CHAPTER 5

Resolution Strategies

ONE OF THE DISADVANTAGES of using the resolution rule in an uncon-
strained manner is that it leads to many useless inferences. Some infer-
ences are redundant in that their conclusions can be derived in other ways.
Some inferences are irrelevant in that they do not lead to derivations of the
desired result.

As an example, consider the resolution trace in Figure 5.1. Clauses 9,
11, 14, and 16 are redundant; clauses 10 and 13 are redundant; clauses 12
and 15 are redundant; all these redundancies lead to subsequent redundan-
cies at the next level of deduction. We can remove duplicate clauses and
thereby prevent the propagation of redundant conclusions. However, their
initial generation is an indication of inefficiency in the unconstrained use
of the resolution principle.

This chapter presents a number of strategies for eliminating useless
work. In reading the chapter, it is important to bear in mind that we
are concerned here not with the order in which inferences are done, but
only with the size of a resolution graph and with ways of decreasing that
size by eliminating useless deductions.

5.1 Deletion Strategies

A deletion strategy is a restriction technique in which clauses with specified
properties are eliminated before they are ever used. Since those clauses
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Figure 5.1 Example of unconstrained resolution.
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A clause that contains a pure | P,
g it Titarel o pure literal is useless for the purposes of refutation,
since the literal can never be resolved away. Consequently, we can safely
remove such a clause. R,mrnovmg clauses with pure literals defines a deletion
strategy known as pure-literal elimination.

The database that follows is unsatisfiable. However, in proving this we
can ignore the second and third clauses, since they both contain the pure

literal S.

{-P,-Q,R}
{-P,s}
{-0,s}
{r}

{}

{-R}

Note that, if a database contains no pure literals, there is no way we can
derive any clauses with pure literals using resolution. The upshot is that
we do not need to apply the strategy to a database more than once, and
in particular we do not have to check each clause as it is generated.

A tautology is a clause containing a pair of complementary literals.
For example, the clause {P(F(A)),~P(F(A))} is a tautology. The clause
{P(x) ,Q(y),=Q(y) ,R(z)} also is a tautology, even though it contains
additional literals.

As it turns out, the presence or absence of tautologies in a set of clauses
has no effect on that set’s satisfiability. A satisfiable set of clauses remains
satisfiable, no matter what tautologies we add. An unsatisfiable set of
clauses remains unsatisfiable, even if we remove all tautologies. Therefore,
we can remove tautologies from a database, because we need never use them
in subsequent inferences. The corresponding deletion strategy is called
tautology elimination.

Note that the literals in a clause must be exact complements for
tautology elimination to apply. We cannot remove nonidentical literals,
just because they are complements under unification. For example, the
clauses {-P(A) ,P(x)}, {P(A)}, and {-~P(B)} are unsatisfiable. However, if
we were to remove the first clause, the remaining set would be satisfiable.

In subsumption elimination, the deletion criterion depends on a relation-
ship between two clauses in a database. A clause ® subsumes a clause ¥ if
and only if there exists a substitution ¢ such that ®¢ C ¥. For example,
{P(x),Q(y)} subsumes {P(A),Q(v) ,R(w)}, since there is a substitution
{x/A,y/v} that makes the former clause a subset of the latter.

If one member in a set of clauses is subsumed by another member, then
the set remaining after eliminating the subsumed clause is satisfiable if and
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1. {P,Q} A
2. {ﬂP,R} A
3. {ﬂQ,R} A
4, {ﬂR} r
5. {-1P} 2, 4
6. {-Q} 3,4
8. {P} 1

10. {} 6, 7
11. {R} 2,8
12541} 5, 8

Note that the proof contains only a subset of the possible uses of the
resolution rule. For example, clauses 1 and 2 can be resolved to derive the
conclusion {Q,R}. However, this conclusion and its descendants are never
generated, since neither of its parents 1s a unit clause.

Inference procedures based on unit resolution are easy to implement
and are usually quite efficient. It is worth noting that, whenever a clause
is resolved with a unit clause, the conclusion has fewer literals than the
parent does. This helps to focus the search toward producing the empty
clause and thereby improves efficiency.

