Introduction To Genetic Algorithms

Cse352 Professor Anita Wasilewska

Overview

- Introduction To Genetic Algorithms (GA)
- GA Operators and Parameters
- Genetic Algorithms To Solve The Traveling Salesman Problem (TSP)
- Summary

References

- D. E. Goldberg, 'Genetic Algorithm In Search, Optimization And Machine Learning', New York: Addison – Wesley (1989)
- John H. Holland 'Genetic Algorithms', Scientific American Journal, July 1992.
- Kalyanmoy Deb, 'An Introduction To Genetic Algorithms', Sadhana, Vol. 24 Parts 4 And 5.
- T. Starkweather, et al, 'A Comparison Of Genetic Sequencing Operators', International Conference On Gas (1991)
- D. Whitley, et al, 'Traveling Salesman And Sequence Scheduling: Quality Solutions Using Genetic Edge Recombination, Handbook Of Genetic Algorithms, New York

References

WEBSITES

- www.iitk.ac.in/kangal
- www.math.princeton.edu
- www.genetic-programming.com
- www.garage.cse.msu.edu
- www.aic.nre.navy.mie/galist

History Of Genetic Algorithms

- "Evolutionary Computing" was introduced in the 1960s
 by I. Rechenberg
- John Holland wrote the first book on Genetic Algorithms 'Adaptation in Natural and Artificial Systems' in 1975
- In 1992 John Koza used genetic algorithm to evolve programs to perform certain tasks
- He called his method "Genetic Programming"

What Are Genetic Algorithms?

Genetic Algorithms are search and optimization techniques based on Darwin's Principle of Natural Selection

Darwin's Principle Of Natural Selection

- IF there are organisms that reproduce, and
- IF offsprings inherit traits from their progenitors, and
- IF there is variability of traits, and
- IF the environment cannot support all members of a growing population,
- THEN those members of the population with lessadaptive traits (determined by the environment) will die out, and
- THEN those members with more-adaptive traits (determined by the environment) will thrive

The result is the evolution of species

Basic Idea Of Principle Of Natural

Selection

"Select The Best, Discard The Rest"

An Example of Natural Selection

Giraffes have long necks

Giraffes with slightly longer necks could feed on leaves of higher branches when all lower ones had been eaten off

They had a better chance of survival.

→ Favorable characteristic propagated through generations of giraffes.

→ Now, evolved species has long necks.

NOTE: Longer necks may have been a deviant characteristic (mutation) initially but since it was favorable, was propagated over generations. Now an established trait.

So, some mutations are beneficial

Genetic Algorithms implement Optimization Strategies by simulating evolution of species through natural selection

Simple Genetic Algorithm

```
Simple Genetic Algorithm()
    Initialize the Population;
    Calculate Fitness Function;
    While (Fitness Value != Optimal Value)
          Selection;//Natural Selection, Survival
Of Fittest
          Crossover;//Reproduction, Propagate
favorable characteristics
          Mutation;//Mutation
          Calculate Fitness Function;
```

Nature to Computer Mapping

Nature	Computer
Population	Set of solutions.
Individual	Solution to a problem.
Fitness	Quality of a solution.
Chromosome	Encoding for a Solution.
Gene	Part of the encoding of a solution.
Reproduction	Crossover

Encoding

ENCODING is a process of representing the solution in the form of a string that conveys the necessary information.

 Just as in a chromosome, each gene controls a particular characteristic of the individual, similarly, each bit in the string represents a characteristic of the solution

Encoding Methods

- Binary Encoding Most common method of encoding.
- Chromosomes are strings of 1s and 0s and each position in the chromosome represents a particular characteristic of the problem.

Chromosome A	10110010110011100101
Chromosome B	11111110000000111111

Encoding Methods

- Permutation Encoding Useful in ordering problems such as the Traveling Salesman Problem (TSP)
- In TS every chromosome is a string of numbers, each of which represents a city to be visited.

Chromosome A	1	5	3	2	6	4	7	9	8
Chromosome B	8	5	6	7	2	3	1	4	9

Encoding Methods

- Value Encoding Used in problems where complicated values, such as real numbers, are used and where binary encoding would not suffice.
 - Good for some problems, but often necessary to develop some specific crossover and mutation techniques for these chromosomes.

Chromosome A	1.235 5.323 0.454 2.321 2.454
Chromosome B	(left), (back), (left), (right), (forward)

Fitness Function

A fitness function quantifies the optimality of a solution (chromosome) so that that particular solution may be **ranked** against all the other solutions.

- A fitness value is assigned to each solution depending on how close it actually is to solving the problem
- Ideal fitness function correlates closely to goal and is quickly computable.
- In TSP, f(x) is the sum of distances between the cities in solution
- The lesser the value, the fitter the solution is

Recombination

Recombination is a process that **determines** which solutions are to be **preserved** and allowed to reproduce and which ones deserve to **die out**

- The primary objective of the recombination operator is to emphasize the good solutions and eliminate the bad solutions in a population, while keeping the population size constant
- "Selects The Best, Discards The Rest"

"Recombination" is different from "Reproduction"

Recombination

Identify the good solutions in a population.

