
LOGICS FOR COMPUTER SCIENCE:
CLASSICAL and NON - CLASSICAL

Anita Wasilewska

SPRINGER, 2018

CHAPTER 2: Introduction to Classical Logic

.

Logic builds symbolic models of our world. It builds them in such a way as to
be able to describe formally the ways we reason in and about it. It also poses
questions about correctness of such models and develops tools to answer them.
Classical Logic was created to describe the reasoning principles of mathematics
and hence reflects the ”black” and ”white” qualities of mathematics; we expect
from mathematical theorems to be always either true or false and the reasonings
leading to them should guarantee this without any ambiguity. It hence admits
only two logical values and is sometimes called a two-valued logic.

The models we build are based on a principle that the language in which we
reason uses sentences. These sentences are built up from basic assertions about
the world using special words or phrases like ”not”, ”not true” ”and”, ”or”, ”
implies”, ”if then”, ”from the fact that we can deduce”, ” if and only
if”, ”equivalent”, ”every”, ”for all”, ”any”, ”some”,” exists”. Basically, it is the
behavior of these words we want to study. Most of these words and phrases
have accepted intuitive meanings and we want our models to formalize these
meanings. To do so we first define a notion of a symbolic language and then
define a formal meaning of its symbols, called semantics.

We use symbols: ¬, for ”not”, ”not true”, ∩ for ”and”, ∪ for ”or”, ⇒ for ”
implies” , ”if then”, ”from the fact that... we can deduce”, and a symbol
⇔ for ” if and only if”, ”equivalent”. We call these symbols propositional con-
nectives. There are other symbols for propositional connectives and there are
other propositional connectives as well that we will introduce later.

We use symbols: a, b, c, p, r, q, . . . , with indices, if necessary to represent the
basic assertions, called propositions. Hence we call the symbols a, b, c, p, r, q, . . .
propositional variables.

We use symbols: ∀ for ”every”, ”any”, and ∃ for ”some” ,” exists”. The symbols
∀,∃ are called quantifiers.

Restricting our attention to the role of propositional connectives yields to what is
called propositional logic with the a propositional language and a propositional
semantics as its basic components. This is a quite simple model to justify,

1

describe and develop and we will devote first few chapters to it. We do it both
for its own sake, and because it provides a good background for developing and
understanding more difficult logics to follow.

Consideration and study of the role of propositional connectives and quantifiers
leads to what is called a predicate logic with its predicate language and semantics.
This is a much more complicated model and we will develop and study it in full
formality in chapters following the introduction and examination of the formal
propositional logic model.

In this chapter we provide motivation for and description of both propositional
and predicate languages, and discuss their semantics.

1 Propositional Languages: Motivation and
Description

The propositional language is a quite simple symbolic language into which we
can translate (represent) natural language sentences. For example, let’s consider
a natural language sentence ” If 2+2 = 5, then 2+2 = 4”. To translate it into the
propositional language we replace ”2 + 2 = 5” by a propositional variable, let’s
say a, and ”2 + 2 = 4” by a propositional variable b and we write a connective
⇒ for ”if then”. As a result we obtain a propositional language formula
(a ⇒ b). A sentence ”If 2 + 2 6= 4 and 2 + 2 = 5, then 2 + 2 = 4” translates
into a formula ((¬b ∩ a)⇒ b). A sentence ” fact that it is not true that at the
same time 2 + 2 = 4 and 2 + 2 = 5 implies that 2 + 2 = 4” translates into a
propositional formula (¬(b ∩ a)⇒ b).

A formal description of symbols and the definition of the set of formulas is
called a syntax of a symbolic language. We use the word syntax to stress that
the formulas carry neither formal meaning nor a logical value. We assign the
meaning and logical value to syntactically defined formulas in a separate step.
This next, separate step is called a semantics. A given symbolic language can
have different semantics and different semantics can define different logics.

We first describe the syntax of the propositional language. The syntax of the
predicate language is much more complex and will be defined later.

The smallest ”building blocks” of a propositional language are propositional
variables that represent the the basic assertions called propositions. Histori-
cally, we define propositions as basic, declarative sentences (assertions) that can
always be evaluated as true or false. For example, a statement: ” 2 + 2 = 4”
is a proposition as we assume that it is a well known and agreed upon truth.
A statement: ”2 + 2 = 5” is also a classical proposition (false). A statement:
2 + n = 5 according to the historical definition is not a proposition; it might
be true for some n, for example n=3, false for other n, for example n= 2, and
moreover, we don’t know what n is. Sentences of this kind are called proposi-

2

tional functions. We treat propositional functions within propositional model
as propositions and represent them by the propositional variables.

Similar examples can be found in natural language rather then in mathematical
language. For example we tend to accept a statement: ”The earth circulates the
sun” as a proposition while a statement: ”Ann is pretty”, even if we accept it
as a proposition by assuming that is always has exactly one logical value, could
also be treated as ambiguous; Ann may be found pretty by some people and
not pretty by others. If we try to improve the situation by saying for example:
”Ann seems to be pretty”, ” I am sure Ann is pretty” or even ”I know that Ann
is pretty” the ambiguity increases rather then decreases.

To deal with these and other ambiguities many non-classical logics were and
are being invented and examined by philosophers, computer scientists, and even
by mathematicians. We will present and study some of them later. Nevertheless
we accept all these and similar statements within classical propositional model
as propositions and represent them by the propositional variables.

Observe that one can think about a natural language as a set W of all words
and sentences based on a given alphabet A. This leads to a simple, abstract
model of a natural language NL as a pair

NL = (A, W).

Some natural languages share the same alphabet, some have different alphabets.
All of them face serious problems with a proper recognition and definitions of
accepted words and complex sentences. We do not want the symbolic languages
to share the same difficulties. We define their components precisely and in such
a way that their recognition and correctness will be easily decided. In order
to distinguish them from natural languages we call their words and sentences
formulas and denote the set of all formulas by F . We call a pair

SL = (A, F). (1)

a symbolic language.

We distinguish two categories of symbolic languages: propositional and predi-
cate. We first define the propositional language. The definition of the predicate
language, with its much more complicated structure will follow.

Definition 1

By a propositional language L we understand a pair

L = (A,F), (2)

where A is called propositional alphabet, and F is called a set of all well formed
propositional formulas of L.

3

Components the language L are defined as follows.

1. Alphabet A

The alphabet A consists of a countably infinite set VAR of propositional vari-
ables, a finite set of propositional connectives, and a set of two parenthesis.

We denote the propositional variables by letters a, b, c, p, q, r,, with
indices if necessary. It means that we can also use a1, a2, ..., b1, b2, ... etc... as
symbols for propositional variables.

Propositional connectives are: ¬, ∩, ∪, ⇒, and ⇔. The connectives have well
established names. We use names negation, conjunction, disjunction, implica-
tion and equivalence or biconditional for the connectives ¬, ∩, ∪, ⇒, and ⇔,
respectively. Parenthesis are (,).

2. Set F of formulas

Formulas are expressions build by means of elements of the alphabet A. We
denote formulas by capital letters A,B,C,, with indices, if necessary.

The set F of all formulas of L is defined recursively as follows.

1. Base step: all propositional variables are formulas. They are called atomic
formulas.

2. Recursive step: for any already defined formulas A,B, the expression:
¬A, (A ∩B), (A ∪B), (A⇒ B), (A⇔ B) are also formulas.

3. Only those expressions are formulas that are determined to be so by means
of conditions 1. and 2.

We often say that the set F is the set of all well-formed formulas (wff) to
stress exactness of the definition.

By the definition, any propositional variable is a formula. Let’s take, for example
two variables a and b. They are atomic formulas.

By the recursive step we get that

(a ∩ b), (a ∪ b), (a⇒ b), (a⇔ b),¬a,¬b

are formulas. Recursive step applied again produces for example formulas

¬(a ∩ b), ((a⇔ b) ∪ ¬b),¬¬a,¬¬(a ∩ b).

These are not all formulas we can obtain in the second recursive step. Moreover,
as the recursive process continue we obtain a countably infinite set of all non-
atomic formulas.

Remark that we put parenthesis within the formulas in a way to avoid ambigu-
ity. The expression a∩ b∪a is ambiguous. We don’t know whether it represents
a formula (a ∩ b) ∪ a, or a formula a ∩ (b ∪ a).

4

Exercise 1

Consider a following set

S = {¬a⇒ (a ∪ b), ((¬a)⇒ (a ∪ b)), ¬(a⇒ (a ∪ b)),¬(a→ a)}.

1. Determine which of the elements of S are, and which are not well formed
formulas (wff) of L = (A,F).

2. For any A 6∈ F re-write it as a correct formula and write in the natural
language what it says.

Solution
The formula ¬a ⇒ (a ∪ b) is not a well formed formula. A correct formula is
(¬a ⇒ (a ∪ b)). The corrected formula says: ”If a is not true , then we have a
or b ”. Another correct formula is ¬(a⇒ (a∪ b)). This corrected formula says:
”It is not true that a implies a or b ”.

The formula ((¬a) ⇒ (a ∪ b)) is not correct; (¬a) 6∈ F . The correct formula is
(¬ ⇒ (a∪b)). The formula ¬(a⇒ (a∪b)) is correct. The formula ¬(a→ a) 6∈ F
as the connective→ does not belong to the language L. It is a correct formula of
another propositional language; the one that uses a symbol → for implication.

Exercise 2

Given a sentence S

”If a natural number a is divisible by 3, then from the fact that a in not divisible
by three we can deduce that a is divisible by 5.”

Write a formula corresponding to the sentence S.

Solution
First we write our sentence in a more ”logical way” as follows:

” If a natural number a is divisible by 3, then (if not(a is divisible by three) then
a is divisible by 5). We denote the sentence: ”a natural number a is divisible
by 3 ” by a, and the sentence ”a is divisible by 5” by b, and we rewrite our
sentence as: ”If a, then (if not a, then b)”.

We replace expressions If ... then and not by symbols ⇒ and ¬, respectively
and we follow the definition of the set of formulas to obtain a formula

(a⇒ (¬a⇒ b))

which corresponds to our natural language sentence S.

Observe that for a given logical sentence there is only one schema of a logical
formula corresponding to it. One can replace a by d and b by c and get a formula

5

(d⇒ (¬d⇒ c)), or we get a formula (b⇒ (¬b⇒ a)) by replacing a by b and b by
a. We can, in fact, construct as many of those formulas as we wish, but all those
formulas will have the same form as the formula (a⇒ (¬a⇒ b)). They will differ
only on a choice of names for the propositional variables assigned corresponding
to logical sentences. The same happens, when we want to do the ”inverse”
transformation from a given formula A to a logical sentence corresponding to
it. There may be as many of them as we can invent, but they all will be built
in the same way; the way described by the formula A.

Exercise 3

Write following natural language statement:

”One likes to play bridge or from the fact that the weather is good we conclude
the following: one does not like to play bridge or one likes swimming.”

as a formula of L = (A,F).

Solution
First we identify the needed components of the alphabet A as follows.

Propositional variables: a, b, c.

a denotes statement: One likes to play bridge, b denotes a statement: the weather
is good, c denotes a statement: one likes swimming.

Connectives: ∪,⇒,∪.

Then we write the formula of L as (a ∪ (b⇒ (¬a ∪ c))).

Exercise 4

Given a formula (a ∩ (¬a ∪ b)).

Write 2 natural language sentences which correspond to this formula.

Solution
Let propositional variables a, b denote sentences 2+2 = 4 and 2 > 1, respectively.
In this case the corresponding sentence is:

2 + 2 = 4 and we have that 2 + 2 6= 4 or 2 > 1.

