CHAPTER 4

Resolution

IN THIS CHAPTER we describe ai inference procedure based on a simple
yet extremely powerful rule of inference known as the resolution principle.
Because it uses just one ruie of inference, the procedure is simple to
analyze and implement; yet it is known to be both sound and, in a sense,
complete. Section 4.1 introduces the variant of predicate calculus used
by resolution; Section 4.2 defines the critical concept of unification, and
Section 4.3 describes the resolution principle itself. Section 4.4 introduces
the resolution procedure. Section 4.5 shows how the procedure can be
used in determining satisfiability, Section 4.6 shows how it can be used in
answering true-or-false questions, and Section 4.7 shows how it can be used
to answer fill-in-the-blank questions. Sections 4.8 and 4.9 offer examples.
Section 4.10 discusses the issues of soundness and completeness. The final
section shows how resolution can be used in proving results from statements

about equality.

4.1 Clausal Form

The resolution procedure takes as argument a set of expressions in a
simplified version of predicate calculus, called clausal form. The symbols,
terms, and atomic sentences of clausal form are the same as those in
ordinary predicate calculus. Instead of logical and quantified sentences,
however, clausal form has literals and clauses.

63



Resolution

64

I

procedure Convert (x)
Begin x <~ Implications_out(x),

Negations_in(x) i

<- Standardize_variables (x),
<- Existentials_out x),

¢<- Universals_out (x),
Disjunct jons_in(x),

<- Operators_out (x),

<- Rename_variables (x)

]
A
1

0~ O WM
PO T T |

Fa

)

End

Figure 4.1 Conversion to clausal form.

an atomic sentence. An

A literal is an atomic sentence Or the negation of
1 of an atomic sentence

atomic sentence is a positive literal, and the negatio

is a negative literal.
A clause is a set of literals representing their disjunction. For example,

the sets {On(A,B)} and {~0n(A,B) ,Above(A,B)} are both clauses. The
first states that the block named A is on the block named B. The second
clause states that either A is not on B or it is above B. A Horn clause is @
clause with at most one positive literal.

At first glance, clausal form may appear Vvery restrictive, but this i
illusory. For any sentence in predicate calculus, there is a set of clauses
that is equivalent to the original sentence in that the sentence 1s satisfiable
if and only if the corresponding set of clauses is satisfiable. The procedure
defined in Figure 4.1 sketches a method for converting an arbitrary closed
sentence into its clausal form.

In the first step, we eliminate all occurrences of the =, <, and ©
operators by substituting equivalent sentences involving only the 7, A, and

v operators.
e ¢ = 1 is replaced by "¢ v .
e ¢ < 1 is replaced by ¢V .
o ¢ ¢ 1 is replaced by (=4 V) A (V).

I-n the second step, negations are distributed over other logical operator’
until each such operator applies to a single atomic sentence. The following
replacement rules do the job.

e ¢ is replaced by ¢.
o (¢ A1) is replaced by ¢ v ).
o (¢ V1) is replaced by ¢ A <.



4.1 Clausal Form 65

e Vv ¢ is replaced by v -¢.
e ~Jv ¢ is replaced by Vv ~¢.

In the third step, we rename variables so that each quantifier has a
unique variable; i.e., the same variable is not quantified more than once
within the same sentence. For example, we can replace the formula
(vx P(x,x)) A (3x Q(x)) by (vx P(x,x)) A (3y Q(y)).

In the fourth step, we eliminate all existential quantifiers. The method
for doing this is a little complicated, and we describe it in two stages.

If an existential quantifier does not occur within the scope of a universal
quantifier, we simply drop the quantifier and replace all occurrences of
the quantified variable by a new constant; i.e., one that does not occur
anywhere else in our database. Thus, if we have never before used the
object constant A, we can replace 3x P(x) by P(A). The constant used to
replace the existential variable in this case is called a Skolem constant.

If an existential quantifier is within the scope of any universal quantifiers,
there is the possibility that the value of the existential variable depends on
the values of the associated universal variables. Consequently, we cannot
replace the existential variable with a constant. Instead, the general rule
is to drop the existential quantifier and to replace the associated variable
by a term formed from a new function symbol applied to the variables
associated with the enclosing universal quantifiers. For example, if F is a
new function symbol, we can replace VxVy3z P(x,y,z) with the sentence
VxVy P(x,y,F(x,y)). Any function defined in this way is called a Skolem
function.