- Make multiple copies of the good solutions.
- Eliminate bad solutions from the population so that multiple copies of good solutions can be placed in the population.

Roulette Wheel Selection

- Each current string in the population has a slot assigned to it which is in proportion to it's fitness
- We spin the weighted roulette wheel thus defined
 n times (where *n* is the total number of solutions)
- Each time Roulette Wheel stops, the string corresponding to that slot is created

Strings that are fitter are assigned a larger slot and hence have a better chance of appearing in the new population

Example Of Roulette Wheel Selection

No.	String	Fitness	% Of Total
1	01101	169	14.4
2	11000	576	49.2
3	01000	64	5.5
4	10011	361	30.9
Total		1170	100.0

Roulette Wheel For Example

Crossover

Crossover is the **process** in which two chromosomes (strings) combine their genetic material (bits) to **produce** a new offspring which possesses both their characteristics.

- Two strings are picked from the mating pool at random to cross over
- The method chosen depends on the Encoding Method

Single Point Crossover- a random point is chosen on the individual chromosomes (strings) and the genetic material is exchanged at this point

or this generation's represented	ng weighted toulette wheel k
BEFORE CROSSOVER	AFTER CROSSOVER
CROSSING SITE	
STRING 1	
CRDSS	
STRING 2	NEW STRING &
10 their contraction of the second	

Single Point Crossover

Chromosome1	11011 00100110110
Chromosome 2	11011 11000011110
Offspring 1	11011 11000011110
Offspring 2	11011 00100110110

Two-Point Crossover- two random points are chosen on the individual chromosomes (strings) and the genetic material is exchanged at these points

Chromosome1	11011 00100 110110
Chromosome 2	10101 11000 011110
Offspring 1	10101 00100 011110
Offspring 2	11011 11000 110110

NOTE: These chromosomes are different from the last example

Uniform Crossover- each gene (bit) is selected randomly from one of the corresponding genes of the parent chromosomes

Chromosome1	11011 00100 110110
Chromosome 2	10101 11000 011110
Offspring	10111 00000 110110

NOTE: Uniform Crossover yields ONLY 1 offspring

Crossover

- Crossover between 2 good solutions
- MAY NOT ALWAYS yield a better or as good a solution
- Since parents are good, probability of the child being good is high
- If offspring is not good (poor solution), it will be removed in the next iteration during "Selection"

Elitism

Elitism is a method in which copies the best chromosome are **added** to the new offspring population before crossover and mutation

- When creating a new population by crossover or mutation the best chromosome might be lost
- Elitism lets GA to retain some number of the best individuals at each generation
- It has been found that elitism significantly improves performance

Mutation

Mutation is the process by which a string is deliberately changed so as to maintain diversity in the population set

We saw in the giraffes' example, that mutations could be beneficial

Mutation Probability- determines how often the parts of a chromosome will be mutated.

Example Of Mutation

For chromosomes using Binary Encoding, randomly selected bits are inverted.

Offspring	11011 00100 110110
Mutated Offspring	11010 00100 100110

NOTE: The number of bits to be inverted depends on the Mutation Probability

Advantages Of GA

- Global Search Methods: GAs search for the function optimum starting from a population of points of the function domain, not a single one
- This characteristic suggests that GAs are global search methods
- They can, in fact, climb many peaks in parallel, reducing the probability of finding local minima, which is one of the drawbacks of traditional optimization methods

Advantages of GA

- Blind Search Methods:
- GAs only use the information about the objective function
- GAs do not require knowledge of the first derivative or any other auxiliary information
- They allow a number of problems to be solved without the need to formulate restrictive assumptions
- For this reason, GAs are often called blind search methods.]

Advantages of GAs

GAs use probabilistic transition rules

during iterations, unlike the traditional methods that use fixed transition rules

This makes them **more robust** and applicable to a large range of problems.

Advantages of GAs

GAs can be easily used in parallel machines

- Since in real-world design optimization problems, most computational time is spent in evaluating a solution, with multiple processors all solutions in a population can be evaluated in a distributed manner
- This reduces the overall computational time substantially

Genetic Algorithms To Solve The Traveling Salesman Problem (TSP)

The Problem

The **Traveling Salesman Problem** is defined as:

'We are given a set of cities and a symmetric distance matrix that indicates the cost of travel from each city to every other city.

The goal is to find **the shortest circular tour**, visiting every city **exactly once**, so as to **minimize the total travel cost**, which includes the cost of traveling from the last city back to the first city '.

Encoding

- We represent every city with an integer
- Consider 6 Indian cities –
 Mumbai, Nagpur, Calcutta, Delhi, Bangalore and Chennai and assign a number to each.
 - Mumbai 1
 - Nagpur -> 2
 - Calcutta --> 3

 - Bangalore \rightarrow 5
 - Chennai 6

Encoding

- Thus a path would be represented as a sequence of integers from 1 to 6
- The path [1 2 3 4 5 6] represents a path from Mumbai to Nagpur, Nagpur to Calcutta, Calcutta to Delhi, Delhi to Bangalore, Bangalore to Chennai, and finally from Chennai to Mumbai
- This is an example of **Permutation Encoding** as the position of the elements determines the fitness of the solution.