If we assume that the propositional variables a, b denote sentences 2 > 1 and
2 + 2 = 4, respectively, then the corresponding natural language statement is:

2 > 1 and we have that 2 6> 1 or 2 + 2 = 4.

Symbols for Connectives

6

The symbols for connectives used in book are not the only used in mathematical,
logical, or computer science literature.

Other symbols employed for these most important propositional connectives are
listed in the table below.

Negation Disjunction Conjunction Implication Equivalence
−A (A ∪B) (A ∩B) (A⇒ B) (A⇔ B)
NA DAB CAB IAB EAB
A (A ∨B) (A & B) (A→ B) (A↔ B)
∼ A (A ∨B) (A ·B) (A ⊃ B) (A ≡ B)
A′ (A + B) (A ·B) (A→ B) (A ≡ B)

The first of these systems of notation is the closest to ours and is drawn mainly
from the algebra of sets and lattice theory. The second comes from the Polish
logician J. Lukasiewicz. In this notation the binary connectives precede the
formulas and are not inserted between them; this enables us to dispense with
parenthesis; Lukasiewicz’s notation is usually called the Polish notation and it
is a parenthesis-free notation. The third was used by D. Hilbert. The fourth
comes from Peano and Russell, while the fifth goes back to Schröder and Pierce.

2 Propositional Semantics: Motivation and
Description

We present here definitions of propositional connectives in terms of two logical
values true or false and discuss their motivations.

The resulting definitions are called a semantics for the classical propositional
connectives. As we consider only two logical values, the semantics is also called
2 valued semantics. The semantics presented here is fairly informal. The formal
definition of classical propositional semantics will be presented in chapter 4.

Classical Connectives

Our language L contains five connectives called conjunction, disjunction, impli-
cation, equivalence, and negation. We divide the connectives into two groups:
one and two argument connectives. Negation is the one argument connective.
Conjunction, disjunction, implication, equivalence are two argument connec-
tives. We define their semantics, i.e. their definitions in terms of two logical
values, and give a motivation justifying the definitions as follows.

We denote a statement A is false by A = F , what stands for the logical value
of a formula A is F. We denote a statement A is true by A = T , what stands

7

for the logical value of a formula A is T.

Negation motivation and definition.

In accordance with the intuition, the negation of a true formula is a false formula,
and the negation of a false formula is a true formula. Moreover, the logical value
of ¬A depends on the logical values of A in a way which can be express in the
form of the following table.

Negation Table
A ¬A
T F
F T

(3)

Conjuncion motivation and definition.

In accordance with intuition, a conjunction (A∩B) is a true formula if both of
its factors are true formulas. If one of the factors, or both, are false formulas,
then the conjunction is a false formula.

The logical value of a conjunction depends on the logical values of its factors in
a way which can be express in the form of the following table.

Conjunction Table
A B (A ∩B)
T T T
T F F
F T F
F F F

(4)

Disjunction motivation and definition.

In everyday language the word or is used in two different senses. In the first, a
statement of the form A or B is accepted as true if at least one of the statements
A and B is true; in the other, the compound statement A or B is accepted as true
if one of the statements A and B is true, and the other is false. In mathematics
the word or is used in the former sense.

Hence, we adopt the convention that a disjunction (A∪B) is true if at least one
of the formulas A and B is true. This convention is called a classical semantics
for the disjunction and is expressed in the following table.

Disjunction Table
A B (A ∪B)
T T T
T F T
F T T
F F F

(5)

As in the case of the other connectives, the logical value of a disjunction depends
only on the logical values of its factors.

8

Implication motivation and definition.

The symbol ⇒ is used instead of the statements of the form if A, then B, A
implies B, and is called an implication connective. The formula (A⇒ B) and
is called an implication and A is called its antecedent, B is called its consequent.

The semantics of the implication needs some discussion. In everyday language
the implication statement if A, then B is interpreted to mean that B can be in-
ferred from A. This interpretation differs from that given to it in mathematics,
and hence in classical semantics. The following example explains the meaning
of the statement if A, then B as understood in mathematics. It hence justifies
our semantics for the implication.

Consider the following arithmetical theorem:

For every natural number n,

if 6 DIV IDES n, then 3 DIV IDES n. (6)

The above implication (6) is true for any natural number, hence, in partic-
ular, for 2,3,6.

Thus the following propositions are true:

If 6 DIV IDES 2, then 3 DIV IDES 2. (7)

If 6 DIV IDES 3, then 3 DIV IDES 3. (8)

If 6 DIV IDES 6, then 3 DIV IDES 6. (9)

It follows from (7) that an implication (A⇒ B) in which both the antecedent A
and the consequent B are false statements is interpreted as a true statement.

It follows from (8) that an implication (A ⇒ B) in which false antecedent A
and true consequent B is interpreted as a true statement.

Finally, it follows from (9) that an implication (A ⇒ B) in which both the
antecedent A and the consequent B are true statements is interpreted as a
true statement.

Thus one case remains to be examined, namely that in which the antecedent of
an implication is a true statement, and the consequent is a false statement.

For example consider the statement:

If 6 DIVIDES 12, then 6 DIVIDES 5.

In accordance with arithmetic of natural numbers, this statement is interpreted
as false.

9

The above examples justifies adopting the following semantics for the impli-
cation ⇒. An implication (A ⇒ B) is interpreted to be a false statement if
and only if its antecedent A is a true statement and its consequent is a false
statement. In the remaining cases such an implication is interpreted as a true
statement.

We expressed it in a form of the following table.

Implication Table
A B (A⇒ B)
T T T
T F F
F T T
F F T

(10)

Equivalence motivation and definition.

An equivalence (A⇔ B) is, in accordance with intuition, interpreted as true if
both formulas A and B have the same logical value, that is, are either both true
or both false. This is expressed in the following table.

Equivalence Table
A B (A⇔ B)
T T T
T F F
F T F
F F T

(11)

We summarize the tables for propositional connectives in the following one table.
We call it a truth table definition of propositional; connectives and hence we
call the semantics defined here a truth tables semantics.

A B ¬A (A ∩B) (A ∪B) (A⇒ B) (A⇔ B)
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

(12)

The table (12) indicates that the logical value of of propositional connectives
depends only on the logical values of its factors; i.e. it is independent of the
formulas A,B. We write the table in a ”formula in depended” form as a set of
the following equations.

¬T = F, ¬F = T ;

(T ∩ T) = T, (T ∩ F) = F, (F ∩ T) = F, (F ∩ F) = F ;

(T ∪ T) = T, (T ∪ F) = T, (F ∪ T) = T, (F ∪ F) = F ; (13)

10

(T ⇒ T) = T, (T ⇒ F) = F, (F ⇒ T) = T, (F ⇒ F) = T ;

(T ⇔ T) = T, (T ⇔ F) = F, (F ⇔ T) = F, (T ⇔ T) = T.

We use the above set of equations (13) to evaluate logical values of formulas.

Example 1

Given a formula (A ⇒ (¬A ∩ B)), such that logical values of its basic compo-
nents, i.e. the propositional formulas A, B are: A=T, and B=F. We calculate
the logical value of the formula (A⇒ (¬A∩B)) by substituting the logical values
for the formulas A, B and applying the equations (13) as follows.

(T ⇒ (¬T ∩ F)) = (T ⇒ (F ∩ F)) = (T ⇒ F) = F.

Exercise 5

Given a formula A: (((a∪ b)∩¬c)⇒ a). Evaluate the logical value of A for the
following sets of logical values of its basic components, i.e. for the propositional
variables a, b: 1. a=T, b=F, c=F, and 2. a=F, b=T, c=T.

Solution
1. Let a=T, b=F, c=F. We evaluate the logical value of A as follows.

(((T ∪ F) ∩ ¬F)⇒ T) = ((T ∩ ¬F)⇒ T) = ((T ∩ T)⇒ T) = (T ⇒ T) = T.

2. Let a=F, b=T, c=T. We evaluate the logical value of A as follows.

(((F ∪ T) ∩ ¬T)⇒ F) = ((T ∩ ¬T)⇒ T) = ((T ∩ F)⇒ T) = (F ⇒ T) = T.

Extensional Connectives

We observe that our connectives are such that the logical value of a given formula
build by means of its connectives depends only of logical values of its factors.
Connectives with this property are called extensional. We hence adopt the
following definition.

Definition 2

We call a propositional connective extensional if the logical value of a given
formula build by means of this connective depends only of logical values of its
factors.

Fact 1

All connectives ¬,∪,∩,⇒, and ⇔ are extensional.

11

In everyday language there are expressions which are propositional connectives
but are not extensional. They do not play any role in mathematics and so they
are not discussed in classical logic.

Other Extensional Connectives

The propositional classical connectives ∩,∪,⇒,⇔,¬ are not the only exten-
sional connectives. We define here all possible unary and binary two valued
extensional connectives.

An extensional unary connective 5 enables us to form from any formula A, a
new formula 5A, whose logical value is defined in terms of the logical value of
A only, i.e. by means of a table of a type (3).

Thus there as many unary connectives as there are functions f from the set
{T, F} to the set {T, F}, that is 22 = 4.

All Unary Connectives

A 51A 52A ¬A 54A
T F T F T
F F F T T

(14)

An extensional binary connective ◦ permits us to form, of any two formulas A
and B, a new formula (A ◦ B), whose logical value is defined from the logical
values A and B only, i.e. by means of a table similar to (4), (5), (48), (11).

So, there are as many binary connectives as many functions f from a set
{T, F}×{T, F} (four elements) to a set {T, F} (two elements) that is, 24 = 16.

12

All Binary Connectives

A B (A◦1B) (A ∩B) (A◦3B) (A◦4B)
T T F T F F
T F F F T F
F T F F F T
F F F F F F
A B (A ↓ B) (A◦6B) (A◦7B) (A↔ B)
T T F T T T
T F F T F F
F T F F T F
F F T F F T
A B (A◦9B) (A◦10B) (A◦11B) (A ∪B)
T T F F F T
T F T T F T
F T T F T T
F F F T T F
A B (A◦13B) (A⇒ B) (A ↑ B) (A◦16B)
T T T T F T
T F T F T T
F T F T T T
F F T T T T

(15)

Functional Dependency

It can be proved that all propositional connectives, as defined by tables (14)
and (15), i.e. whether unary or binary, can be defined in terms of disjunction
and negation.

This property of defining a set of connectives in terms of its proper subset is
called a functional dependency of connectives.

There are also two other binary connectives which suffice, each of them sep-
arately, to define all two valued connectives, whether unary or binary. These
connectives play a special role and are denoted in our table (15) by ↓ and ↑,
respectively.

The connective ↑ was discovered in 1913 by H.M. Sheffer, who called it alterna-
tive negation. Now it is often called simply as Sheffer’s connective. The formula
(A ↑ B) is read: not both A and B.

The connective ↓ was discovered by J. Lukasiewicz and named joint negation.
The formula (A ↓ B) is read: neither A nor B.

We define formally and examine the functional dependency of connectives in
Chapter 3. We state here some important facts to be proved in Chapter 3.

Fact 2 All two-valued propositional connectives and in particular our connec-

13

tives ¬,∪,∩,⇒, and ⇔ are a functionally dependent.

In particular, we prove the following.

Fact 3

The alternative negation connective ↑, and the joint negation. ↓ suffice, each
of them separately, to define all propositional connectives , whether unary or
binary.

The following was proved n 1925 by a Polish mathematician E. Żyliński.

Fact 4

No propositional connective other than ↑ and ↓ suffices to define all the remain-
ing connectives.

We show now as examples how to define some of our connectives ¬,∪,∩,⇒, and
⇔ in terms of ↑ or ↓ leaving the definability of other connectives as an exercise.