In the fifth step, we drop all universal quantifiers. Because the remaining
variables at this point are universally quantified, this does not introduce
any ambiguities.

In the sixth step, we put the expression into conjunctive normal form;
i.e., a conjunction of disjunctions of literals. This can be accomplished by
repeated use of the following rule.

® ¢V (¥ Ax) is replaced by (¢ v ) A (v x).

In the seventh step, we eliminate operators by writing the conjunction
obtained in the sixth step as a set of clauses. For example, we replace the
sentence P A (Q v R) with the set consisting of the singleton clause {P}
and the binary clause {Q,R}.

In the final step, we rename variables so that no variable appears in more
than one clause. This process is called standardizing the variables apart.

As an example of this conversion process, consider the problem of trans-
forming the following expression to clausal form. The initial expression
appears on the top line, and the expressions on the numbered lines are the
results of the corresponding steps of the conversion procedure.

initial: Vx (vy P(x,y)) = =(vy Q(x,y) = R(x,y))
step 1: vx ~(Vy P(x,y)) Vv ~(Vy =Q(x,y) V R(x,y))



66 Resolution

step 2: vx 3y -P(x,y)) v By Q(x,y) A -R(x,¥y))
step 3: Vx (3y -P(x,y)) v (32 Q(x,z) A -R(x,2))
step 4: Vx -P(x,F1(x)) V (Q(x,F2(x)) A -R(x,F2(x)))
step 5: =P(x,F1(x)) V (Q(x,F2(x)) A -R(x,F2(x)))
step 6: (-P(x,F1(x)) V Q(x,F2(x))) A
(-P(x,F1(x)) V 'lR(X,F2(X)))
step 7: {-P(x,F1(x)), Q(x,F2(x))}
{~-P(x,F1(x)), ~R(x,F2(x))}
step 8: {-P(x1,F1(x1)), Q(x1,F2(x1))}
{~P(x2,F1(x2)), -R(x2,F2(x2))}

4.2 Unification

Unification is the process of determining whether two expressions can be
made identical by appropriate substitutions for their variables. As we shall
see, making this determination is an essential part of resolution.

A substitution is any finite set of associations between variables and
expressions in which (1) each variable is associated with at most one
expression, and (2) no variable with an associated expression occurs within
any of the associated expressions. For example, the following set of pairs is
a substitution in which the variable x is associated with the symbol A, the
variable y is associated with the term F(B), and the variable z is associated

with the variable w.
{x/A,y/F(B),z/w}

Each variable has at most one associated expression, and no variable with
an associated expression occurs within any of the associated expressions.
By contrast, the following set of pairs is not a substitution.

{x/G(y),y/F(x)}

The variable x, which is associated with G(y), occurs in the expression F(x)
associated with y; the variable y occurs in the expression G(y) associated
with x.

We often speak of the terms associated with the variables in a
substitution as bindings for those variables; the substitution itself is called
a binding list; and the variables with bindings are said to be bound.

A substitution can be applied to a predicate-calculus expression to
produce a new expression (called a substitution instance) by replacing all
bound variables in the expression by their bindings. Variables without
bindings are left unchanged. In contrast to the usual functional notation;
it is customary to write ¢ to denote the substitution instance obtain®
by applying the substitution o to the expression ¢. For example, applyiné
the preceding legitimate substitution to the expression on the left in the



4.2 Unification 67

following equation results in the expression shown on the right. Note that
both occurrences of the variable x are replaced by A and that variable v,
having no associated expression, is simply left alone.

P(x! %Y, v){x/A: Y/F(B)a Z/W} = P(A’ A,F(B), v)

A substitution 7 is distinct from a substitution ¢ if and only if no
variable bound in ¢ occurs anywhere in 7 (although variables with bindings
in 7 may occur in o). Now, consider a substitution ¢ and a distinct
substitution 7. The composition of 7 with o (again, written backward
as o) is the substitution obtained by applying 7 to the terms of ¢ and then
adding to o the bindings from 7. In the following example, the bindings
for x and y are plugged into the binding for w in the first substitution, and
then the bindings from the second substitution are added to the resulting
set of associations.

{H/G(x: Y)}{x/A, Y/Bs Z/C} = {W/G(A’ B), X/A, y/B, Z/C}

A set of expressions {¢i,...,d,} is unifiable if and only if there is a
substitution o that makes the expressions identical; i.e., ¢10 = -+ = ¢, 0.
In such a case, o is said to be a unifier for the set. For example,
the substitution {x/A,y/B,z/C} unifies the expression P(A,y,z) and the
expression P(x,B,z) to yield P(A,B,C).