Unfortunately, inference procedures based on unit resol
are not complete. For example, the clauses {r,q}, {-P,Q}, {P,Q}, and
{~P,~Q} are inconsistent. Using general resolution, it is easy to derive the

ution generally
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empty clause. However, unit resolution fails in this case since )
initial propositions is a single literal. oy one of the
On the other hand, if we restrict our attention to Horn clauses (i
clauses with at most one positive literal), the situation is mucix l);-t;er ;
fact, it can be shown that there is a unit refutation of a set of Horn ‘l‘ - .
if and only if it is unsatisfiable. b et

5.3 Input Resolution

An nput resolvent is one in which at least one of the two parent clauses is
a member of the initial (i.e., input) database. An input deduction is one
in which all derived clauses are input resolvents. An input refutation is an
input deduction of the empty clause {}.

As an example, consider clauses 6 and 7 in Figure 5.1. Using uncon-
strained resolution, these clauses can be resolved to produce clause 14.
However, this is not an input resolution, since neither parent is a member
of the initial database.

Note that the resolution of clauses 1 and 2 is an input resolution but
not a unit resolution. On the other hand, the resolution of clauses 6 and 7
is a unit resolution but not an input resolution. Despite differences such
as this one, it can be shown that unit resolution and input resolution are
equivalent in inferential power in that there is a unit refutation from a set
of sentences whenever there is an input refutation and vice versa.

One consequence of this fact is that input resolution is complete for
Horn clauses but incomplete in general. Again, the unsatisfiable set of
propositions {P,Q}, {-P,Q}, {P,~Q}, and {~P,-Q} provides an example
of a deduction on which input resolution fails. An input refutation must
(in particular) have one of the parents of {} be a member of the initial
database. However, to produce the empty clause in this case, we must
resolve either two single literal clauses or two clauses having single-literal
factors. None of the members of the base set meet either of these criteria,

so there cannot be an input refutation for this set.

5.4 Linear Resolution

Linear resolution (also called ancestry-filtered resolution) is a slight gener-
alization of input resolution. A linear resolvent is one in which at least one
of the parents is either in the initial database or is an ancestor of the other
parent. A linear deduction is one in which each derived clause is a linear
resolvent. A linear refutation is a linear deduction of the empty clause {}.

Linear resolution takes its name from the linear shape of the proofs it
generates. A linear deduction starts with a clause in the initial database
(called the top clause) and produces a linear chain of resolutions such as
that shown in Figure 5.2. Each resolvent after the first one is obtained from
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{p,Q} {-P,Q} (p,~q}  {°P,0}
|
{q}
{P}
{-Q} {@
{}

Figure 5.2 Chain of resolutions in & linear deduction.

(called the near parent) and some other clause (called the

the last resolvent - i
lution, the far parent must either be in the initia]

far parent). In linear reso
database or be an ancestor of the near parent.
Much of the redundancy in unconstrained resolution derives from the

resolution of intermediate conclusions with other intermediate conclusions.
resolution is that it avoids many useless inferences

The advantage of linear
by focusing deduction at each point on the ancestors of each clause and on

the elements of the initial database.
Linear resolution is known to be refutation complete. Furthermore, it is

not necessary to try every clause in the initial database as top clause. It can
be shown that, if a set of clauses I is satisfiable and TU{¢} is unsatisfiable,
then there is a linear refutation with ¢ as top clause. So, if we knows that
a particular set of clauses is consistent, one need not attempt refutations
with the elements of that set as top clauses.

A mergeis a resolvent that inherits a literal from each parent such that
this literal is collapsed to a singleton by the most general unifier. The
completeness of linear resolution is preserved even if the ancestors that are
used are limited to merges. Note that, in this example, the first resolvent

(i.e., clause {Q}) is a merge.

5.5 Set of Support Resolution

If we examine resolution traces such as the one shown in Figure 5.1,
we notice that many conclusions come from resolutions between clauses
contained in a portion of the database that we know to be satisfiable. For
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example, in Figure 5.1, the set A is satisfiable, yet many of the conclusior

in the trace are obtained by resolving elements of A with other olen.wntl:
of A. As it turns out, we can eliminate these resolutions without aﬁv'ect’in‘
the refutation completeness of resolution. i

A subset I' of a set A is called a set of support for A if and only if
A — I is satisfiable. Given a set of clauses A with set of support I', a set
of support resolvent is one in which at least one parent is selected f;om F
or is a descendant of I'. A set of support deduction is one in which each
derived clause is a set of support resolvent. A set of support refutation is a
set of support deduction of the empty clause {}.