Example 2

Definition of negation ¬ in terms of ↑.

This is an interesting example as it shows that one can define a one argument
connective in terms of a two argument connective.

Let’s now look at Sheffer’s alternative negation connective ↑.

Alternative Negation ↑

A B (A ↑ B)
T T F
T F T
F T T
F F T

(16)

We now write the table (16) in the ”formula independed” form of the following
equations.

(T ↑ T) = F, (T ↑ F) = T, (F ↑ T) = T, (F ↑ F) = T (17)

Observe that (T ↑ T) = F and (F ↑ F) = T . This means that logical value of
a formula (A ↑ A) is the same as logical value of a formula ¬A, for any logical
value the formula A can take. We write it following our notation as as

¬A = (A ↑ A) (18)

14

and call it a definition of ¬ in terms of ↑. We verify its correctness of of by
building the table below.

A ¬A (A ↑ A) computation (A ↑ A)
T F (T ↑ T) = F F
F T (T ↑ T) = F T

(19)

The table shows that the logical value of a formula ¬A is the same as logical
value of a formula (A ↑ A), for any logical value their basic component A can
take, i.e. that our definition (18) is correct.

Example 3

Definition of conjunction ∩ in terms of ↑.

Observe now that the Sheffer’s connective table (16) looks as a negation of the
conjunction table (4). It means that the logical value a formula (A ∩B) is the
same as logical value of a formula ¬(A ↑ B), for all logical values of A and B.
We write it as

(A ∩B) = ¬(A ↑ B). (20)

We have just proved the formula (18) to be true for any formula and hence for
the formula ¬(A ↑ B), i.e. we get that ¬(A ↑ B) = (A ↑ B) ↑ (A ↑ B). The
formula (24) becomes (A ∩B) = (A ↑ B) ↑ (A ↑ B).

We call the equality
(A ∩B) = (A ↑ B) ↑ (A ↑ B) (21)

the definition of conjunction in terms of negation and Sheffer’s connective.

Let’s now examine the Lukasiewicz’ s joint negation connective ↓. The formula
A ↓ B is read: neither A nor B. As it is a special connective we re-write its
truth table separately.

Joint Negation ↓

A B (A ↓ B)
T T F
T F F
F T F
F F T

(22)

We now write the table (22) in an ”formula independed” form of the following
equations.

(T ↓ T) = F, (T ↓ F) = F, (F ↓ T) = F, (F ↓ F) = T (23)

15

Observe that T ↓ T = F and F ↓ F = T . This means that logical value of a
formula (A ↓ A) is the same as logical value of a formula ¬A, for any logical
value the formula A can take. We write it as

¬A = (A ↓ A) (24)

and call it a definition of ¬ in terms of ↓. We verify its correctness of of by
building the table below.

A ¬A (A ↓ A) computation (A ↓ A)
T F (T ↓ T) = F F
F T (F ↓ F) = T T

(25)

The table shows that the logical value of a formula ¬A is the same as logical
value of a formula (A ↓ A), for any logical value their basic component A can
take, i.e. that our definition (24) is correct.

Exercise 6

Prove that the equality

(A ∪B) = ((A ↓ B) ↓ (A ↓ B)) (26)

defines ∪ in terms of ↓.

Solution
To prove the correctness of the equation (26) we construct a table below.

A B (A ∪B) ((A ↓ B) ↓ (A ↓ B))
T T T ((T ↓ T) ↓ (T ↓ T)) = (F ↓ F) = T
T F T ((T ↓ F) ↓ (T ↓ F)) = (F ↓ F) = T
F T T ((F ↓ T) ↓ (F ↓ T)) = (F ↓ F) = T
F F F ((F ↓ F) ↓ (F ↓ F)) = (T ↓ T) = F

(27)

The table shows that the logical value of a formula (A∪B) is the same as logical
value of a formula ((A ↓ B) ↓ (A ↓ B)), for any logical value the formulas can
take depending of logical values of their basic components A, B, i.e. that our
definition (26) is correct.

3 Examples of Propositional Tautologies

Now we connect syntax (formulas of a given language L) with semantics (assign-
ment of truth values to the formulas of L). In logic we are interested in those

16

propositional formulas that must be always true because of their syntactical
structure without reference to the meaning of the propositions they represent.
Such formulas are called propositional tautologies.

Example 4

Given a formula (A ⇒ A). Lets now evaluate its logical value for all possible
logical values of its basic component A, i.e. for A=T, and A=F. We put our
calculation in a form of a table below.

A (A⇒ A) computation (A⇒ A)
T (T ⇒ T) = T T
F (F ⇒ F) = T T

(28)

The logical value of the formula (A ⇒ A) is always T, what means that it is
a propositional tautology. The table (28) is called a truth table for the
formula (A⇒ A).

Example 5

We construct a truth table for a formula (A⇒ B) as follows.

A B (A⇒ B) computation (A⇒ B)
T T (T ⇒ T) = T T
T F (T ⇒ F) = F F
F T (F ⇒ T) = T T
F F (F ⇒ F) = T T

(29)

The logical value of the formula (A ⇒ B) is F for A=T and B=F what means
that it is not a propositional tautology. We put these ideas in a form of the
following definition.

Definition 3

For any formula A of a propositional language L, we say that A is a propositional
tautology if and only if the logical value of A is T (we write it A=T) for all
possible logical values of its basic components. We write

|= A

to denote that A is a tautology.

Examples of Propositional Tautologies

Given any formula A of L = L{¬, ∩, ∪, ⇒, ⇔}. Here are some basic classical
propositional tautologies, the first of which we have just proved as the example
by constructing the table (28). We leave the proofs of others as an easy exercise.

17

Identity for Implication
|= (A⇒ A) (30)

Identity for Equivalence
|= (A⇔ A) (31)

Excluded Middle
|= (¬A ∪A) (32)

One of the most frequently used classical tautologies are the laws of detachment
for implication and equivalence. The implication law was already known to the
Stoics (3rd century BC) and a rule of inference, based on it is called Modus
Ponens, so we use the same name here.

Modus Ponens
|= ((A ∩ (A⇒ B))⇒ B) (33)

Detachment
|= ((A ∩ (A⇔ B))⇒ B) (34)

|= ((B ∩ (A⇔ B))⇒ A)

Mathematical and not only mathematical theorems are usually of the form of
an implication, so we will discuss some terminology and more properties of
implication.

Sufficient Given an implication (A⇒ B), A is called a sufficient condition
for B to hold.

Necessary Given an implication (A⇒ B), B is called a necessary condition
for A to hold.

Simple The implication (A⇒ B) is called a simple implication.

Converse Given a simple implication (A ⇒ B), the implication (B ⇒ A) is
called a converse implication to (A⇒ B).

Opposite Given a simple implication (A ⇒ B), the implication (¬B ⇒ ¬A)
is called an opposite implication to (A ⇒ B). It is also often called a
contrapositive implication.

Contrary Given a simple implication (A ⇒ B), the implication (¬A ⇒ ¬B)
is called a contrary implication to (A⇒ B).

Each of the following pairs of implications: a simple and an opposite, and a
converse and a contrary are equivalent, i.e. the following formulas are tautolo-
gies:

18

Laws of contraposition (1)

|= ((A⇒ B)⇔ (¬B ⇒ ¬A)), (35)

|= ((B ⇒ A)⇔ (¬A⇒ ¬B)).

The laws of contraposition (35) make it possible to replace, in any deductive
argument, a sentence of the form (A ⇒ B) by (¬B ⇒ ¬A), and conversely.
The relationships between all implications involved in the contraposition laws
are usually shown graphically in a following form, which is called the square of
opposition.

(A =⇒ B) (B =⇒ A)

(¬A =⇒ ¬B) (¬B =⇒ ¬A)

contrary

converse

contrapositive

converse

contrary

Equivalent implications are situated at the vertices of one and the same diag-
onal. It follows from the contraposition laws that to prove all of the following
implications: (A⇒ B), (B ⇒ A), (¬A⇒ ¬B), (¬B ⇒ ¬A), it suffices to prove
any pairs of those implications which are situated at one and the same side of
the square, since the remaining two implications are equivalent to those already
proved to be true.

Consider now the following tautology:

|= ((A⇔ B))⇔ ((A⇒ B) ∩ (B ⇒ A))). (36)

The above tautology (36) says that in order to prove a theorem of a form of
(A⇔ B) it suffices to prove two implications: the simple one (A⇒ B) and the
converse one (B ⇒ A). Conversely, if a formula (A ⇔ B) is a theorem, then
the implications (A⇒ B) and (B ⇒ A) are also theorems.

In other words, B is then a necessary condition for A, and at the same time B
is a sufficient condition for A. Accordingly, we say that a theorem of the form
of a formula (A ⇔ B) is often formulated as: ” B is necessary and sufficient
condition for A”.

Other laws developed by the Stoics are the hypothetical syllogism and modus
tollendo ponens. We present them here in a form of logical tautology, not as

19

the rule of reasoning as it was developed. The relationship between those two
approaches is quite obvious and will be discussed in detail in the proof theory
chapter.

Hypothetical syllogism

|= (((A⇒ B) ∩ (B ⇒ C))⇒ (A⇒ C))

|= ((A⇒ B)⇒ ((B ⇒ C)⇒ (A⇒ C))) (37)

|= ((B ⇒ C)⇒ ((A⇒ B)⇒ (A⇒ C))).

Modus tollendo ponens

|= (((A ∪B) ∩ ¬A)⇒ B) (38)

|= (((A ∪B) ∩ ¬B)⇒ A)

Here are some other tautologies with a history centuries old. First is called
Duns Scotus Law after an eminent medieval philosopher who lived at the turn
of the 13th century. Second is called Clavius Law , after Clavius, a Euclid
commentator who lived in the late 16th century. The reasonings based on this
law were already known to Euclid, but this type of inference became popular in
scholarly circles owing to Clavius, hence the name. The third is called Frege
Laws after G. Frege who was first to give a formulation of the classical propo-
sitional logic as a formalized axiomatic system in 1879, adopting the second of
them as one of his axioms.

Duns Scotus
|= (¬A⇒ (A⇒ B)) (39)

Clavius
|= ((¬A⇒ A)⇒ A) (40)

Frege
|= (((A⇒ (B ⇒ C)) ∩ (A⇒ B))⇒ (A⇒ C)) (41)

|= ((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C)))

Double Negation
|= (¬¬A⇔ A) (42)

Next set of tautologies deal with apagogic proofs which are the proofs by
reductio ad absurdum. The method of apagogic proof consists in negating
the theorem which is to be proved. If the assumption that the theorem is
false yields a contradiction, then we conclude that the theorem is true. The
correctness of this reasoning is based on the following tautology.

20

Reductio ad Absurdum

|= ((¬A⇒ (B ∩ ¬B))⇒ A) (43)

If the theorem to be proved by reductio ad absurdum is of the form of an
implication (A ⇒ B), then the prove often follows a following pattern: it is
assumed that ¬(A ⇒ B) is true, and we try to deduce a contradiction from
this assumption. If we succeed in doing so, then we infer that the implication
(A ⇒ B) is true. The correctness of this reasoning is based on the following
version the reductio ad absurdum tautology (43).

|= (((¬(A⇒ B)⇒ (C ∩ ¬C))⇒ (A⇒ B)).

Sometimes to prove (A ⇒ B) it is assumed that (A ∩ ¬B) is true and if the
assumption leads to contradiction, then we deduce that the implication (A⇒ B)
is true. In this case a tautology, which guarantee the correctness this kind of
argument is:

|= (((A ∩ ¬B)⇒ (C ∩ ¬C))⇒ (A⇒ B)).