P(A,y,z){x/A,y/B,z/C} = P(A,B,C) = P(x, B, z){x/A,y/B,z/C}

Although this substitution unifies the two expressions, it is not the only
unifier. We do not have to substitute C for z to unify the two expressions.
We can equally well substitute D or F(C) or F(w). In fact, we can unify the
expressions without changing z at all. In looking at these alternatives, it is
worth noting that some substitutions are more general than others are; e.g.,
the substitution {z/F(w)} is more general than {z/F(C)} is. We say that a
substitution o is as general as or more general than a substitution 7 if and
only if there is another substitution é such that 6§ = 7. It is interesting
to consider unifiers with maximum generality. A most general unifier, or
mgu, v of ¢ and 1 has the property that, if ¢ is any unifier of the two
expressions, then there exists a substitution § with the following property.

Y6 = o = o

An important property of any most general unifier is that it is unique
up to variable renaming. The substitution {x/A} is a most general unifier
for the expressions P(A,y,z) and P(x,y,z). The less general unifier,
{x/A,y/B,z/C}, can be obtained by composing the most general one with
the substitution {y/B, z/C}. Because of this property, we often speak of the
most general unifier of two expressions.



Resolution

68
Recursive Procedure Mgu (x,¥)

in x=y ==> Return(),
HEs Va:}:'iable(x) —=> Return(Mguvar(x,y)),

variable(y) == Return(Mguvar (y,x)),
Constant (x) 0T Constant (y) ==> Return(False),
Not(Length(x)=Length(y)) ==> Return(False),
Begin i <~ 0,

g'(" []:
Tag j=Length(x) ==> Return(g) ,

s <- ng(Part(x,i),Part(y,i))

g=False ==> Return(False),

g < Compose(g,s) ,

x <- Substitute(x,g),

y < Substitute(y,g),

i <-1i+1,

Goto Tag

End
End

Procedure Mguvar (x,y)
Begin Includes(x,y) ==> Return(False),
Return([x/y])
End

Figure 4.2 Procedure for computing the most general unifier.

Figure 4.2 presents a simple recursive procedure for computing the most
general unifier of two expressions. If two expressions are unifiable, the
procedure returns the most general unifier. Otherwise, it returns False.

The procedure assumes that an expression is a constant, a variable, or
a structured object. The predicate Variable is true of variables, and the
predicate Constant is true of constants. A structured object consists of
a function constant, relation constant, or operator and some number of
arguments. The Length of a structured object is equal to the number of
arguments. The top-level function constant, relation constant, or operator
in a structured object is its zeroth Part, and the arguments are the other
parts. For example, the expression F(A,G(y)) can be represented as 2
structured object of length 2. The zeroth part is the constant F, the first
part is the constant A, and the second part is the term G(y).

The definition uses several subroutines that are undefined in Figure 4.2
Substitute takes as argument an expression and a substitution represented
as a set of bindings and returns the expression that results from applying



4.3 Resolution Principle 69

the substitution to the expression. Compose takes as argument two
substitutions and returns their composition. The predicate Includes takes
as argument a variable and an expression and returns True if and only if
the variable is contained in the expression.

The use of Includes in Mguvar is called an occur check, since it is used
to check whether or not the variable occurs within the term with which
it is being unified. Without this check, the algorithm would find that
expressions such as P(x) and P(F(x)) are unifiable, even though there is
no substitution for x that could ever make them look alike.

4.3 Resolution Principle

The idea of resolution is simple. If we know that P is true or Q is true and
we also know that P is false or R is true, then it must be the case that qQ
is true or R is true. The general definition is a little complicated, and we
introduce it in three stages.

Resolution without regard to variables is the simhplest case. Given a
clause containing a literal ¢ and another clause containing the literal —¢,

we can infer the clause consisting of all the literals of both clauses without
the complementary pair.

@ with ¢ € ®
v with -¢ € ¥

(@ - {6}) U(¥ — {~¢})

As an example, consider the following deduction. The first premise
asserts that either P or Q is true. The second premise states that either P
is false or R is true. From these premises, we can infer by resolution that
either Q is true or R is true. The A notation on the right indicates that the
associated clauses are in the initial database, and the numbers indicate the
clauses from which the associated clause is derived.

