — =E,
R4. BAC - E,
R5.D = G,
R6.DAE =1,
R7.D A—E—H,
RB.EAF - H,
RO, -E - G.

Confliet Resolution

i. Rules are ordered according to their names.
ii, The first applicable rule is selected.
iii. During each session, each rule may be fired once.
Tell whether the goals
a. (G).
b. (H],
c. (M)
are supported by the following content of data base:
(—4,8,C].
Use backward chaining.

5. A production system is described as follows:

Rules

RI.AAB > E,

oS i S

Chapler 2: Knowleoge nepieasnan=:

R2Z.AAC 2 F,
R3, A AB - D,
R4. —A A—8 = E,
R5.BAC—F,
R6. —B A—C =,
R7.D A—F = H,
R8. D AF — G,
R9.EAF - H,
R10.E A —F = G.

Conflict Resolution
Rules are ordered according to their names. During each scanning of the list
of rules by the interpreter, applicable rules are pushed into a stack successively.
After scanning, a rule popped from the top of the stack is fired. During each
session, any rule may be fired once.
a. Tell what the content of the data ba
sion if the initial content of the data base is

se is after the forward chaining ses-

(A, 8,Cl,
b. Tell whether the goal (G) is supported by the following content of the
data base
(—4, =8, —C]
(use backward chaining),
c. As (b), but the goal is -
(H].

6. A production systein is described as follows
A
Rules

R1.AAB— D,
R2.AAB - —E
R3.AA—B =D,
R4. —AAB—D,
RS. —A A C — —E,
RE, —B A—C — E,
R7.E n=D — G,
R8. —E A D — G,