Often, when assuming (A ∩ ¬B), we arrive, by deductive reasoning, at the
conclusion ¬A. Then we need the following tautology:

|= (((A ∩ ¬B)⇒ ¬A)⇒ (A⇒ B)).

Sometimes, on assuming (A ∩ ¬B) we arrive by deductive reasoning at the
conclusion B. The following tautology is then applied:

|= (((A ∩ ¬B)⇒ B)⇒ (A⇒ B)).

The proofs based on the application of the laws of contraposition (35) are also
classed as apagogic. Instead of proving a simple theorem (A⇒ B) we prove the
opposite theorem (¬B ⇒ ¬A), which is equivalent to the simple one. The fol-
lowing two tautologies, also called laws of contraposition, are used, respectively,
when the hypothesis or the thesis of the theorem to be proved is in the form of
a negation.

Laws of Contraposition (2)

|= ((¬A⇒ B)⇔ (¬B ⇒ A)), (44)

|= ((A⇒ ¬B)⇔ (B ⇒ ¬A)).

21

We present now some tautologies characterizing basic properties of conjunction,
disjunction, quivalence, and their interactions.

Conjunction
|= ((A ∩B)⇒ A), |= ((A ∩B)⇒ B),

|= (((A⇒ B) ∩ (A⇒ C))⇒ (A⇒ (B ∩ C))),

|= (((A⇒ B) ∩ (C ⇒ D))⇒ ((A ∩ C)⇒ (B ∩D))),

|= (A⇒ (B ⇒ (A ∩B))).

Disjunction
|= ((A⇒ (A ∪B)), |= ((B ⇒ (A ∪B)),

|= (((A⇒ B) ∩ (B ⇒ C))⇒ ((A ∪B)⇒ C)),

|= (((A⇒ B) ∩ (C ⇒ D))⇒ ((A ∪ C)⇒ (B ∪D))).

Here are some more important and frequently used equivalence tautologies,
called also the equivalence laws.

Idempotence
|= ((A ∩A)⇔ A), |= ((A ∪A)⇔ A),

Associativity
|= (((A ∩B) ∩ C)⇔ (A ∩ (B ∩ C))),

|= (((A ∪B) ∪ C)⇔ ((A ∪ (B ∪ C))).

Commutativity

|= ((A ∩B)⇔ (B ∩A)), |= ((A ∪B)⇔ (B ∪A)).

Distributivity

|= ((A ∩ (B ∪ C))⇔ ((A ∩B) ∪ (A ∩ C))), (45)

|= ((A ∪ (B ∩ C))⇔ ((A ∪B) ∩ (A ∪ C))). (46)

De Morgan

|= (¬(A ∪B)⇔ (¬A ∩ ¬B)), |= (¬(A ∩B)⇔ (¬A ∪ ¬B)). (47)

Implication
|= ((A⇒ B)⇔ (¬A ∪B)). (48)

Negation of Implication

|= (¬(A⇒ B)⇔ (A ∩ ¬B)).

22

Negation of Equivalence

|= (¬(A⇔ B)⇔ (A ∩ ¬B) ∪ (B ∩ ¬A)).

Double Negation
|= (¬¬A⇔ A). (49)

Exportation and Importation

|= (((A ∩B)⇒ C)⇔ (A⇒ (B ⇒ C))).

De Morgan laws (47) are named after A. De Morgan (1806 - 1871), an English
logician, who discovered analogous laws for the algebra of sets. They stated that
for any sets A,B the complement of their union is the same as the intersection
of their complements, and vice versa, the complement of the intersection of two
sets is equal to the union of their complements. The laws of the propositional
calculus were formulated later, but they are usually also called De Morgan Laws.

4 Predicate Languages: Description and
Application to Artificial Intelligence

We define a predicate language L following the pattern established by the sym-
bolic and propositional languages definitions (1), (2). The predicate language L
is much more complicated in its structure. Its alphabet A is much richer. The
definition of its set of formulas F is more complicated. In order to define the
set F we introduce an additional set T, called a set of terms of the predicate
language L. We single out this set not only because we need it for the definition
of formulas, but also because of its role in the development of other notions of
predicate logic.

Definition 4

By a predicate language L we understand a triple

L = (A,T,F), (50)

where A is a predicate alphabet, T, is the set of terms, and F is a set of
formulas.

Alphabet A

The components of A are as follows.

1. Propositional connectives: ¬, ∩, ∪, ⇒, ⇔.

2. Quantifiers: we adopt two quantifiers; ∀ (for all, the universal quantifier)
and ∃ (there exists, the existential quantifier).

23

In a case of the classical logic it is possible to adopt only one quantifier and
to define the other in terms of it and propositional connectives. But the two
quantifiers express better the common intuition, so we assume that we have two
of them.

3. Parenthesis: (and).

4. Variabes: we assume that we have, as we did in the propositional case a
countably infinite set VAR of variables. The variables now have a different
meaning than they had in the propositional case. We hence call them variables,
or individual variables to distinguish them from the propositional variables. We
also denote denote them by different symbols, namely by letters x, y, z, ..., with
indices, if necessary. We express it by writing V AR = {x1, x2,}.

5. Constants: the constants represent in ”real life” concrete elements of sets.
We denote constants by by c, d, e..., with indices, if necessary. We assume that
we have a countably infinite set C = {c1, c2, ...} of constants.

6. Predicate symbols: the predicate symbols represent ”real life” relations. We
denote them by P,Q,R, ... with indices, if necessary. We use symbol P for the
set of all predicate symbols. We assume that P it countably infinite.

In ”real life” we write symbolically x < y to express that element x is smaller
then element y according to the two argument order relation <. In our predicate
language L we represent the relation < as a two argument predicate P ∈ P and
write P (x, y), where now x, y are individual variables from the set VAR.

Mathematical statements n < 0, 1 < 2, 0 < m are represented in L by
P (x, c1), P (c,c3), P (c1, y), respectively. Here c1, c2, c3 are any constants and
x, y any variables.

7. Function symbols: the function symbols represent ”real life” functions. We
denote function symbols by f, g, h, ..., with indices, if necessary. We use symbol
F for the set of all function symbols. We assume that the set F is countably
infinite.

Set T of terms

Terms are expressions built out of function symbols and variables. They describe
how we build compositions of functions. We define the set T of terms recursively
as follows.

1. All variables are terms.

2. All constants are terms.

3. For any function symbol f representing a function on n variables, and any
terms t1, t2, ..., tn, the expression f(t1, t2, ..., tn) is a term.

4. The set T of terms is the smallest set that fulfills the conditions 1. - 3.

Consider a ”real life” function given by a formula sin(x+y). It is a composition

24

of two functions defined by formulas sinx and x + y. The sin is one argument
function and we represent it as term f(x) for f ∈ F. The + is a two argument
function and we represent it as a term g(x, y) for g ∈ F. The ”real life” function
sin(x+y) is hence represented by a term f(g(x, y)), where x, y are any individual
variables from the set VAR. Observe that to obtain the predicate language
representation of for example x + y we can first write the real two argument
function formula x + y as +(x, y) and then replace the addition symbol + by
any two argument function symbol g ∈ F and get the term g(x, y).

Here are some more terms of L.

h(c1), f(g(c, x)), g(f(f(c)), g(x, y)), f1(c, g(x, f(c))), g(g(x, y), g(x, h(c)))

Set F of formulas

Formulas are now expressions built out of elements of the alphabet A and the
set T of terms. We denote them, as in propositional case by A,B,C, with
indices, if necessary. We build them, as before in recursive steps, the fist of
them says as in the propositional case: all atomic formulas are formulas. The
atomic formulas are the simplest formulas as the propositional variables were
in the case of propositional language. We define them as follows.

Definition 5 An atomic formula is any expression of the form R(t1, t2, ..., tn)
where R is any predicate R ∈ P and t1, t2, ..., tn are terms, i.e. t1, t2, ..., t∈T.

To represent a mathematical statement x + y = 5 in L we first observe that =
as a two argument relation and + is a two argument function, x, y are variables
and 5 is a number. We represent, as before, + by a two argument function
symbol g ∈ F, the relation = by a predicate symbol P ∈ P, the number 5 by a
constant c ∈ C. We re-write x + y = 5 as = (+(x, y), 5), replace mathematical
symbols by corresponding L symbols and get an atomic formula P (g(x, y), c)
representing in L the statement x + y = 5. We have used the same letters x,
y to represent mathematical and and atomic formula variables. We can also
use any other letters for individual variables in the atomic formula re[presenting
x + y = 5. For example P (g(x1, x2), c), P (g(y, x), c).

Here are some more atomic formulas of L.

Q(c), Q(x), Q(g(x1, x2)), R(c, d), R(x, f(c)), R(g(x, y), f(g(c, z))),

Definition 6

The set F of formulas of L is the smallest set meeting the following conditions.

1. All atomic formulas (definition 5) are formulas;

2. If A,B are formulas, then ¬A, (A ∩ B), (A ∪ B), (A ⇒ B), (A ⇔ B) are
formulas;

3. If A is a formula, then ∀xA, ∃xA are formulas for any variable x ∈ V AR.

25

Here are some formulas of L.

R(c, d), ∃yR(y, f(c)), R(x, y), (∀xR(x, f(c))⇒ ¬R(x, y)),

(R(c, d) ∩ ∀zR(z, f(c))), ∀yR(y, g(c, g(x, f(c)))), ∀y¬∃xR(x, y).

Let’s look now closer at the following formulas.

R(c1, c2), R(x, y), (R(y, d)⇒ R(a, z)), ∃xR(x, y), ∀yR(x, y),∃x∀yR(x, y).

Here are some simple observations.

1. Some formulas are without quantifiers.
For example formulas R(c1, c2), R(x, y), (R(y, d) ⇒ R(a, z)). A formula with-
out quantifiers is called an open formula.

Variables x, y in R(x, y) are called free variables. The variables y in R(y, d)
and z in R(a,z) are also free.

2. Quantifiers bind variables within formulas.

The variable x is bounded by ∃x in the formula ∃xR(x, y), the variable y is
free. The variable y is bounded by ∀y in the formula ∀yR(x, y), the variable
y is free.

3. The formula ∃x∀yR(x, y) does not contain any free variables, neither does
the formula R(c1, c2). A formula without any free variables is called a closed
formula or a sentence.

Sometimes in order to distinguish more easily which variable is free and which
is bound in the formula we might use the bold face type for the quantifier
bound variables and write the formulas as follows.

(∀xQ(x, y), ∃yP (y), ∀yR(y, g(c, g(x, f(c)))),

(∀xP (x)⇒ ∃yQ(x,y)), (∀x(P (x)⇒ ∃yQ(x,y)))

Observe that the formulas ∃yP (y), (∀x(P (x) ⇒ ∃yQ(x,y))) are closed. We
call a close formula a sentence.

Example 6

Consider atomic formulas: P (y), Q(x, c), R(z), P1(g(x, y), z). Here are some
non atomic formulas formed out of them.

1. (P (y) ∪ ¬Q(x, c)) ∈ F . This is an open formula A with two free variables
x,y. We denote A this as formula A(x, y).

2. ∃x(P (y)∪¬Q(x, c)) ∈ F . We write x to denote that x is a bound variable.
The variable y is free. This is a formula B with one free variable y. We denote
B as a formula B(y).

26

3. ∀y(P (y) ∪ ¬Q(x, c)) ∈ F . The variable y is bound, the variable x is free.
We denote this formula by for example A1(x).

4. ∀y∃x(P (y) ∪ ¬Q(x, c)) ∈ F has no free variables. It is a closed formula
called also a sentence.

Exercise 7

Given the following formulas of L:

P (x, f(c, y)), ∃cP (x, f(c, y)), ∀xf(x, P (c, y)), ∃xP (x, f(c, y))⇒ ∀yP (x, f(c, y)).