1. {r,q} A
2. {ﬂP,R} A
3' {Q’R} 1: 2

Since clauses are sets, there cannot be two occurrences of any literal
in a clause. Therefore, in drawing a conclusion from two clauses tl_lat
share a literal, we merge the two occurrences into one, as in the following
example.

1. {P,qQ} A
2. {-lP,Q} A
.{a} 1,2



70 Resolution

If either of the clauses is a singleton set, we see t.hat the number of
literals in the result is less than the number of literals in the other clause,
From the clause {-P,Q} and the singleton clause {r}, we can del:lVe .
singleton clause {q}. Note the correspondence between this deduction and

that of modus ponens, {llustrated on the right.

1. {-P,q} A 1.p=>10Q [/-;
2. {P} A 2. P 2
3. {qQ} 1,2 3. Q )

g leads to the empty clause; i.e., the clause

Resolving two singleton clause s
consisting of no literals at all, as shown below. The derivation of the empty
ns a contradiction.

clause means that the database contal

L{p A
2. {-nP} A
3. {} 1,2

Unfortunately, our simple definition of resolution is too simple. It
provides no way to instantiate variables. Fortunately, we can solve
this problem by redefining the resolution principle using the notion of
unification.

Suppose that ® and ¥ are two clauses. If there is a literal ¢ in @ and a
literal ~1p in ¥ such that ¢ and ¥ have a most general unifier v, then we
can infer the clause obtained by applying the substitution < to the union
of ® and ¥ minus the complementary literals.

o with ¢ € ®

(@ — {¢}) U (¥ — {-9}))y where ¢y =97

The following deduction illustrates the use of unification in applying
the? resol}ltlon rule. I.n this case, the first disjunct of the first sentence
unifies with the negation of the first disjunct of the second sentence, with
mgu {x/A}.

1. {P(x),Q(x,y)} A
2. {‘IP(A),R(B,Z)} A
3. {Q(aA,y),R(B,2)} 1,2

If two clauses resolve, they may have more than one resolvent because
there may be more than one way in which to choose ¢ and 1. Consider the
follov\.rmg deductions. In the first, ¢ = P(x,x) and ¥ = P(.A 2). and the
mgu is {x/A},{z/A}. In the second, ¢ = Q(x) and ¥ = Q(B), ;md’ the mgl

is {x/B}. Fortunately, two sentences
can h . of
resolvents. ave at most a finite number



4.4 Resolution 71

1. {P(x,x),Q(x),R(x)} A
2. {~P(A,z),-Q(B)} A
3. {QCa),R(A),-Q(B)} 1,2
4. {P(B,B),R(B),-P(A,2)} 1,2

Unfortunately, even this definition is not quite enough. For example,
given the clauses {P(u),P(v)} and {-P(x),-P(y)}, we should be able to
infer the empty clause {}—i.e., a contradiction—and this is impossible with
the preceding definition. Fortunately, we can solve this problem with one
final modification to our definition.

If a subset of the literals in a clause ® has a most general unifier v,
then the clause ®' obtained by applying v to ® is called a factor
of ®. For example, the literals P(x) and P(F(y)) have a most general
unifier {x/F(y)}, so the clause {P(F(y)),R(F(y),y)} is a factor of
{P(x),P(F(y)),R(x,y)}. Obviously, any clause is a trivial factor of
itself.

Using the notion of factors, we can give our official definition for the
resolution principle. Suppose that ® and ¥ are two clauses. If there is a
literal ¢ in some factor ®' of ® and a literal =1} in some factor ¥’ of ¥ such
that ¢ and ¥ have a most general unifier v, then we say that the two clauses
® and ¥ resolve and that the new clause, ((®' — {¢}) U (¥’ — {—¢}))7, is
a resolvent of the two clauses.

i) with ¢ € &’
1/ with -y € ¥’

(@' —{¢}) U (¥ — {-9}))y where ¢y =1y

Standardizing variables apart can be interpreted as a trivial application
of factoring. In particular, our definition allows us to rename the variables
in one clause so that there are no conflicts with the variables in another
clause. Situations in which there are nontrivial factors are extremely rare
in practice, and none of the clauses in our subsequent examples contain any
nontrivial factors. Consequently, except for variable renaming, we ignore
factors in the remainder of our discussion.