The following trace is a set of support refutation for the example in
Figure 5.1, with the singleton set {-R} as the set of support. The clause
{-R} resolves with {-P,R} and {-Q,R} to produce {-P} and {-Q}. These
then resolve with clause 1 to produce {Q} and {P}, which resolve to produce

the empty clause.

. {P,Q}
. {ﬂP,R}
. {“Q’R}
. {-R}

: {-IP} 2,
: {ﬂQ} 3

. {q}
a{E}

9. {R}
10. {}
11. {R}
12. {}
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Obviously, this strategy would be of little use if there were no easy way
of selecting the set of support. Fortunately, there are several ways this
can be done at negligible expense. For example, in situations where we
are trying to prove conclusions from a consistent database, the natural
choice is to use the clauses derived from the negated goal as the set of
support. This set satisfies the definition as long as the database itself is
truly satisfiable. With this choice of set of support, each resolution must
have a connection to the overall goal, so the procedure can be viewed as
working “backward” from the goal. This is especially useful for databases
in which the number of conclusions possible by working “forward” is larger.
Furthermore, the goal-oriented character of such refutations often makes
them more understandable than refutations using other strategies.
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1. {P,Q} A
2. {'\P,R}

3. {-lQ,R} A
4. {-\R} r

5. {Q,R} 1,2
L Rl

grfR) ¥Haps
7. {} 4,6

n is extremely efficient. In this case, the empty clause ig
produced at the third level of deduction, and the inference space through
that level of deduction includes only three resolvents. By comparison,

general resolution through that level results in 24 resolvents.
Unfortunately, ordered resolution is not refutation complete. However,
Horn clauses, refutation completeness is

if we restrict our attention to
guaranteed. Furthermore, we can get refutation completeness in the general
case by considering resolvents in which the remaining literals from the

positive parent follow the remaining literals from the negative parent, as

well as the other way around.

Ordered resolutio

5.7 Directed Resolution

Directed resolution is the use of ordered resolution in an important but
restricted set of deductions. In directed resolution, the query takes the
form of a conjunction of positive literals, and the database consists entirely
of directed clauses. A directed clause is a Horn clause in which the positiv‘e
literal occurs either at the beginning or the end of the clause. The goal
is to find bindings for the variables so that the conjunction resulting from
the substitution of these bindings is provable from the database. k
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In looking at directed resolution, we can use a bit of syntactic sugar,
Since all the clauses are directional, we can write them in infir form. We
write clauses with the positive literal at the end using the = operator.
We write clauses in which the positive literal is at the beginning using the
reverse implication operator <=. We let the literal in a positive unit clause
represent the clause as a whole. We write the negative literals in clauses
without positive literals as the antecedents of either implication operator.

{1, bn Y} = 1, hn=m Y
{I/J."¢1,--~,"¢n}“*1/)¢= ¢]7"-w¢)n
{ﬂ¢la~"aﬂ¢n}H¢la-"a¢n=>
{ﬂ¢lv"~yﬂ¢n_}‘_’ < ¢la---v¢n

The distinguishing feature of directed resolution is the directionality of
the clauses in the database. Some clauses give rise to forward resolution,
in which positive conclusions are derived from positive data. Other clauses
give rise to backward resolution, in which negative clauses are derived from
other negative clauses. As suggested by the preceding equivalences, the
directionality of a clause is determined by the position of the positive literal
in the clause.

A forward clause is one in which the positive literal comes at the end. In
directed resolution, forward clauses give rise to forward resolution. To see
why this is so, consider the following proof. Using ordered resolution on
the first two clauses leads to the conclusion P(A), and then this conclusion
is resolved with the negative unit to derive the empty clause. Putting
the positive literal at the end makes it possible to work forward to the
positive intermediate conclusion (clause 4), but makes it impossible to work

backward from the negative clause (clause 3).

