
 
Classification Lecture Notes 

cse352

Neural Networks

 Professor Anita Wasilewska

Neural Networks Classification
Introduction

– INPUT: classification data, i.e. it
contains an classification (class)
attribute

– WE also say that the class label is
known for all data.

– DATA is divided, as in any
classification problem, into TRAINING
and TEST data sets

Building a Neural Networks Classifier

– ALL DATA must be normalized, i.e.
all values of attributes in the dataset
has to be changed to contain values in
the interval [0,1], or [-1,1]
TWO BASIC normalization techniques:
– Max- Min normalization and
– Decimal Scaling normalization.

Data Normalization

•  Max-Min Normalization
Performs a linear transformation on the original data.
•  Given an attribute A, we denote by
 minA, maxA the minimum and maximum
values of the values of the attribute A

•  Max-Min Normalization maps a value v
of A to v’ in the range
•  [new_minA, new_maxA]
as follows.

AnewAnewAnew
AA

Avv min_)min_max_(
minmax

min' +−
−

−
=

 Data Normalization

Max- Min normalization formula is as
follows:

Example: we want to normalize data to range of
the interval [-1,1]
We put: new_max A= 1, new_minA = -1
In general, to normalize within interval [a,b] we put:
new_max A= b, new_minA = a

Example of Max-Min Normalization

AnewAnewAnew
AA

Avv min_)min_max_(
minmax

min' +−
−

−
=

Max- Min normalization formula

Example: We want to normalize data to range of the interval [0,1].
We put: new_max A= 1, new_minA =0

Say, max A was 100 and min A was 20 (That means maximum and minimum
values for the attribute A)

Now, if v = 40 (If for this particular pattern , attribute value is 40),
 v’ will be calculated as
v’ = (40-20) x (1-0) / (100-20) + 0
 => v’ = 20 x 1/80
 => v’ = 0.4

Decimal Scaling Normalization
Normalization by decimal scaling normalizes by moving the
decimal point of values of attribute A
A value v of A is normalized to v’ by computing

 j

vv
10

'=

where j is the smallest integer such that max|v’|<1.

Example :
A – values range from -986 to 917 Max |v| = 986
v = -986 normalize to v’ = -986/1000 = -0.986

Neural Network
•  Neural Network is a set of connected INPUT/

OUTPUT UNITS, where each connection has a
WEIGHT associated with it

•  Neural Network learning is also called
CONNECTIONIST learning due to the
connections between units

•  Neural Network is always fully connected
•  It is a case of SUPERVISED, INDUCTIVE or

CLASSIFICATION learning

Neural Network Learning

•  Neural Network learns by adjusting the weights
so as to be able to correctly classify the
training data and hence, after testing phase, to
classify unknown data

•  Neural Network needs long time for training

•  Neural Network has a high tolerance to noisy
and incomplete data.

10

Classification by Backpropagation

•  Backpropagation: a neural network learning algorithm
•  Started by psychologists and neurobiologists to develop

and test computational analogues of neurons

•  A neural network: a set of connected input/output units
where each connection has a weight associated with it

•  During the learning phase, the network learns by
adjusting the weights so as to be able to predict the
correct class label of the input tuples

•  Also referred to as connectionist learning due to the
connections between units

How A Multi-Layer Neural Network Works?

•  The inputs to the network correspond to the attributes
and their values for each training tuple

•  Inputs are fed simultaneously into the units making up
the input layer

•  Inputs are then weighted and fed simultaneously to a
hidden layer

•  The number of hidden layers is arbitrary, although often
only one or two

•  The weighted outputs of the last hidden layer are input
to units making up the output layer, which emits the
network's prediction

How A Multi-Layer Neural Network Works?

•  The network is feed-forward - it means that none of the
weights cycles back

 to an input unit or to an output unit of
 a previous layer
•  From a statistical point of view, networks perform

nonlinear regression:
•  Given enough hidden units and enough training

samples, they can closely approximate any function

kO
kjw

Output nodes

Input nodes

Hidden nodes

Output vector;
Classes

Input vector;
Record: xi

wij - weights

Network is fully connected

jO

A Multilayer Feed-Forward (MLFF) Neural
Network

A Multilayer Feed-Forward (MLFF) Neural Network

•  The units in the hidden layers and output layer
 are sometimes referred to as neurones
 due to their symbolic biological basis
 or just as output units
•  A multilayer neural network shown on the previous

slide has two layers
•  The input layer is not counted because it serves only

to pass the input values to next layer

•  Therefore, we say that it is a two-layer neural
network

A Multilayer Feed-Forward (MLFF)
Neural Network

•  A network containing two hidden layers is
called a three-layer neural network, and so
on