4.4 Resolution

A resolution deduction of a clause ® from a database A is a sequence of
clauses in which (1) @ is an element of the sequence, and (2) each element
is either a member of A or the result of applying the resolution principle
to clauses earlier in the sequence.

For example, the following sequence of clauses is a resolution deduction
of the empty clause from the set of clauses labeled A. The clause in line 5
is derived from the clauses in lines 1 and 2; the clause in line 6 is derived



72 Resolution
and 4; and the conclusion (line 7) is derived by

in lines 3
from the clauses 1n 11 (lines 5 an d 6) with each other.

resolving these two conclusions

. {P}

. {-P,Q}
! {"IQ,R}
’ {ﬂR}

. {a} 1,
i’ {_'Q} 3$
A} 5

Figure 4.3 outlines a nondeterministic procedure for resolution. There
is a termination condition in the first line that varies from use to use.
The next few sections describe several uses with different termination
conditions. If the termination condition is not satisfied, the procedure
selects clauses Phi and Psi, adds their resolvents to the clause set Delta,
and repeats. The Resolvents subroutine is assumed to compute all the
resolvents of the two clauses and to standardize their variables apart from
those in the rest of the database; e.g., by using new variable names.

This procedure could be used to generate the previous resolution deduc-
tion. In this case, we made the right choices for Phi and Psi at each point,
but we might just as well have chosen other resolutions. Figure 4.4 shows
the graph of possible resolutions frora the initial database, expanded out to
three levels of deduction. A graph of this sort is called a resolution graph.

One of the problems with inference graphs such as the one in Figure 4.4
is that they are difficult to lay out in two dimensions. Fortunately, we
can encode such graphs in linear form. A resolution irace is a sequence
of annotated clauses separated into levels. The first level contains just
the clauses in the initial database. Each subsequent level contains all
clauses with at least one parent at the previous level. As with proofs, the
annotations specify the clauses from which they are derived. For example,
the following resolution trace captures the information from the resolution
graph in Figure 4.4.

{r}
{-P,q}
{-Q,R}
{-R}
{a}
{-P,R}

{-Q}

{R}
{r}
{-P}

-] O O b 0O B =
PO > - > >

?

-

oo ancw DB DB

-

~

ik



4.4 Resolution 73

Procedure Resolution (Delta)
Repeat Termination(Delta) ==> Return(Success),
Phi <- Choose(Delta), Psi <- Choose(Delta),
Chi <- Choose(Resolvents(Phi,Psi)),
Delta <- Concatenate(Delta, [Chi])

End

Figure 4.3 The resolution procedure.

11. {ﬂP} 2
2. {3 5

We can generate resolution traces mechanically as follows. We store the
database as a list of clauses, with two pointers initialized to the head of
the list. We let the first pointer range over the list until it reaches the
second pointer, after which the first pointer is reinitialized to the head
of the list and the second pointer is advanced to the next element in the
list. For each combination of pointers, we compute the resolvents of the
corresponding clauses and add them to the end of the list. This procedure
in effect searches the inference graph in a breadth-first fashion.

Although it is not part of the definition of resolution, it is common to
augment resolution procedures (or indeed any deduction procedure) with

{P} {-F.Q} {-Q,R} {-R}

%

{R} {R} {} {-P} {-P}

Figure 4.4 Three-level resolution graph.



Resolution
= his i iall
| attachment. This is especially usefu] vy,
e 'Of pt?loeci)[?:)’::adure has special programs for evaluating tflt
" n]l-lgfmls under their gtandard interpretations. Typically
truth of certain ler[ornle d for ground instances. .For example, if ¢,
evaluations m;z 1D> stands for the greater than relation between Numberg
predicate symbo to evaluate ground instances such as 7>3 when thg,
it is a simple matter tO T Y A
it is e probably would not want to include in the base get a
occur, wher " sutisfy this relation.
table of numbers that satisly . by « )
It is instructive to look more closely at what is meant by “evaluating”
iy >3. Predicate-calculus expressions are linguistjc
an expression such as 7 v S :
constructs that denote objects, functions, or relations in a domain. Such
expressions can be interpreted with reference to a model that associates
linguistic entities with appropriate domain entities. ,

Given a model, we can use any finite processes for interpretation with
respect to it as a way of deciding the truth or falsity of sentences.
Unfortunately, models and interpretation processes are not, in general,
finite—but we often can use partial models. In our inequality example,
we can associate with the predicate symbol > a computer program that
compares numbers within the finite domain of the program. Let us call
this program Greaterp. We say that the program Greaterp is attached to
the predicate symbol >. We can associate the linguistic symbols 7 and 3
(i.e., numerals) with the computer data objects 7 and 3, respectively. We
say that 7 is attached to 7 and that 3 is attached to 3, and the computer
program and arguments represented by Greaterp(7,3) are attached to the
linguistic expression 7>3. Then we can run the program to determine that
7 is indeed greater than 3.