1. {-M(x),P(x)}  M(x) = P(x)

2. (M)} M(A)

3. {-P(2)} P(z) =
4 PV} P(A)

5. {} {}

Symmetrically, if the positive literal is put at the front of a clause,
the clause is backward. If we rewrite the previous clauses in this way,
we get the opposite behavior. In the following proof, the negative clause
is resolved with the first clause to produce the intermediate negative
conclusion {=M(z)}, then this result is resolved with the second clause

to derive the empty clause.
1. {P(x),"M(x)} P(x) < M(x)

2. (MW} M(R)
3. {-P(2)} < P(z)
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2 {ﬂM(X),P(X)}

3. {Q@), W@} ax) € N

4. {M(D)} M(A)

5. {M(B)} M(B)

6. {N(B)} N(B) =

7. {ﬂR(Z)} R(Z)

8. {P(W)} P(A)

9. {P(B)} P(B)

10. {~Q(A) ,R(A)} Q(a) = R(A)

11. {-Q(B) ,R(B)} Q(B) = R(B) |

12. {-N(A),R(A)} N(A) = R(A)
N(B) = R(B)

13. {-N(B) ,R(B)}

14. {R(B)} R(B)
1574} >

The possibility of ¢
the positive literal at one
which direction is more €
the following set of sentences.

ontrolling the direction of resolution by positioning
or the other end of a clause raises the question of
fficient. For the purpose of comparison, consider

Insect(x) = Animal(x)
Mammal(x) = Animal(x)
Ant(x) = Imsect(x)
Bee(x) = Insect(x)
Spider(x) = Insect(x)

Lion(x) = Mammal(x)
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Tiger(x) = Mammal(x)

Zebra(x) = Mammal (x)

Assuming that Zeke is a zebra, is Zeke an animal? The following proof
shows that the search space in this case is quite small.

1. {Zebra(Zeke)}
2. {-Animal(Zeke)}
3

. {Mammal (Zeke) }

. {Animal(Zeke)}

{}

‘SN

o

Unfortunately, things are not always so pleasant. As an example,
consider the following database of information about zebras. Zebras are
mammals, striped, and medium in size. Mammals are animals and warm-
blooded. Striped things are nonsolid and nonspotted. Things of medium

size are neither small nor large.
Zebra(x) = Mammal(x)
Zebra(x) = Striped(x)
Zebra(x) = Medium(x)
Mammal(x) = Animal(x)
Mammal(x) = Warm(x)
Striped(x) = Nonsolid(x)
Striped(x) = Nonspotted(x)
Medium(x) = Nonsmall(x)

Medium(x) = Nonlarge(x)

The following proof shows that the search space in this case is somewhat
larger than in the previous example. The reason is that we can derive more
than one conclusion from each clause than we manage to derive.

1. {Zebra(Zeke)}
2. {-Nonlarge(Zeke)}

3. {Mammal(Zeke) }
4. {Striped(Zeke)}
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‘ {Medlum(Zekgﬂ)}

o

). {Animal(Zeke)}

. {Warm(Zeke)}

: {Nonsolid(Zeke)}

. {Nonstriped(Zeke)}
10. {Nonsmall(Zeke)}
12 {Nonlarge(Zeke)}
{

~

13
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Mammal (x) < Zebra(x)

striped(x) € Zebra(x)

Medium(x) < Zebra(x)

Animal(x) < Mammal (x)

Warm(x) < Mammal (x)
Nonsolid(x) € Striped(x)
Nonspotted(x) < Striped(x)
nall(x) < Medium(x)

Nons

Nonlarge(x) < Medium(x)
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1. {Zebra(Zeke)}
9. {-Nonlarge (Zeke) }

5:4{}

Unfortunately, like for
flrawbacks. As an example,
in the animal problem.

ward r.esolution, backward resolution has its
consider the backward version of the clauses

Animal(x) < Insect(x)

Animal(x) < Mammal(x)
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Insect(x) < Ant(x)
Insect(x) < Bee(x)
Insect(x) < Spider(x)
Mammal (x) < Lion(x)
Mammal (x) < Tiger(x)

Mammal (x) < Zebra(x)

The following proof shows that the search space for the backward
direction is much larger than it is for the forward direction.