•  The network is feed-forward - it means
that none of the weights cycles back

 to an input unit or to an output unit of
 a previous layer

kO
kjw

Output nodes

Input nodes

Hidden nodes

Output vector;
 3 classes here

Input vector;
Record: xi

2 attributes here

wij - weights

Network is fully connected

jO

MLFF Neural Network

MLFF Network Input

•  INPUT: records without class attribute and with
normalized attributes values

•  We call it an input vector
•  INPUT VECTOR:
 X = { x1, x2, …. xn}
where n is the number of (non class) attributes

Observe that {,} do not denote a SET symbol here!
NN network people like use that symbol for a vector;
Normal vector symbol is [x1, … xn]

MLFF Network Topology

•  Network topology:
•  We define the network topology by

setting the following
 1. number of units in the input layer
 2. number of hidden layers
 3. number of units in each hidden
layer
 4. number of units in the output layer

MLFF Network Topology

•  INPUT LAYER – there are as many nodes

as non-class attributes i.e. as the length of
the input vector

•  HIDDEN LAYER – the number of nodes in
the hidden layer and the number of hidden
layers depends on implementation

jO
j=1, 2 ..#hidden nodes

MLFF Network Topology

•  OUTPUT LAYER – corresponds to the class
attribute

•  There are as many nodes as classes (if
classification has more than 2 classes)

kO k= 1, 2,.. #classes

•  Network is fully connected, i.e. each unit
provides input to each unit in the next forward
layer

MLFF Network Topology

•  Once a network has been trained
•  and its predictive accuracy is unacceptable
•  repeat the training process with a different

network topology
•  or a different set of initial weights

Classification by Backpropagation

•  Backpropagation is a neural network learning
algorithm

•  It learns by iteratively processing a set of training data
•  comparing the network’s prediction for each record with

the actual known target value
•  The target value may be the known class label of the

training tuple

•  or a continuous value for prediction

Classification by Backpropagation

•  For each training sample, the weights are
 first set random then they are modified
 as to minimize the mean squared error between the
network’s classification (prediction) and actual
classification

•  These weights modifications are propagated in

“backwards” direction, that is,
•  from the output layer, through each hidden layer down

to the first hidden layer
•  Hence the name backpropagation

Steps in Backpropagation Algorithm

•  STEP ONE: initialize the weights and biases
•  The weights in the network are initialized to

small random numbers ranging for example
from -1.0 to 1.0, or -0.5 to 0.5.

•  Each unit has a BIAS associated with it (see
next slide).

•  The biases are similarly initialized to small
random numbers.

•  STEP TWO: feed the training sample

Steps in Backpropagation Algorithm

•  STEP THREE: propagate the inputs forward
 (by applying activation function)
•  We compute the net input and output of each

unit in the hidden and output layers
•  STEP FOUR: backpropagate the error
•  STEP FIVE: update weights and biases to reflect

the propagated errors
•  STEP SIX: repeat and apply terminating

conditions

A Neuron; a Hidden, or Output Unit j

•  The inputs to unit j are outputs from the previous layer. These
are multiplied by their corresponding weights in order to form
a weighted sum, which is added to the bias associated with
unit j

•  A nonlinear activation function f is applied to the net input

 -

f

weighted
sum

Input
vector x

output y

Activation
function

weight
vector w

∑	

w0j

w1j

wnj

x0

x1

xn

Bias Θj

Step Three: propagate the inputs forward
•  For unit j in the input layer, its output is

equal to its input, that is,

jj IO =
The net input to each unit in the hidden and output
layers is computed as follows.
• Given a unit j in a hidden or output layer, the net input
is

∑ +=
i

jiijj OwI θ

where wij is the weight of the connection from unit i in the previous
layer to unit j; Oi is the output of unit i from the previous layer;

jθ is the bias of the unit

Step 3: propagate the inputs forward

•  Each unit in the hidden and output layers takes its net
input and then applies an activation function.

•  The function symbolizes the activation of the neuron
represented by the unit

•  It is also called a logistic, sigmoid, or squashing function.