Fitness Function

- The fitness function will be the total cost of the tour represented by each chromosome.
- This can be calculated as the sum of the distances traversed in each travel segment

The Lesser The Sum, The Fitter The Solution Represented By That Chromosome

Distance/Cost Matrix For TSP

	1	2	3	4	5	6
1	0	863	1987	1407	998	1369
2	863	0	1124	1012	1049	1083
3	1987	1124	0	1461	1881	1676
4	1407	1012	1461	0	2061	2095
5	998	1049	1881	2061	0	331
6	1369	1083	1676	2095	331	0

Cost matrix for six city example.

Distances in Kilometers

Fitness Function

- So, for a chromosome [4 1 3 2 5 6], the total cost of travel or fitness will be calculated as shown below
- Fitness = 1407 + 1987 + 1124 + 1049 + 331 + 2095
 = 7993 kms.
- Since our objective is to Minimize the distance, the lesser the total distance, the fitter the solution.

Selection Operator

We use Tournament Selection

As the name suggests *tournaments* are played between two solutions and the better solution is chosen and placed in the *mating pool*

Two other solutions are picked again and another slot in the *mating pool* is filled up with the better solution

Tournament

Why we cannot use single-point

crossover:

- Single point crossover method randomly selects a crossover point in the string and swaps the substrings.
- This may produce some invalid offsprings as shown below.

Crossover Operator

- We use the Enhanced Edge Recombination operator (T.Starkweather, et al, 'A Comparison of Genetic Sequencing Operators, International Conference of GAs, 1991).
- This operator is different from other genetic sequencing operators in that it emphasizes *adjacency information* instead of the order or position of items in the sequence.
- The algorithm for the Edge-Recombination Operator involves constructing an Edge Table first

The *Edge Table* is an *adjacency table* that lists links *into* and *out of* a city found in the two parent sequences.

If an item is already in the edge table and we are trying to insert it again, that element of a sequence must be a common edge and is represented by inverting it's sign.

Finding The Edge Table

1	4	3	2	5
2	-3	5	1	
3	1	-2	4	
4	-6	1	3	
5	1	2	-6	
6	-5	-4		-

Enhanced Edge Recombination Algorithm

- 1. Choose the initial city from one of the two parent tours. (It can be chosen randomly as according to criteria outlined in *step 4*). This is the current city
- 2. Remove all occurrences of the current city from the left hand side of the edge table.(These can be found by referring to the edge-list for the current city)
- 3. If the current city has entries in it's edge-list, go to step 4 otherwise go to step 5
- 4. Determine which of the cities in the edge-list of the current city has the fewest entries in it's own edge-list. The city with fewest entries becomes the current city. In case a negative integer is present, it is given preference. Ties are broken randomly. **Go to step 2**.
- 5. If there are no remaining *unvisited* cities, then *stop*.
- 6. Otherwise, randomly choose an *unvisited* city and go to step 2.

Example Of Enhanced Edge Recombination Operator

Step	2
------	---

1	4	3	2	5
2	-3	5	1	
3	1	-2	4	
4	-6	1	3	
5	3	2	-6	
6	-5			I

1		3	2	5	
2		-3	5	1	
3		1	-2		
4		-6	1	3	
5		3	2	-6	
6		-5			1
	ļ				
4	6				

Example Of Enhanced Edge Recombination Operator

1	3		2	5	
2	-3		5	1	
3	1		-2		-
4	1		3		
5	3		2		
6	-5				
	↓	_		_	
4	6 5]	

Example Of Enhanced Edge Recombination Operator

Step 6

Mutation Operator

- The mutation operator induces a change in the solution, so as to maintain diversity in the population and prevent Premature Convergence
- We mutate the string by randomly selecting any two cities and interchanging their positions in the solution, thus giving rise to a new tour.

MS-DOS Prompt - TC

Ŧ	5 x	8 🗸		è 🛍		88	Α
---	-----	-----	--	-----	---------	----	---

Travelling Sal	esman	Problem	using	Genetic Algorithm
Enter nonulatio	m siz	ze.	:	29
Enter number o	f citi	ies	:	20
Enter maximum (renera	ations	:	10000
Enter mutation	, proba	ability	:	0.09

Input To Program

▼ ▶

_ 🗆 X

Initial Output For 20 cities : Distance=34985 km Initial Population

Final Output For 20 cities : Distance=13170 km Generation 4786

 Genetic Algorithms (GAs) implement optimization strategies based on simulation of the natural law of evolution of a species by natural selection

The basic GA Operators are:

Encoding Recombination Crossover Mutation

GAs have been applied to a variety of function optimization problems, and have been shown to be highly effective in searching a large, poorly defined search space even in the presence of difficulties such as high-dimensionality, multi-modality, discontinuity and noise.