. {Zebra(Zeke)}
2. {~Animal(Zeke)}

fa—y

3. {~Insect(Zeke)}
4. {-Mammal(Zeke)}

5. {~Ant(Zeke)}
6. {~Bee(Zeke)}
7. {~Spider(Zeke)}
8. {~Lion(Zeke)}
9. {~Tiger(Zeke)}
10. {-Zebra(Zeke)}

11. {}

The fact is that forward resolution is best for some clause sets, and
backward resolution is best for others. To determine which is best for
which, we need to look at the branching factor of the clauses. In the
preceding examples, the search space branches backward in the animal
problem and forward in the zebra problem. Consequently, we should use
forward resolution in the animal problem and backward resolution in the
zebra problem.

Of course, things are not always this simple. Sometimes, it is best
to use some clauses in the forward direction and others in the backward
direction; deciding which clauses to use in which direction to get optimal
performance is a computationally difficult problem. The problem can be
solved in polynomial time, if we restrict our attention to coherent databases;
i.e., those in which all clauses that can be used to prove a literal in the
antecedent of a forward clause are themselves forward clauses. In general,

however, the problem is NP-complete.
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P(Art,Jon)

carpenter (Cap) Senator (Kim)

p(Ann,Jon)
p(Bob,Kim)
p(Bea,Kim)
p(Cap,Lem)
P(Coe,Lem)

The following conjunction is & typical query for a database of thi
We are looking for bindings for the variables x and y such that e
parent of y, X is a carpenter, and y is a senator. * 13 the

P(x,y) A Carpenter (x) A Senator (y)

To use resolution on this problem, we need to negate the qu
€ry, to

convert to clausal form, and to add an appropriate answer literal. Th
. is

results in the following clause:

{-P(x, y) ,-Carpenter(x) ,~Senator (y) ,Ans x,7}

We then use ordered i
resolution to derive an a
e . nswer. Th :
quence of deductions shows a trace of this strategy in solvinget}f:')llowmg
: 1S query

using the preceding data.

1. {~P(x,y), Carpenter (x) ,~Senator(y) ,Ans(x,y)

}
2: ]
2 }:garpenter (Art) ,~Senator (Jon) ,Ans (Art,Jon) |
4. {ﬂczpenter (Ann) ,~Senator (Jon) ,Ans (Ann, Jon) }

! penter (Bob) ,~Senator (Kim) ,Ans (Bob ’ Kim) }
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N

. {~Carpenter (Bea) ,~Senator (Kim) +Ans (Bea,Kim) }
6. {~Carpenter(Cap),-Senator(Lem) »Ans (Cap,Lem)}
(4 {-vCarpentie_xn‘r(FcieA) »7Senator (Lem) , Ans(Coe, Lem) }

8. {~Senator(Jon),Ans(Ann,Jon)
9. {~Senator (Lem) ,Ans(Cap,Lem)

10. {Ans(Ann,Jon)}

From the standpoint of efficiency, one of the key questions in sequential
constraint satisfaction is the order of the literals in the query. Although
there is some search involved in the preceding example, it is not great. By
comparison, it is interesting to consider what happens with a somewhat
Jarger database and a slightly different ordering of the literals in the query.

To be specific, consider a census database with the following properties.
There are 100 U.S. senators; so, if the database is complete and nonre-
dundant, there are 100 solutions to queries of the form Senator(v), where
v is a variable. Similarly, there are several hundred thousand carpenters
and, therefore, several hundred thousand solutions to queries of the form
carpenter (v). There are several hundred million parent—child pairs and,
therefore, several hundred million solutions to queries of the form P(y,v)
involving two variables. However, there are only two solutions to queries
of the form P(v,7), where v is a variable and 7 is a constant, since each

erson has only two parents. Similarly, there are only a few solutions to
queries of the form P (v, v), since each person has at most a few children.
We indicate the sizes of these solution sets as follows, where the notation
|lQ(x)|| is used to denote the number of instances of Q(x) in the database.

||Senator (v)|| = 100
||carpenter ()| ~ 10°
([P, v)|| ~ 108
P,V =2

|IPCy, )| =3

Consider the difficulty of answering the preceding query with this expanded
database. As before, working on the literals in the order given results in an
enumeration of all parent-child pairs, except in this case the search space
includes several hundred million possibilities.