We also can attach procedures to function symbols. For example, an
addition program can be attached to the function symbol +. In this manner,
we can establish a connection or procedural attachment between executable
computer code and some of the linguistic expressions in our predicate-
calculus language. Evaluation of attached procedures can be thought of as
a process of interpretation with respect to a partial model. When it can be
used, procedural attachment reduces the search effort that would otherwise
be reqt.ured to prove theorems.

: A élteral is ev.aluated when it is interpreted by running attached
Evolce tlll(‘;iS-b Typically, not all the literals in a set of clauses can be
alu
- at?‘ , but the. claus&; set can, nevertheless, be simplified by such
uations. If a literal is determined to be false, then the occurrence
of just that literal in th ] s D et :
: _ : ¢ clause can be eliminated. If a literal in 8
clause is determined to b ; . oted
with : € true, the entire clause can be eliminat
ithout affecting the unsati fiabili
{P(x),0(x),7<3} can b shability of the rest of the set. The clause
clause {P(x),Q(x) 7>3f i t_’y {P(x),Q(x)}, since 7<3 is false. The
’ can be eliminated, since the literal 7>3 is true:

Attachment of linguisti
X guistic objects ¢ ; ) : 1oa
with general application inJ AL to semantic elements is an important ide

various iI
the machine run



4.5 Unsatisfiability 75

4.5 Unsatisfiability

The simplest use of resolution is in demonstrating unsatisfiability. If a set
of clauses is unsatisfiable, then it is always possible by resolution to derive
a contradiction from the clauses in the set. In clausal form, a contradiction
takes the form of the empty clause, which is equivalent to a disjunction
of no literals. Thus, to automate the determination of unsatisfiablity, all
we need do is to use resolution to derive consequences from the set to be
tested, terminating whenever the empty clause is generated.

The derivation presented in the Section 4.4 is a good example of using
resolution to demonstrate unsatisfiability. Since resolution generates the
empty clause, the initial set is unsatisfiable.

Demonstrating that a set of clauses is unsatisfiable can also be used
to demonstrate that a formula is logically implied by a set of formulas.
Suppose we wish to show that the set of formulas A logically implies
the formula 3. We can do this by finding a proof of ¢ from A; i.e.,
by establishing A F 3. By the refutation theorem (Chapter 3), we can
establish A F ¢ by showing that A U {-%} is inconsistent (unsatisfiable).
Thus, if we show that the set of formulas AU {~%} is unsatisfiable, we have
demonstrated that A logically implies .

Let us look at this technique from the standpoint of models. If A |= 9,
then all the models of A also are models of 1. Hence, none of these can
be models of =, and thus A U - is unsatisfiable. Conversely, suppose
A U= is unsatisfiable but that A is satisfiable. Let I be an interpretation
that satisfies A; I does not satisfy -, because, if it did, A U +¢ would
be satisfiable. Therefore, I satisfies 1. (An interpretation must satisfy one
of either ¥ or -).) Since this holds for arbitrary I satisfying A, it holds
for all I satisfying A. Thus, all models of A are also models of i, and A
logically implies .

To apply this technique of establishing logical implication by establishing
unsatisfiability using resolution, we first negate 1 and add it to A to
yield A’. We then convert A’ to clausal form and apply resolution. If
the empty clause is produced, the original A’ was unsatisfiable, and we
have demonstrated that A logically entails ¥. This process is called a
resolution refutation; it is illustrated by examples in the following sections.

4.6 True-or-False Questions

One application of proving logical implication through resolution refutation
i8 in answering true-or-false questions. As an example, consider the
following resolution trace. The database includes the facts that Art is the
father of Jon, that Bob is the father of Kim, and that fathers are parents.
To prove that Art is a parent of Jon, we negate the formula representing
this fact to get clause 4, which states that Art is not a parent of Jon. The
I' notation indicates that the associated clause is derived from the negated