1. Indicate whether they are, or are not well formed formulas of F . For those
which are not in F write a correct formula. 2. For each correct, or corrected
formula identify all components: connectives, quantifiers, predicate and function
symbols, and list all its terms. 3. For each formula identify its s free and bound
variables. State which are open and which are closed formulas (sentences), if
any.

Solution

Formula A1 = P (x, f(c, y)).

It is a correct atomic formula. P is a 2 argument predicate symbol, f is a
2 argument function symbol, c is a constant. We write it symbolically: P ∈
P, f ∈ F, c ∈ C. It is an open formula with two free variables x,y. We denote
it by A1(x, y). It has no bound variables.

Formula A2 = ∃cP (x, f(c, y)).

It is a not a correct formula, i.e. ∃cP (x, f(c, y)) 6∈ F . The expression ∃c has no
meaning because c is a constant, not a variable.

The corrected formulas are: B1 = ∃xP (x, f(c, y)), B2 = ∃yP (x, f(c, y)), and
formulas B = ∃zP (z, f(c, y)) for any variable z different then x and y.

None of the correct formulas are open. Variable y is free in B1 = B1(y), variable
x is free in B2 = B2(x), both variables x and y are free in all formulas B =
B(x, y). All formulas are nether close, nor open. The terms appearing in any
of them are the same as in A1 = P (x, f(c, y)) and are: x, y, c, f(c, y).

Formula A3 = ∀xf(x, P (c, y)).

It is a not a correct formula, i.e. ∀xf(x, P (c, y)) 6∈ F . The function symbol f in
front f(x, P (c, y)) indicate a term and terms are not formulas. Moreover, the
atomic formula P (c, y) can’t be put inside a term!

Formula A4 = ∃xP (x, f(c, y))⇒ ∀yP (x, f(c, y))

It is a not a correct formula. The correct formula is A = (∃xP (x, f(c, y)) ⇒
∀yP (x, f(c, y))). It has two free variables x and y and we write it as A = A(x, y).

27

We often use logic symbols, while writing mathematical statements in a more
symbolic way. For example, mathematicians to say ”all natural numbers are
greater then zero and some integers are equal 1” often write

x ≥ 0,∀x∈N and ∃y∈Z , y = 1.

Some of them who are more ”logic oriented” would write it as

∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1,

or even as
(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1).

Observe that none of the above symbolic statements, not even the last one, are
formulas of the predicate language. These are mathematical statements written
with mathematical and logic symbols. They are written with different degrees
of ”logical precision”, the last being, from a logician point of view, the most
precise.

Our goal now is to ”translate ” mathematical and natural language statement
into correct logical formulas, i.e. into formulas of the predicate language L. Let’s
start with some observations about the statements above.

The quantifiers in ∀x∈N and ∃y∈Z used in all of them are not the one used in
logic. In our language L we use only quantifiers ∀x and ∃y, for any variables
x, y ∈ V AR. The quantifiers ∀x∈N , ∃y∈Z are called quantifiers with restricted
domain. The first is restricted to the domain of natural numbers, the second
to the integers. The restriction of the quantifier domain can, and often is given
by more complicated statements. For example we say ”for all x > 2” and
write ∀x>2, or we say ”exists x > 2 and at same time x + 2 < 8” and write
symbolically ∃(x>2∩x+2<8). We introduce the quantifiers with restricted domain
into our predicate logic language by expressing them within the language L as
follows.

Definition 7

The quantifiers ∀A(x), ∃A(x) are called quantifiers with restricted domain,
or restricted quantifiers, where A(x) ∈ F is any formula with any free vari-
able x ∈ V AR.

A formula ∀A(x)B(x) stands for a formula ∀x(A(x) ⇒ B(x)) ∈ F . We write
it symbolically as

∀A(x) B(x) ≡ ∀x(A(x)⇒ B(x)). (51)

A formula ∃A(x)B(x) stands for a formula ∃x(A(x)∩B(x)) ∈ F . We write it
symbolically as

∃A(x) B(x) ≡ ∃x(A(x) ∩B(x)) (52)

28

The definition 7 of restricted quantifiers is obviously faithful to our intuitive
meaning of quantifiers. We use informally a symbol ≡ to stress that we they
are in a sense equivalent. We call (51) and (52) transformations rules for
restricted quantifiers.

We carry our translations of mathematical statements written with logical sym-
bols into a formula of predicate language L a sequence of steps. Given a math-
ematical statement S written with logical symbols. We obtain a corresponding
formula A that is our translation into L by conducting the following steps.

Step 1. We identify basic statements in S, i.e. mathematical statements that
involve only relations. They will be translated into atomic formulas.

We identify the relations in the basic statements and choose the predicate sym-
bols as their names.

We identify all functions and constants (if any) in the basic statements and
choose the function symbols and constant symbols as their names.

Step 2. We write the basic statements as atomic formulas of L.

Remember that in the predicate language L we write function symbol in front
of the function arguments, not between them as we write in mathematics. The
same applies to relation symbols when we form atomic formulas. For example
a basic mathematical statement x+ 2 > y could be re-written as > (+(x, 2), y),
and then we could immediately write it as an atomic formula P (f(x, c), y),
where P ∈ P stands for two argument relation >, f stands for two argument
function +, and c stands for the number (constant) 2.

Step 3. We re-write the statement S a logical formula with restricted domain
quantifiers.

Step 4. We apply equivalences (51) and (52) to the formula from Step 3 and
obtain a formula A of L as a translation, i.e. a representation of the given
mathematical statement.

When we conduct a translation from mathematical statement written without
logical symbols we add a Step 0 to this list to first write the mathematical
statement with logical symbols.

Step 0. We identify logical connectives and quantifiers and write the statement
using them that is as close to the structure of a logical formula as possible.

Exercise 8

Given a mathematical statement S written with logical symbols

(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1)

1. Translate it into a proper logical formula with restricted domain quantifiers
i.e. into a formula of L that uses the restricted domain quantifiers. 2. Translate

29

your restricted domain quantifiers logical formula into a correct logical formula
without restricted domain quantifiers, i.e. into a formula of L.

Solution

Step 1. The basic statements in S are: x ∈ N, x ≥ 0, y ∈ Z, y = 1. The
relations are: ∈ N, ∈ Z, ≥, =. We use one argument predicate symbols N, Z
for ∈ N,∈ Z, respectively. We use two argument predicate symbols G for ≥,
and E for =. There are no functions. We have two constant symbols c1, c2 for
numbers 0 and 1, respectively.

Step 2. We write N(x), Z(x) for x ∈ N, x ∈ Z, respectively. G(x, c1) for x ≥ 0
and E(y, c2) for y = 1. These are all atomic formulas.

Step 3. The statement S becomes a restricted quantifiers formula:

(∀N(x) G(x, c1) ∩ ∃Z(y) E(y, c2)).

Step 4. A formula A ∈ F that corresponds to S is

(∀x (N(x)⇒ G(x, c1)) ∩ ∃y (Z(y) ∩ E(y, c2))).

Here is a perfectly acceptable short solution to exercise 8. We presented the
long solution in order to explain all steps needed to be performed when one
writes the short solution.

Example 7

Given a mathematical statement S written with logical symbols

(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1)

We translate it into a proper formula of L as follows.

The basic statements in S are: x ∈ N, x ≥ 0, y ∈ Z, y = 1. The corresponding
atomic formulas of L are: N(x), G(x, c1), Z(y), E(y, c2), respectively.

The statement S becomes becomes restricted quantifiers formula
(∀N(x)G(x, c1) ∩ ∃Z(y) E(y, c2)). Applying restricted quantifiers definition 7
and transformation rules (51), (52) we get a following formula A ∈ F

(∀x(N(x)⇒ G(x, c1)) ∩ ∃y(Z(y) ∩ E(y, c2))).

Exercise 9

Here is a mathematical statement S:

”For all real numbers x the following holds: If x < 0, then there is a natural
number n, such that x + n < 0.”

1. Re-write S as a symbolic mathematical statement SF that only uses mathe-
matical and logical symbols. 2. Translate the symbolic statement SF into to a
corresponding formula A ∈ F of the predicate language L.

30

Solution
The symbolic mathematical statement SF is : ∀x∈R(x < 0⇒ ∃n∈N x + n < 0).
We write R(x) for x ∈ R , N(y) for n ∈ N , and atomic formula L(x, c) for the
basic statement x < 0. We write f(x,y) for the function +(x, n) and a constant
c for the number 0. We write atomic formula L(f(x,y), c) for x + n < 0. The
symbolic statement SF becomes ∀R(x)(L(x, c)⇒ ∃N(y)L(f(x, y), c)). The corre-
sponding formula A ∈ F is ∀x(N(x)⇒ (L(x, c)⇒ ∃y(N(y) ∩ L(f(x, y), c))).

There are various kinds of non-mathematical statements, that obviously cannot
be justified on the basis of propositional logic. Consider for example a statement

”Any friend of Mary is a friend of John and Peter is not John’s friend. Hence
Peter is not May’s friend. ”

Intuitively, what it says is always true, but translating it it into a propositional
language we get a formula ((a∩¬b)⇒ ¬c) that can be false. The validity of the
reasoning described by the statement follows from a more complexed structure
provided by the predicate language. We will discuss the notion of validity of
predicate language formulas, i.e. a semantics for predicate logic later. Natural
language statements and reasoning with them also play a special role in creation
of non-classical logics and in Artificial Intelligence research and applications.

Exercise 10

Translate a natural language statement S: ”Any friend of Mary is a friend of
John and Peter is not John’s friend. Hence Peter is not May’s friend.” into a
formula A ∈ F of the predicate language L.

Solution

1. We identify the basic relations and functions (if any) and translate them into
atomic formulas.

We have only one relation of ”being a friend”. It is a two argument relation. We
write atomic formula F(x, y) for ”x is a friend of y”. We use constants m, j, p
for Mary, John, and Peter, respectively. We have the following atomic formulas:
F(x, m) for ”x is a friend of Mary”, F(x, j) for ”x is a friend of John”, F(p, j)
for ”Peter is a friend of John”.

2. Statement ”Any friend of Mary is a friend of John” translates into a re-
stricted quantifier formula ∀F (x,m) F (x, j). Statement ”Peter is not John’s
friend” translates into ¬F (p, j), and ”Peter is not May’s friend” translates into
¬F (p,m).

3. Restricted quantifiers formula for S is

((∀F (x,m)F (x, j) ∩ ¬F (p, j))⇒ ¬F (p,m))

and the formula A ∈ F of L is

((∀x(F (x,m)⇒ F (x, j)) ∩ ¬F (p, j))⇒ ¬F (p,m)).

31

Here are simple steps we follow in order to perform translations from natural
language to the symbolic predicate language L. They are similar to the steps we
used in the translations of mathematical formulas nevertheless we voice them
separately and call them rules of translation.

Rules of translation to L.

1. Identify the basic relations and functions (if any) and translate them into
atomic formulas.
2. Identify propositional connectives and use symbols ¬,∪,∩,⇒,⇔ for them.
3. Identify quantifiers. Restricted ∀A(x), ∃A(x) and non-restricted ∀x, ∃x.
4. Use the symbols from 1. - 3. and restricted quantifiers transformation rules
(51) and (52) to write A ∈ F of the predicate language L.

Example 8

Given a natural language statement S: ”For any bird one can find some birds
that are white.” The translation of S into a formula of the predicate language L
is

∀x(B(x)⇒ ∃x(B(x) ∩W (x))).

We follow the rules of translation and get the following.

1. Atomic formulas: B(x), W(x). We write one argument predicate B(x) for ”
x is a bird” and one argument predicate W(x) for ” x is white”.