•  Given a net input Ij to unit j, then

 Oj = f(Ij)
 the output of unit j, is computed as

jIj e
O −+

=
1
1

 Step 4: Back propagate the error
•  When reaching the output layer, the error is

computed and propagated backwards
•  For a unit k in the output layer the error is computed

by a formula:

))(1(kkkkk OTOOErr −−=
Where Ok is the actual output of unit k computed by activation
function

Tk is the TRUE output based of known class label of training
sample

Observe: Ok(1-Ok) is a derivative (rate of change) of activation
function

kIk e
O −+

=
1
1

 Step 4: Backpropagate the error
•  The error is propagated backwards by

updating weights and biases to reflect the
error of the network classification

•  For a unit j in the hidden layer the error is
computed by a formula:

jk
k

kjjj wErrOOErr ∑−=)1(

where wjk is the weight of the connection from unit j to unit k
in the next higher layer, and Errk is the error of unit k

 Step 5: Update weights and biases

•  Weights are updated by the following equations,
where l is a constant between 0.0 and 1.0 reflecting

•  the learning rate - this learning rate is fixed for
implementation

ijij OErrlw)(=Δ

ijijij www Δ+=

The rule of thumb is to set the learning rate to
l = 1/k where k is the number of iterations through the training
set so far

Output nodes

Input nodes

Hidden nodes

Output vector

Input vector: xi

wij

∑ +=
i

jiijj OwI θ

jIj e
O −+

=
1
1

))(1(jjjjj OTOOErr −−=

jk
k

kjjj wErrOOErr ∑−=)1(

ijijij OErrlww)(+=

jjj Errl)(+=θθ

jIj e
O −+

=
1
1

Backpropagation Formulas

 Step 5: Update weights and biase 
Learning Rate

•  The learning rate helps avoid getting stuck at
•  local mimimum (i.e. where the weights appear to

converge, but are not optimum solution)
•  The learning rate encourages finding the global

minimum
•  If the learning rate is too small, then learning will

occur at a very slow pace
•  If the learning rate is too large, then oscillation

between inadequate solutions may occur.

 Step 5: Update weights and biases 
Bias update

jθΔ

Biases are updated by the following equations

jjj θθθ Δ+=

jj Errl)(=Δθ

 Where is the change in the bias

Weights and Biases Updates
•  Case updating: we are updating weights
 and biases after the presentation of each sample

Epoch: One iteration through the training set

•  Epoch updating:
•  The weight and bias increments are

accumulated in variables and the weights and
biases are updated after all of the samples of
the training set have been presented

•  Case updating is more accurate

Terminating Conditions

•  Training stops when

ijwΔ•  All in the previous epoch are below some
threshold, or

• The percentage of samples misclassified in the previous
epoch is below some threshold, or

•  a pre- specified number of epochs has expired

•  In practice, several hundreds of thousands of epochs may
be required before the weights will converge

Output nodes

Input nodes

Hidden nodes

Output vector

Input vector: xi

wij
∑ +=
i

jiijj OwI θ

))(1(kkkkk OTOOErr −−=

jk
k

kjjj wErrOOErr ∑−=)1(

ijijij OErrlww)(+=

jjj Errl)(+=θθ

jIj e
O −+

=
1
1

Backpropagation Formulas

Example of Back Propagation

 x1 x2 x3 w14 w15 w24 w25 w34 w35 w46 w56

 1 0 1 0.2
-0.3

 0.4 0.1
-0.5

 0.2 -0.3 -0.2

Initial Input and weight

Initialize weights :

Input = 3, Hidden
Neuron = 2 Output =1

Random Numbers
from -1.0 to 1.0

Example of Back Propagation

•  Bias added to Hidden
 and output nodes
•  Initialize Bias
•  Bias: Random Values from
•  -1.0 to 1.0

•  Bias (Random)