A much better way to answer the query is to reorder the literals as shown
below. Since there are only 100 senators and only two parents for each
senator, this ordering limits the search space to at most 200 possibilities.

Senator(y) A P(x,y) A Carpenter(x)
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[P()]| = 1000
||| = 2000
HR(#,V)H = 100,000

||R(’y,1/)|| =100
IR, )| =10

.In this case, P(x) is the literal with the smallest solution set: theref.
using the cheapest first rule, we enumerate its solutions first, a to,tal ofel(())re’
xt we compare the set sizes of the remaining two liter 010
als

possibilities. Ne
for the case where X 18 known. There are 2000 soluti
_ . ons to the Q li
but only 100 solutions to the R literal, if x is known. So the ;?itliztrerﬁs
al 1s

processed next, leading to a total search space of 100,000.
The problem is that there is a better ordering. Working first on Q(y)
) y

produces an initial search space of 2000 possibilities. However, gi
value for y, there are only 10 solutions for the R literal, leading to agsven :
space of only 20,000, a factor of 5 smaller than the ordering su carch
the cheapest first rule. gEReted oy

One way of guaranteeing the opti i

ptimal ordering for a set of li i
: , se te

:ﬁarch thioggh all possible orderings. For each ordering, we can rj:)lxsns tto

e expected cost. Then, we can com are orderi sl P -
oot p rderings and select the one that

The following equations show th i

: . e cost estimates for the six orderi

:he tI}llterz?,ls.m the preceding problem. From these estimates i:l flifl;mgs -
ee that it is best to process the Q literal first, followed by R ‘and. t}‘x?i} Pto

IP(x),Q(y) ,R(x,y)|| = 2,000,000
|[P(x),R(x,y),Q(y)|| = 100,000
[1a¢y) ,P(x),R(x,y)|| = 2,000,000
[|a(y) ,R(x,y),P(x)|| = 20,000
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[IR(x,y),P(x),Q(y)|| = 100,000
[[R(x,y),QCy),P(x)|| = 100,000

The problem with enumerating and comparing all possible orderings is
inefficiency. For a set of n literals, there are n! possible orderings. Although
there are only six possible orderings for three literals, the number jumps

to over 40,000 for eight literals.
Fortunately, there are some results that help in cutting down the

search necessary to find the optimal ordering. The adjacency theorem
(Theorem 5.1) is an example.
Given a set of literals ly,...,ln, we define the situated literal Zf to be

the literal obtained by substituting into /; ground terms for the variables
inly,...,1;. For example, given the query P(x) A Q(x,y) A R(x,y), the
situated literal p(x)0 is just P(x). The situated literal Q(x, y)0 is Q(x,y),
but the situated literal Q(x,y)" is Q(7,y), where 7 is a ground term.
The situated literal R(x,y)" is R(x,¥); R(x,y)" is R(7,y); and R(x,y)’

is R(m,72)-

THEOREM 5.1 (Adjacency %’heorem) If ly,...,ln 1s an optimal lit-
i

eral ordering, then Hl:."IH < |1l for all @ between 1 andn — 1.

This theorem supports our intuitions about literal ordering in the simple
cases covered by the following corollaries.

COROLLARY 5.1 The most ezpensive conjunct should never be done
first.

COROLLARY 5.2 Given a conjunct sequence of length two, the less
ezpensive conjunct should always be done first.

The upshot of the adjacency theorem is that we need not search through
all the possible orderings to find one guaranteed to be optimal. For
example, in the preceding problem, we need look at only two orderings. In
this case, we can eliminate two-thirds of the possibilities. As the number
of literals grows, the savings becomes more substantial. A short analysis
shows that the number of possible orderings that must be considered is
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ce by adjacency restriction

a

Table 5.1 Reduction of search sP
|
n

1 1

gos 1 2
3 2

4 5 24
; 16 120
2 61 720
? 272 5040
8 1385 40,320
9 7936 362,880
10 50,521 3,628,800

bounded by G(n,0), where 7 is the number of literals and G is defineq
recursively, as shown.