2. There is no propositional connectives in S.

3. Restricted quantifiers: ∀B(x) for ”any bird ” and ∃B(x) for ”one can find
some birds”. A restricted quantifiers formula for S is ∀B(x)∃B(x) W (x).

4. By the transformation rules we get a required non-restricted formula of the
predicate language L, i.e. the formula ∀x(B(x)⇒ ∃x(B(x) ∩W (x))).

Observe that the quantifier ∀x binds the variable x only in the first B(x), even
if its scope covers the second appearance of B(x) as well. It happens because
the second appearance of B(x) is bounded by the quantifier ∃x. Let’s re-write
the formula A using x to indicate this fact

∀x(B(x)⇒ ∃x(B(x) ∩W (x))).

In this case, and in the similar cases we can apply a predicate logic law of
quantifiers, called Rename Variables Law to our formula A and get a formula
B that is logically equivalent to A. It means that the formula B states exactly
the same what A states but is written in a more comprehensible form:

∀x(B(x)⇒ ∃y(B(y) ∩W (y))).

We will discuss and study Laws of Quantifiers in the next section. There is
another important law, one of the Distributivity Laws that allows us to transform

32

B into a formula ∀x∃y(B(x)⇒ (B(y) ∩W (y))). We express it as the following
example.

Example 9

Given a natural language statement S: ”For any bird one can find some birds
that white.” The translation of S into a formula of the predicate language L is

∀x∃y(B(x)⇒ (B(y) ∩W (y))).

Exercise 11

Translate into L a natural language statement
S: ” Some patients like all doctors.”

Solution.

1. Atomic formulas: P(x), D(x), L(x, y). We write one argument predicate
P(x) for ” x is a patient”, one argument predicate D(x) for ” x is a doctor”, and
two argument predicate L(x,y) for ” x likes y”.

2. There is no propositional connectives in S.

3. Restricted quantifiers: ∃P (x) for ”some patients ” and ∀D(x) for ”all doctors”.
Observe that we can’t write L(x, D(y)) for ”x likes doctor y”. D(y) is a predicate,
not a term and hence L(x, D(y)) is not a formula. We have to express the
statement ” x likes all doctors y” in terms of restricted quantifiers and predicate
L(x,y) only. The statement ” x likes all doctors y” means ” all doctors y are
liked by x”, i.e. ”for all doctors y, x likes y”. This translates to ∀D(y)L(x, y)
and the statement S translates to ∃P (x)∀D(x)L(x, y).

4. By the transformation rules we get the following translation of S into L.

∃x(P (x) ∩ ∀y(D(y)⇒ L(x, y))).

Translations to Logic in Artificial Intelligence

In Artificial Intelligence (AI) we usually deal with what is called an intended
interpretation. It means we use logic symbols to describe, similarly as we do in
mathematics, concrete, specific universes with specific relations and functions,
or constants. In logic we use general symbols without any meaning because
the logic is created to define statements (formulas) and methods of reasoning
that are universally applicable (tautologically true) and hence independent of
any particular domain. In AI we use as symbols intended names for relations,
functions, and constants. The symbolic language we use is still a symbolic
language, even if intended names are used. In the AI language we can write, for
example , an atomic formula Like(John, Mary) instead of a formula L(c1, c2)
of L. We write greater(x, y), or > (x, y) instead of R(x, y). We leave it as an
exercise to formally define the AI language you would like to use.

33

Example 10

AI formulas corresponding to a statement

S: ”For every student there is a student that is an elephant.”

are as follows.

1. Restricted quantifiers AI formula:

∀Student(x)∃Student(x) Elephant(x).

2. Non-restricted quantifiers AI formula :

∀x(Student(x)⇒ ∃x(Student(x) ∩ Elephant(x))).

3. Re-name variables AI formula:

∀x(Student(x)⇒ ∃y(Student(y) ∩ Elephant(y))).

4. AI formula after applying the the Distributivity Laws:

∀x∃y(Student(x)⇒ (Student(y) ∩ Elephant(y))).

Observe that a proper formulas of the predicate language L corresponding the
example 10 statement ”For every student there is a student that is an elephant.”
are the same as the formulas corresponding to the natural language statement
”For any bird one can find some birds that white.” of the example 9, namely
1. Restricted quantifiers L formula: ∀P (x)∃P (x) R(x).
2. Non-restricted quantifiers L formula : ∀x(P (x)⇒ ∃x(P (x) ∩Rx))).
3. Re-name variables L formula: ∀x(P (x)⇒ ∃y(P (y) ∩R(y))).
4. L formula after applying the the Distributivity Laws

∀x∃y(P (x)⇒ (P (y) ∩R(y))).

The predicate symbols P, R, Student, Elephant denote in all cases one argument
predicates but AI predicate symbols Student, Elephant (of a slightly different
language than L) impose a particular meaning called the intended interpre-
tation. The predicate symbols P, R and any elements of the set of all predicate
symbols P of L.

Exercise 12

Translate a natural language statement ”Any friend of Mary is a friend of
John and Peter is not John’s friend. Hence Peter is not Mary’s friend.” into a
formula A of the predicate AI language (of your choice).

Solution
Statement ”Any friend of Mary is a friend of John” translates into a restricted

34

quantifier AI formula ∀Friend(x,Mary) Friend(x, John).
Statement ”Peter is not John’s friend” translates into ¬Friend(Peter, John),
and ”Peter is not Mary’s friend” translates into ¬Friend(Peter,Mary).

Restricted quantifiers AI formula for S is ((∀Friend(x,Mary) Friend(x, John) ∩
¬Friend(Peter, John))⇒ ¬Friend(Peter,Mary)).

The AI formula is ((∀x(Friend(x,Mary)⇒ Friend(x, John)) ∩
¬Friend(Peter, John))⇒ ¬Friend(Peter,Mary)).

The AI formulas are very useful, as they ”read” as natural language statements
but it is very important to remember that they do not carry any meaning, as the
natural language statements do to the reader. An atomic formula Friend(Peter,
John) is just an atomic formula of a symbolic AI language as P (c, d) is in L.
We assign a meaning to them i.e. their semantics in a separate step as we did
in the propositional case. The first step in this process is an assignment of an
interpretation in a non-empty set U of the predicate, functional and constant
symbols. Each symbol can have many interpretations in a given set and we can
can define the interpretations an many sets. The AI intended interpretation
of the two argument predicate named Friend and constants Peter, John is
to define the set U and a relation Friend. This relation must hold between
elements Peter, John and other elements of U in a way we want to define what
”friendship” means in the set U. This is called in AI a conceptualization.

5 Predicate Semantics: Description and
Laws of Quantifiers

The notion of predicate tautology is much more complicated then that of the
propositional. We define it formally in later chapters. Predicate tautologies are
also called valid formulas, or laws of quantifiers to distinguish them from the
propositional case. We provide here a motivation, examples and an intuitive
definition of the predicate tautology. We also list and discuss the most used and
useful tautologies and equational laws of quantifiers.

The formulas of the predicate language L have meaning only when an interpre-
tation is given for the symbols. We define the interpretation I in a set U 6= ∅
by interpreting predicate, functional symbols as a concrete relation, function
defined in the universe U, and constants symbols as elements of the set U. The
set U is called the universe of the interpretation I. These two items specify a
model structure for L. We write it as a pair M = (U, I).

Given a formula A of L, and the model structure M = (U, I). Let’s denote by
AI a statement written with logical symbols determined by the formula A and
the interpretation I in the universe U. When A is a closed formula, it means it
is a sentence, formula without free variables, AI represents a proposition that
is true or false. When A is not a sentence it contains free variables and may

35

be satisfied (i.e. true) for some values in the universe U and not satisfied (i.e.
false) for the others. Lets look at few simple examples.

Example 11

Let A be a formula ∃xP (x, c) and consider a model structure M1 = (N, I1).
The universe of the interpretation I1 is the set N of natural numbers and we
define I1 as follows: we interpret the predicate P as relation < and the constant
c as number 5, i.e we put PI1 := andcI1 : 5.

The formula A: ∃xP (x, c) under the interpretation I1 becomes a mathematical
statement ∃x x < 0 defined in the set N of natural numbers. We write it for
short

AI1 : ∃x∈N x = 5.

AI1 is obviously a true mathematical statement and say that the formula A:
∃xP (x, c) is true under the interpretation I1 in M1 or that A is true in M1.
We write it symbolically as

M1 |= ∃xP (x, c)

and say that M1 is a model for the formula A.

Example 12

Consider now a model structure M2 = (N, I2) and the formula A: ∃xP (x, c).
We interpret now the predicate P as relation < in the set N of natural numbers
and the constant c as number 0, i.e. we put PI2 :< and cI2 : 0.

The formula A: ∃xP (x, c) under the interpretation I2 mathematical statement
∃x x < 0 defined in the set N of natural numbers. We write it for short

AI2 : ∃x∈N x < 0.

AI2 is obviously a false mathematical statement. We say that the formula A:
∃xP (x, c) is false under the interpretation I2 in M2 or that A is false in M2.
We write it symbolically as

M2 6 |= ∃xP (x, c)

and say that M2 is a counter-model for the formula A.

Example 13

Consider now a model structure M3 = (Z, I3) and the formula A: ∃xP (x, c).
We define an interpretation I3 in the set of all integers Z exactly as the inter-
pretation I1, i.e. we put PI3 :< and cI3 : 0.

36

In this case we get AI3 : ∃x∈Z x < 0 and AI3 is obviously a true mathematical
statement. The formula A is true under the interpretation I3 in M3 (A is
satisfied, true in M3). We write it symbolically as

M3 |= ∃xP (x, c).

M3 is yet another model for the formula A.

When a formula is not a closed (sentence) thing get more complicated. Given
a model structure M = (U, I) a formula can be satisfied (i.e. true) for some
values in the universe U and not satisfied (i.e. false) for the others.

Example 14

Consider the following formulas: 1. A1 : R(x, y), 2. A2 : ∀yR(x, y), 3. A3 :
∃x∀yR(x, y). We define a model structure M = (N, I) where R is interpreted
as a relation ≤ defined in the set N of all natural numbers, i.e. we put RI :≤.

In this case we get the following.
1. A1I : x ≤ y and A1 : R(x, y) is satisfied in M = (N, I) by all n,m ∈ N such
that n ≤ m.
2. A2I : ∀y∈N x ≤ y and A2 : ∀yR(x, y) is satisfied in M = (N, I) only by the
natural number 0.
3. A3I : ∃x∈N∀y∈N x ≤ y asserts that there is a smallest natural number and
A3 is a true sentence in M = (N, I), i.e. M is a model for A3.

Observe that changing the universe of M = (N, I) to the set of all integers Z, we
get a different a model structure M1 = (Z, I). In this case A3I : ∃x∈Z∀y∈Z x ≤ y
asserts that there is a smallest integer and A3 is a false sentence in M1, i.e. M1

is a counter-model for A3.

We want predicate language tautologies to have the same property as the propo-
sitional, namely to be always true. In this case, we intuitively agree that it
means that we want predicate tautologies to be formulas that are true under
any interpretation in any possible universe.

A rigorous definition of the predicate tautology is provided in a later chapter on
Predicate Logic. We construct it in the following steps.
1. We first define formally the notion of interpretation I of symbols of calL in
a set U 6= ∅ i.e. the model structure M = (U, I) for the predicate language L.
2. Then we define formally a notion ” a formula A of L a is true (valid) in
M = (U, I)”. We write it symbolically

M |= A

and call the model structure M = (U, I) a model for A.
3. We define a notion ”A is a predicate tautology” as follows.