 θ4 θ5

 θ6

 -0.4 0.2 0.1

Net Input and Output Calculation

 Unitj Net Input Ij Output Oj

 4 0.2 + 0 - 0.5 -0.4 = -0.7

 5 -0.3 + 0 + 0.2 + 0.2 =0.1

 6 (-0.3)0.332-(0.2)
(0.525)+0.1= -0.105

1.01
1
−+

=
e

Oj

7.01
1
e

Oj +
=

105.01
1
e

Oj +
=

= 0.332

= 0.525

= 0.475

Calculation of Error at Each Node

 Unit j Error j

 6

0.475(1-0.475)(1-0.475) =0.1311
We assume T 6 = 1

 5 0.525 x (1- 0.525)x 0.1311x
(-0.2) = 0.0065

 4 0.332 x (1-0.332) x 0.1311 x
(-0.3) = -0.0087

Calculation of weights and Bias Updating

Learning Rate l =0.9

 Weight New Values
 w46 -0.3 + 0.9(0.1311)(0.332) =

-0.261

 w56 -0.2 + (0.9)(0.1311)(0.525) =
-0.138

 w14 0.2 + 0.9(-0.0087)(1) = 0.192

 w15 -0.3 + (0.9)(-0.0065)(1) =
-0.306

 ……..similarly ………similarly
 θ6

0.1 +(0.9)(0.1311)=0.218

 ……..similarly ………similarly

Network Pruning and Rule Extraction

•  Network pruning
– Fully connected network is hard to

articulate
– N input nodes, h hidden nodes and m

output nodes lead to h(m+N) weights
– Pruning: Remove some of the links

without affecting classification accuracy
of the network

Some Facts to be Remembered

•  NNs perform well, generally better with larger number of
hidden units

•  More hidden units generally produce lower error

•  Determining network topology is difficult

•  Choosing single learning rate impossible

•  Difficult to reduce training time by altering the network
topology or learning parameters

•  NN with Subsets (see next slides) learning often
produce better results

Some Facts to be Remembered

•  Rule extraction from networks: network pruning
–  Simplify the network structure by removing weighted

links that have the least effect on the trained network
–  Then perform link, unit, or activation value clustering
–  The set of input and activation values are studied to

derive rules describing the relationship between the
input and hidden unit layers

•  Sensitivity analysis: assess the impact that a given
input variable has on a network output.

•  The knowledge gained from this analysis can be
represented in rules

Advanced Features of Neural Network 
(may be covered by students presentations)

•  Training with Subsets
•  Modular Neural Network
•  Evolution of Neural Network

Training with subsets

Subset 1

Subset 2

Subset 3

Subset n

NN 1

NN 2

NN 3

NN n

A Single
Neural Network

Model

The
Whole
Dataset

Split the dataset
into subsets

that can fit
into memory

.

.

.

Training with subsets

• Break the data into subsets, that can fit in memory

• Train one neural network on a series of the subsets

• The result is a single neural network model

• In this way, we attempt to overcome the difficulty
making use of all the available data, without leaving
anything

Training with Subsets

•  Select subsets of data
•  Build a new classifier on a subset
•  Aggregate with previous classifiers
•  Compare error after adding a classifier
•  Repeat as long as error decreases

Modular Neural Network 

•  Modular Neural Network

– Made up of a combination of several
neural networks

 The idea is to reduce the load for each
neural network as opposed to trying to
solve the problem on a single neural
network.

Evolving Network Architectures

•  Small networks without a hidden layer can’t
solve problems such as XOR, that are not
linearly separable.
Large networks can easily overfit a
problem to match the training data, limiting
their ability to generalize a problem set

Constructive vs Destructive Algorithm

•  Constructive algorithms take a minimal
network and build up new layers nodes and
connections during training

•  Destructive algorithms take a maximal
network and prunes unnecessary layers nodes
and connections during training

Faster Convergence

•  Back propagation requires many epochs to converge

An epoch is one presentation of all the training examples in
the dataset

•  Some ideas to overcome this are:

– Stochastic learning:
–  updates weights after each example,
 instead of updating them after one epoch

Faster Convergence
– Momentum:
–  This optimization is due to the fact that it

speeds up the learning when the weight are
moving in a single direction continuously by
increasing the size of steps

– The closer this value is to one,
 the more each weight change will not only
include the current error,
 but also the weight change from previous
examples
 (which often leads to faster convergence)

55

Discriminative Classifiers
•  Advantages

–  prediction accuracy is generally high
•  As compared to Bayesian methods – in general

–  robust, works when training examples contain errors
–  fast evaluation of the learned target function

•  Bayesian networks are normally slow

•  Criticism
–  long training time
–  difficult to understand the learned function (weights)

•  Bayesian networks can be used easily for pattern discovery

–  not easy to incorporate domain knowledge
•  Easy in the form of priors on the data or distributions

56

SVM—Support Vector Machines
•  A new classification method for both linear and nonlinear

data
•  It uses a nonlinear mapping to transform the original

training data into a higher dimension
•  With the new dimension, it searches for the linear optimal

separating hyper plane (i.e., “decision boundary”)
•  With an appropriate nonlinear mapping to a sufficiently

high dimension, data from two classes can always be
separated by a hyper plane

•  SVM finds this hyper plane using support vectors
(“essential” training tuples) and margins (defined by the
support vectors)

57

SVM—History and Applications
•  Vapnik and colleagues (1992)—groundwork from Vapnik