0 ifn=d
ifn=1,d=0
G ,d = 1 1 .7
() Sz’z'od'lG(n —1,i) otherwise

d can be thought of as the number of remaining literals that cannot
e of the adjacency restriction. Note that, if
the second argument to G is ignored, the formula reduces to n!, as expected.
Table 5.1 shows some of the values for this function by comparison to
the total number of orderings of n literals. For three literals, the adjacexmy
restriction reduces the search space to only two orderings. For eight literals,
the space is reduced from over 40,000 possibilities to fewer than 1400.
The adjacency theorem is an example of a reduction theorem. It reduces
the space of possible orderings that must be searched to find an optimal
ordering, and thereby makes the process of optimization more efficient,.

Here,
appear as the next literal becaus

5.9 Bibliographical and Historical Remarks

Many restriction strategies for resolution refutations are discussed in detail
by Loveland [Loveland 1978], by Chang and Lee [Chang 1973], and by Wos

et al. [Wos 1984a).

Ordered resolution is similar to lock resolution, which was originally
proposed by Boyer [Boyer 1971], and to SL-resolution, which was explored
by Kowalski [Kowalski 1971]. Depth-first backward resolution is the
strategy used in PROLOG [Clocksin 1981, Sterling 1986], as well as in
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NUIMErous expert h‘vst.,v{n.s. Moore [Moore 1975] was one of the first people
to pn?m out the "ff.""“llf'l""s to be gained by choosing the appropriate
direction for reasomng. Ireitel and Genesereth explored the problem
of automatically determining optimal directionality [Treitel 1987). The
adjacency theorem for optimal literal ordering was proved by Smith and
Genesereth [Smith 1985]. A variety of additional strategies for resolution
are discussed in [Kowalski 1970, 1971, 1972, Minker 1973, 1979, Smith
1986].

Although not discussed in this book, it is often helpful to precompute
all the possible resolutions that can be performed among a set of clauses
and to store the results in a connection graph. The actual search for a
refutation can then be described in terms of operations on this graph. The
use of connection graphs was first proposed by Kowalski [Kowalski 1975].
Other authors who have used various forms of connection graphs are Sickel
[Sickel 1976], Chang and Slagle [Chang 1979a, 1979b], and Stickel [Stickel
1982).

Several extremely efficient resolution refutation systems have been
written that are able to solve large, nontrivial reasoning problems, including
some open problems in mathematics [Winker 1982, Wos 1984b). A typical
challenge problem for testing and illustrating the features of theorem-

proving programs is the so-called Schubert steamroller problem [Stickel

1986).
Geveral other nonresolution theorem-proving systems also have been de-

veloped. Examples include those of Bledsoe [Bledsoe 1977, Ballantyne
1977, and of Boyer and Moore [Boyer 1979]. Shankar used the Boyer-
Moore theorem prover in verifying steps in the proof of Godel’s incom-

pleteness theorem [Shankar 1986].

Exercises

1. Deletion strategies. Consider the problem of showing that the clauses
{P,q}, {-P,Q}, {P,~Q}, and {-P,-Q} are not simultaneously satisfiable.

a. Show a resolution trace for this problem using tautology elimination.
b. Show a resolution trace for this problem using subsumption.

9. Linear resolution. Use linear resolution to show that the following set
of clauses is unsatisfiable.

{P,q}
{Q,R}
{R,W}
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3. Combination strategies.

_c;'l

{-R,P}
{ﬂw,“o}
{“Q’ﬂn}

We know that unit resolution is not compey
ms for which it 18 able to derive the ey, tﬂ,
solution with ordered resolution, df; 3
ome things that are provable by 111(~S
If not, prove that there ig rlll(t;

but there are some proble
clause. If we combine unit re
this make it impossible to prove 8
resolution alone? If so, give an €X

difference.

ample.

Combination strategies. Give a counterexample  to show that th
\d set of support resolution is n(t'
» )

combination of ordered resolution ar

complete.
he problem of coloring the following mg
)!

Map coloring. Consider t .
using only four colors, such that no two adjacent regions share the samme
color. :

4
2 | 2 :

This problem can be set up as a constraint satisfaction problem. Writ
m. Write

down the database and the query.