Definition 8

37

For any formula A of predicate language L,
A is a predicate tautology (valid formula) if and only if M |= A for all
model structures M = (U, I) for L.

4. We get immediately from the above definition 8 of a following definition of a
notion ” A is not a predicate tautology”.

Definition 9

For any formula A of predicate language L,
A is not a predicate tautology if and only if there is a model structure
M = (U, I) for L, such that M 6|= A.
We call such model structure M a counter-model for A.

The definition 9 says: to prove that A is not a predicate tautology one has to
show a counter- model. It means one has to show a non-empty set U and define
an interpretation I, such that we can prove that AI is a false.

We use terms predicate tautology or valid formula instead of just saying a tau-
tology in order to distinguish tautologies belonging to two very different lan-
guages. For the same reason we usually reserve the symbol |= for propositional
case. Sometimes symbols |=p or |=f are used to denote predicate tautologies,
where ”p” stands for ”predicate” and ”f” stands ”first order”. The predicate
tautologies are also called laws of quantifiers and we will use both terms for
them.

Here are some examples of predicate tautologies and counter models for formulas
that are not tautologies.
For any formula A(x) with a free variable x:

|=p (∀x A(x)⇒ ∃x A(x)). (53)

Observe that (53) represents an infinite number of formulas. It is a tautology
for any formula A(x) of L with a free variable x.
The inverse implication to (53) is not a predicate tautology.

6|=p (∃x A(x)⇒ ∀x A(x)) (54)

To prove (54) we have to provide an example of a concrete formula A(x) and
construct a counter-model M = (U, I) for the formula F : (∃x A(x)⇒ ∀x A(x)).
Let A(x) be an atomic formula P (x, c). We take as M = (N, I) for N set of
natural numbers and PI :<, cI : 3. The formula F becomes an obviously false
mathematical statement FI : (∃n∈Nn < 3⇒ ∀n∈Nn < 3).

Observe that we have to be very careful when we deal with quantifiers with
restricted domain. The most basic predicate tautology (53) fails when we use
the quantifiers with restricted domain.

38

Example 15

Show that
6|=p (∀B(x) A(x)⇒ ∃B(x) A(x)). (55)

Observe that (55) means that corresponding proper formula F of L obtained
by the restricted quantifiers transformations rules (51), (52) is not a predicate
tautology, i.e.

6|=p (∀x(B(x)⇒ A(x))⇒ ∃x(B(x) ∩A(x))). (56)

We construct a counter-model M for (56) as follows. We take M = (N, I) where
N is the set of real numbers, B(x), A(x) are atomic formulas Q(x, c), P (x, c) and
the interpretation I is defined as QI :<, PI :>, cI : 0. The formula F of (56)
becomes a mathematical statement

FI : (∀n∈N (n < 0⇒ n > 0)⇒ ∃n∈N (n < 0 ∩ n > 0)).

FI is a false because the statement n < 0 is false for all natural numbers and
F ⇒ B is a true implication for any logical value of B, so ∀n∈N (n < 0⇒ n > 0)
is a true statement and ∃n∈N (n < 0 ∩ n > 0) is obviously false.

Restricted quantifiers law corresponding to the predicate tautology (53) is:

|=p (∀B(x) A(x)⇒ (∃x B(x)⇒ ∃B(x) A(x))). (57)

We remind that (57) means that corresponding proper formula of L obtained
by the restricted quantifiers transformations rules (51), (52) is a predicate tau-
tology, i.e.

|=p (∀x(B(x)⇒ A(x))⇒ (∃x B(x)⇒ ∃x (B(x) ∩A(x)))) (58)

.

Another basic predicate tautology called a dictum de omni law is: For any
formulas A(x) with a free variable x ∈ V AR,

|=p (∀x A(x)⇒ A(y)), (59)

where y ∈ V AR and A(y) is a result of substitution of y for all free occurrences
of x in A(x) (if any) and y is free for x in A(x), what means that no occurrence
of a variable y becomes a bound occurrence in A(y). Restricted quantifiers law
corresponding to the dictum de omni law (59) is:

|=p (∀B(x) A(x)⇒ (B(y)⇒ A(y))), (60)

where y ∈ V AR satisfies the same condition as in (59).

Observe that we say A is restricted quantifiers law, or A is restricted quantifiers
tautology as a shorthand to formally saying that a formula obtained from A by
the transformations rules (51), (52) is a predicate tautology.

39

A more general version of (59) is:

|=p (∀x A(x)⇒ A(t)), (61)

where t is a term and A(t) is a result of substitution of t for all free occurrences
of x in A(x) and t is free for x in A(x), what means that no occurrence of a
variable in t becomes a bound occurrence in A(t).

Here is another important tautology, called a generalization law.

|=p (A(x)⇒ ∀x A(x)). (62)

The next important laws are the Distributivity Laws.

1. Distributivity of existential quantifier over conjunction holds only on one
direction, namely the following is a predicate tautology.

|=p (∃x (A(x) ∩B(x)) ⇒ (∃xA(x) ∩ ∃xB(x))) (63)

where A(x), B(x) are any formulas with a free variable x. The inverse implica-
tion is not a predicate tautology, i.e. there are formulas A(x), B(x) with a free
variable x. such that

6|=p ((∃xA(x) ∩ ∃xB(x))⇒ ∃x (A(x) ∩B(x))). (64)

To prove (64) means that we have to find a concrete formulas A(x), B(x) ∈ F
and a model structure M = (U, I), where the interpretation I is the interpreta-
tion of all predicate, functional, and constant symbols in A(x), B(x), such that
it is a counter- model for the formula

F : ((∃xA(x) ∩ ∃xB(x))⇒ ∃x (A(x) ∩B(x))).

Take M = (R, I) where R is the set of real numbers, and A(x), B(x) be atomic
formulas Q(x, c), P (x, c). We define the interpretation I as QI :>, PI :<, cI : 0.
The formula F becomes an obviously false mathematical statement

FI : ((∃x∈R x > 0 ∩ ∃x∈R x < 0)⇒ ∃x∈R (x > 0 ∩ x < 0)).

2. Distributivity of universal quantifier over disjunction holds only on one di-
rection, namely the following is a predicate tautology for any formulas A(x), B(x)
with a free variable x.

|=p ((∀xA(x) ∪ ∀xB(x))⇒ ∀x (A(x) ∪B(x))). (65)

The inverse implication is not a predicate tautology, i.e.there are formulas A(x), B(x)
with a free variable x. such that

6|=p (∀x (A(x) ∪B(x))⇒ (∀xA(x) ∪ ∀xB(x))). (66)

40

It means that we have to find a concrete formula A(x), B(x) ∈ F and a model
structure M = (U, I) that is a counter- model for the formula

F : (∀x (A(x) ∪B(x))⇒ (∀xA(x) ∪ ∀xB(x))).

Take M = (R, I) where R is the set of real numbers, and A(x), B(x) be atomic
formulas Q(x, c), R(x, c). We define QI :≥, RI :<, cI : 0. The formula F
becomes an obviously false mathematical statement

FI : (∀x∈R (x ≥ 0 ∪ x < 0)⇒ (∀x∈R x ≥ 0 ∪ ∀x∈R x < 0)).

The most frequently used laws of quantifiers have a form of a logical equivalence,
symbolically written as ≡. This not a new logical connective. This is a very
useful symbol. It says that two formulas always have the same logical value,
hence it can be used in the same way we use the equality symbol =. Formally
we define it as follows.

Definition 10

For any formulas A,B ∈ F of the predicate language L,

A ≡ B if and only if |=p (A⇔ B).

We have also a similar definition for our propositional language L (definition 1)
and propositional tautology (definition 3).

Equational Laws for Quantifiers

De Morgan
For any formula A(x) ∈ F with a free variable x,

¬∀xA(x) ≡ ∃x¬A(x), ¬∃xA(x) ≡ ∀x¬A(x). (67)

Definability
For any formula A(x) ∈ F with a free variable x,

∀xA(x) ≡ ¬∃x¬A(x), ∃xA(x) ≡ ¬∀x¬A(x). (68)

Renaming the Variables
Let A(x) be any formula with a free variable x and let y be a variable that does
not occur in A(x). Let A(x/y) be a result of replacement of each occurrence of
x by y, then the following holds.

∀xA(x) ≡ ∀yA(y), ∃xA(x) ≡ ∃yA(y). (69)

Alternations of Quantifiers
Let A(x, y) be any formula with a free variables x and y.

∀x∀y (A(x, y) ≡ ∀y∀x (A(x, y) (70)

41

∃x∃y (A(x, y) ≡ ∃y∃x (A(x, y) (71)

Introduction and Elimination Laws
If B is a formula such that B does not contain any free occurrence of x, then
the following logical equivalences hold.

∀x(A(x) ∪B) ≡ (∀xA(x) ∪B), (72)

∃x(A(x) ∪B) ≡ (∃xA(x) ∪B), (73)

∀x(A(x) ∩B) ≡ (∀xA(x) ∩B), (74)

∃x(A(x) ∩B) ≡ (∃xA(x) ∩B), (75)

∀x(A(x)⇒ B) ≡ (∃xA(x)⇒ B), (76)

∃x(A(x)⇒ B) ≡ (∀xA(x)⇒ B), (77)

∀x(B ⇒ A(x)) ≡ (B ⇒ ∀xA(x)), (78)

∃x(B ⇒ A(x)) ≡ (B ⇒ ∃xA(x)). (79)

Distributivity Laws

Let A(x), B(x) be any formulas with a free variable x.
Distributivity of universal quantifier over conjunction.

∀x (A(x) ∩B(x)) ≡ (∀xA(x) ∩ ∀xB(x)) (80)

Distributivity of existential quantifier over disjunction.

∃x (A(x) ∪B(x)) ≡ (∃xA(x) ∪ ∃xB(x)) (81)

We also define the notion of logical equivalence ≡ for the formulas of the —tex-
titpropositional language (definition 1) and its semantics.

Definition 11

For any formulas A,B ∈ F of the propositional language L,

A ≡ B if and only if |= (A⇔ B).

Moreover, we prove that any substitution of propositional tautology by a formu-
las of the predicate language is a predicate language tautology. The same holds
for the logical equivalence. In particular, we transform the propositional Impli-
cation and Double Negation tautologies (48), (49) into the following predicate
equivalences.

For any formulas A,B of the predicate language L,

(A⇒ B) ≡ (¬A ∪B), (82)

42

¬¬A ≡ A (83)

We use (82) and (83) to prove the following De Morgan Laws for restricted
quantifiers.

Restricted De Morgan
For any formulas A(x), B(x) ∈ F with a free variable x,

¬∀B(x) A(x) ≡ ∃B(x) ¬A(x), ¬∃B(x) A(x) ≡ ∀B(x)¬A(x). (84)

Here is a poof of first equality. The proof of the second one is similar and is left
as an exercise.

¬∀B(x) A(x) ≡ ¬∀x (B(x)⇒ A(x)) ≡ ¬∀x (¬B(x)∪A(x)) ≡ ∃x ¬(¬B(x)∪A(x))

≡ ∃x (¬¬B(x) ∩ ¬A(x)) ≡ ∃x (B(x) ∩ ¬A(x)) ≡ ∃B(x) ¬A(x)).

We also transform the propositional Distributivity tautologies (45), (46) into
the following predicate equivalences.

For any formulas A,B of the predicate language L,

(A ∩ (B ∪ C)) ≡ ((A ∩B) ∪ (A ∩ C)), (85)

(A ∪ (B ∩ C)) ≡ ((A ∪B) ∩ (A ∪ C)) (86)

We use (85) and (86) to prove the following Distributivity Laws for restricted
quantifiers.