& Chervonenkis’ statistical learning theory in 1960s

•  Features: training can be slow but accuracy is high owing
to their ability to model complex nonlinear decision
boundaries (margin maximization)

•  Used both for classification and prediction

•  Applications:

–  handwritten digit recognition, object recognition,
speaker identification, benchmarking time-series
prediction tests

58

SVM—General Philosophy

Support Vectors

Small Margin Large Margin

59

Why Is SVM Effective on High Dimensional Data?

n  The complexity of trained classifier is characterized by the # of support
vectors rather than the dimensionality of the data

n  The support vectors are the essential or critical training examples —
they lie closest to the decision boundary (MMH)

n  If all other training examples are removed and the training is repeated,
the same separating hyperplane would be found

n  The number of support vectors found can be used to compute an
(upper) bound on the expected error rate of the SVM classifier, which

is independent of the data dimensionality

n  Thus, an SVM with a small number of support vectors can have good

generalization, even when the dimensionality of the data is high

60

SVM vs. Neural Network
•  SVM

–  Relatively new concept
–  Deterministic algorithm
–  Nice Generalization

properties
–  Hard to learn – learned

in batch mode using
quadratic programming
techniques

–  Using kernels can learn
very complex functions

•  Neural Network
–  Relatively old
–  Nondeterministic

algorithm
–  Generalizes well but

doesn’t have strong
mathematical foundation

–  Can easily be learned in
incremental fashion

–  To learn complex
functions—use multilayer
perceptron (not that
trivial)

61

SVM Related Links
•  SVM Website

–  http://www.kernel-machines.org/

•  Representative implementations

–  LIBSVM: an efficient implementation of SVM, multi-class

classifications, nu-SVM, one-class SVM, including also various

interfaces with java, python, etc.

–  SVM-light: simpler but performance is not better than LIBSVM,

support only binary classification and only C language

–  SVM-torch: another recent implementation also written in C.

62

SVM—Introduction Literature
•  “Statistical Learning Theory” by Vapnik: extremely hard to understand,

containing many errors too.

•  C. J. C. Burges.
A Tutorial on Support Vector Machines for Pattern Recognition. Knowledge
Discovery and Data Mining, 2(2), 1998.

–  Better than the Vapnik’s book, but still written too hard for introduction,
and the examples are so not-intuitive

•  The book “An Introduction to Support Vector Machines” by N. Cristianini and
J. Shawe-Taylor

–  Also written hard for introduction, but the explanation about the mercer’s
theorem is better than above literatures

•  The neural network book by Haykins

–  Contains one nice chapter of SVM introduction

63

Lazy vs. Eager Learning
•  Lazy vs. eager learning

–  Lazy learning (e.g., instance-based learning): Simply
stores training data (or only minor processing) and waits
until it is given a test tuple

–  Eager learning (the above discussed methods): Given a
set of training set, constructs a classification model
before receiving new (e.g., test) data to classify

•  Lazy: less time in training but more time in predicting
•  Accuracy

–  Lazy method effectively uses a richer hypothesis space
since it uses many local linear functions to form its
implicit global approximation to the target function

–  Eager: must commit to a single hypothesis that covers
the entire instance space

64

Lazy Learner: Instance-Based Methods

•  Instance-based learning:
–  Store training examples and delay the processing

(“lazy evaluation”) until a new instance must be
classified

•  Typical approaches
–  k-nearest neighbor approach

•  Instances represented as points in a Euclidean
space.

–  Locally weighted regression
•  Constructs local approximation

–  Case-based reasoning
•  Uses symbolic representations and knowledge-

based inference

65

Rough Set Approach
•  Rough sets are used to approximately or “roughly” define

equivalent classes
•  A rough set for a given class C is approximated by two sets: a lower

approximation (certain to be in C) and an upper approximation
(cannot be described as not belonging to C)

•  Finding the minimal subsets (reducts) of attributes for feature
reduction is NP-hard but a discernibility matrix (which stores the
differences between attribute values for each pair of data tuples) is
used to reduce the computation intensity

66

Fuzzy Set
Approaches

•  Fuzzy logic uses truth values between 0.0 and 1.0 to
represent the degree of membership (such as using
fuzzy membership graph)

•  Attribute values are converted to fuzzy values
–  e.g., income is mapped into the discrete categories

{low, medium, high} with fuzzy values calculated
•  For a given new sample, more than one fuzzy value may

apply
•  Each applicable rule contributes a vote for membership

in the categories
•  Typically, the truth values for each predicted category

are summed, and these sums are combined