Restricted Distributivity Laws
We generalize the Introduction and Elimination Laws (72), (75), (76), (78) to
the case of the the restricted quantifiers as folows.

Restricted Introduction and Elimination Laws

If B is a formula such that B does not contain any free occurrence of x, then
the following logical equivalences hold for any formulas A(x), B(x), C(x).

∀C(x)(A(x) ∪B) ≡ (∀C(x)A(x) ∪B), (87)

∃C(x) (A(x) ∩B) ≡ (∃C(x) A(x) ∩B), (88)

∀C(x)(A(x)⇒ B) ≡ (∃C(x)A(x)⇒ B), (89)

∀C(x)(B ⇒ A(x)) ≡ (B ⇒ ∀C(x)A(x)). (90)

The proofs are similar to the proof of the restricted de Morgan Laws.
The similar generalization of the other Introduction and Elimination Laws (73),

43

(74), (77), (79) fails. We can easily follow Example 15 and construct proper
counter-models proving the following.

∃C(x)(A(x) ∪B) 6≡ (∃C(x)A(x) ∪B),

∀C(x)(A(x) ∩B) 6≡ (∀C(x)A(x) ∩B),

∃C(x)(A(x)⇒ B) 6≡ (∀C(x)A(x)⇒ B),

∃C(x)(B ⇒ A(x)) 6≡ (B ⇒ ∃xA(x)).

Nevertheless it is possible to correctly generalize them all as to cover quantifiers
with restricted domain. We show it in a case of (73) and leave the other cases
to the reader as an exercise.

Example 16

The restricted quantifiers version of (73) is the following.

∃C(x)(A(x) ∪B) ≡ (∃C(x)A(x) ∪ (∃x C(x) ∩B)). (91)

We derive (91) as follows.

∃C(x)(A(x) ∪B) ≡ ∃x(C(x) ∩ (A(x) ∪B)) ≡ ∃x((C(x) ∩A(x)) ∪ (C(x) ∩B))

≡ (∃x(C(x) ∩A(x)) ∪ ∃x(C(x) ∩B)) ≡ (∃C(x)A(x) ∪ (∃x C(x) ∩B)).

We leave it as an exercise to specify and write references to transformation or
equational laws used at each step of our computation.

6 Homework Problems

Propositional Languages

1. For the following sentences write their corresponding formulas.

(a) If Mr. Smith is happy, Mrs. Smith is not happy, and if If Mr. Smith
is not happy, Mrs. Smith is not happy.

(b) If John doesn’t know logic, then if he knows logic, he was born in the
12th century.

(c) If from the fact that all sides of a triangle ABC are equal we can
deduce that all angles of the triangle ABC are equal and all angles
of the triangle ABC are not equal, then all sides of a triangle ABC
are equal.

44

(d) If it is not the fact that a line L is parallel to a line M or a line P is
not parallel the line M, then the line L is not parallel to the line M
or the line P is parallel the line M.

(e) If a number a is divisible by 3 and by 5, then from the fact that it is
not divisible by 3, we can deduce that it is also not divisible by 5.

2. For each of the following formulas write 3 corresponding natural language
sentences.

(a) (a⇒ (¬a ∩ b))

(b) (((p ∪ q) ∩ ¬p)⇒ q)

(c) ((a⇒ b)⇒ (a⇒ (b ∪ c)))

(d) ¬(p ∩ (¬p ∩ q))

(e) ((a⇒ ((¬b ∩ b)⇒ c))

3. Consider a following set S

S = {(a ∩ b)⇒ ¬(a ∪ b), ((¬a)⇒ (¬a⇒ b)), (¬a⇒ (a ∩ ¬b))}.

1. Determine which of the elements of S are, and which are not well
formed formulas (wff) of L = (A,F).

2. If A ∈ S is not a formula, i.e if A 6∈ F re-write it as a correct formula
and write in the natural language what it says.

4. Write a full definition of a propositional language that uses Hilbert set of
connectives. Give four examples of well form formulas of this language.
List next to them corresponding formulas of our propositional language
L.

5. Write a full definition of a propositional language L that uses Lukasiewicz
set of connectives. Give 4 examples of well form formulas of this language.
Give 4 examples of well form formulas of this language. List next to them
corresponding formulas of our propositional language L.

Propositional Semantics

1. Given a formula A: (((a∩b)∪¬c)⇒ b). Evaluate the logical value of A for
the following sets of logical values of its basic components, i.e. variables
a, b: 1. a=T, b=F, c=F and 2. a=F, b=T, c=T.

2. Given a formula A: (((a⇒ ¬b) ∪ b)⇒ a). Evaluate the logical value of A
for all possible logical values of its variables.

3. Given a formula A: (((a ↓ ¬b) ∪ b) ↑ a). Evaluate the logical value of A
for the following sets of logical values of its variables: 1. a=T, b=F and
2. a=F, b=F.

45

4. Find and prove an equality defining implication in terms of disjunction
and negation.

5. Find and prove an equality defining conjunction in terms of disjunction
and negation.

6. Find and prove an equality and a table defining conjunction in terms of
implication and negation.

7. Prove that ∪ can be defined in terms of ⇒ alone.

8. Find and prove an equality defining ⇒ in terms of ↑.

9. Define ⇒ in terms of ¬ and ∩.

10. Find an equality defining ⇒ in terms of ↓.

11. Define ∩ in terms of ⇒ and ¬.

12. Find an equality defining ∩ in terms of ↓ alone.

Propositional Tautologies

1. Prove 5 propositional tautologies of your choice.

2. Prove that a formula (((¬A⇒ B) ∩ (B ⇒ C))⇒ ((A ∩B)⇒ C) is not a
propositional tautology.

3. Show that ”If a number is divisible by 3 and by 5, then from the fact that
it is not divisible by 3, we can deduce that it is also not divisible by 5” is
always a true statement.

4. Determine whether the following arguments logically correct by represent-
ing each sentence as propositional formula and checking whether the con-
clusion is logically implied by the conjunction of the assumptions. To do
this assign logical value T to each formula representing assumption and
F to the formula representing the conclusion, and determine whether a
contradiction results.

(a) If John is a Communist, John is atheist. John is an atheist. Hence
John is a Communist.

(b) If the temperature and air pressure remained constant, there was a
rain.The temperature did remain constant. Therefore, if there was a
rain then the air pressure did not remain constant.

(c) If a = 0 or b = 0, then ab = 0. But ab 6= 0. Hence a 6= 0 or b 6= 0.

(d) If a = 0 and b = 0, then ab = 0. But ab 6= 0. Hence a 6= 0 or b 6= 0.

Predicate Language Description and Application to AI

46

1. Given the following formulas A1 −A5 of L.

A1 = R(x, y, g(c, x)), A2 = ∃xP (x, f(x, y)), A3 = ∃dR(x, y, g(c, d)),

A4 = ∀z(f(x, P (c, y)), A5 = ∃yP (x, f(c, y)) ∪ ∀yP (x, f(c, y)).

(a) Indicate whether they are, or are not well formed formulas of F . For
those which are not in F write a correct formula.

(b) For each correct, or corrected formula identify all components: con-
nectives, quantifiers, predicate and function symbols, and list all its
terms.

(c) For each formula identify its s free and bound variables. State which
are open and which are closed formulas (sentences), if any.

2. For the following mathematical statements write their corresponding for-
mulas of predicate language L.

(a) ∀n>1(n + 3 < 8 ∪ ∃x∈R x + n > 8)

(b) ∀x∈R ∃n∈N (x + n > 0⇒ ∃m∈N (m = x + n))

(c) If all natural numbers are smaller then zero, then the sum of any two
integers is smaller then zero.

(d) For all natural numbers The following implication holds for all natural
numbers: if n > 0, then there is a real number x, such that n+x = 0
or there is an integer m, such that m > 0.

3. For the following natural language statements write their corresponding
formulas of predicate language L.

(a) Anyone who is persistent can learn logic.

(b) Some people are witty only if they are drunk.

(c) John hates everybody who does not hate himself.

(d) Everybody loves somebody and no one loves everybody.

4. For the following natural language statements write their corresponding
formulas of AI language of your choice.

(a) Anyone who is lazy can’t learn logic.

(b) Some people are happy only if they sing.

(c) John likes everybody who does not like Mary.

(d) Everybody with green eyes likes John.

5. For each of the following formulas (some with restricted quantifiers) write
two corresponding natural language sentences.

(a) ∀x(P (x)⇒ ∃yQ(x, y)).

47

(b) ∀x∃y(P (x) ∩ ¬Q(x, y)).

(c) ∀A(x)∃A(y)B(y).

(d) ∃P (x)∀N(x)R(x, y).

Predicate Semantics

1. For each of the formulas and each model structure M indicate for what
values the formula is satisfied (if it contains free variables) or whether M
is its model or counter-model (if it is a closed formula. i.e. a sentence).

Formulas are:

(a) P (f(x, y), c)

(b) P (x, y)⇒ P (y, x)

(c) ∀x∀y∀z((P (x, y) ∩ P (y, z))⇒ P (x, z))

Model structures M are:

M1 = (N, I), for N set of natural numbers and PI :≥, fI : multiplication,
and cI : 2

M2 = (Z, I), for Z set of integers and PI :=, fI : +, and cI : 2

M3 = (2Z , I), for 2Z the set of all subsets of Integers, and PI : ⊆, fI : ∩,
and cI : ∅

2. For a given model structure M and corresponding closed formulas deter-
mine for each of them whether M is its model or a counter-model.

(a) Model structure is M = (N, I), for N set of natural numbers and
PI :=, gI : +, fI : multiplication, and cI : 0, dI : 1.

Formulas are:

A1 : ∀x∃y(P (x, g(y, y)) ∪ P (x, g(g(y, y), d)))

A2 : ∀x∀y(P (f(x, y), c)⇒ (P (x, c) ∪ P (y, c)))

A3 : ∃y P (g(y, y), d)

(b) Model structure is M = (Z, I), for Z set of integers and PI :=, fI : +,

Formulas are:

A1 : ∀x∀y P (f(x, y), f(y, x)))

A2 : ∀x∀y P (f(x, y), y)

3. Prove that the following formulas are not predicate tautologies, i.e. find
for each of them a counter-model M.

(a) (∃x A(x)⇒ ∀x A(x))

(b) (∀x∃y A(x, y)⇒ ∃x∀y A(x, y))

48

(c) (∃x∃y A(x, y)⇒ ∃y A(y, y))

(b) (∀x∃y A(x, y)⇒ ∃y A(y, y))

(d) (∃x (A(x)⇒ B(x))⇒ (∃x A(x)⇒ ∃x B(x)))

(e) (∃x (A(x)⇒ B(x))⇒ (∃x A(x)⇒ ∃x B(x)))

4. Transform the following formulas with restricted quantifiers into a proper
formulas of the predicate language L.

(a) (∀A(x)∃B(x)C(x)⇒ ¬∃B(x)¬C(x))

(b) (∃A(x)(∀B(y)C(y)⇒ ¬C(x))

(c) (∀A(y)∃B(x)D(x, y)⇒ ¬∃B(x)C(x))

(d) ∀A(x)(∃B(x)C(x) ∪ ¬∀A(x)C(x))

5. Use proper Equational Laws for Quantifiers to prove that the following
Restricted Introduction and Elimination Laws hold for any formulas A(x),
B(x), C(x), and B, where B does not contain any free occurrence of x.

(a) ∃C(x) (A(x) ∩B) ≡ (∃C(x) A(x) ∩B)

(b) ∀C(x)(A(x)⇒ B) ≡ (∃C(x)A(x)⇒ B)

(c) ∀C(x)(B ⇒ A(x)) ≡ (B ⇒ ∀C(x)A(x))

49

