CHAPTER 1

Introduction

ARTIFICIAL INTELLIGENCE (AI) is the study of intelligent behavior. Its
ultimate goal is a theory of intelligence that accounts for the behavior
of naturally occurring intelligent entities and that guides the creation of
artificial entities capable of intelligent behavior. Thus, Al is both a branch
of science and a branch of engineering.

As engineering, Al is concerned with the concepts, theory, and practice
of building intelligent machines. Examples of machines already within
the reach of Al include ezpert systems that give advice about specialized
subjects (such as medicine, mineral exploration, and finance), question-
answering systems for answering queries posed in restricted but large
subsets of English and other natural languages, and theorem-proving
systems for verifying that computer programs and digital hardware
meet stated specifications. Ahead lie more flexible and capable robots,
computers that can converse naturally with people, and machines capable
of performing much of the world’s “knowledge work.”

As science, Al is developing concepts and vocabulary to help us to
understand intelligent behavior in people and in other animals. Although
there are necessary and important contributions to this same scientific
goal by psychologists and by neuroscientists, we agree with the statement
made by the sixteenth-century Italian philosopher Vico: Certum quod
factum (one is certain of only what one builds). Aerodynamics, for
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Note that in talking about the behavior of an intelligent entity in its

environment, we have implicitly divided the world into two parts. We have
placed an envelope around the entity, separating it from its environment,
and we have chosen to focus on the transactions across that envelope. (See
Figure 1.1.) Of course, a theory of intelligence must not only describe
these transactions but must also give a clear picture of the structure of
the entity responsible for those transactions. An important concept in
this regard is that of knowledge. Intelligent entities seem to anticipate
their environments and the consequences of their actions. They act as if
they know, in some sense, what the results would be. We can account for
this anticipatory behavior by assuming that intelligent entities themselves
possess knowledge of their environments.

What more can we say about such knowledge? What forms can it take?
What are its limits? How do entities use knowledge? How is knowledge
acquired? Unfortunately, we cannot say much to answer these questions
insofar as they pertain to natural, biological organisms. Even though we are
beginning to learn how neurons process simple signals, our underst anding of
how animal brains—which are composed of neurons—represent and process
knowledge about the world is regretfully deficient.

The situation is rather different when we turn our attention to artifacts,
such as computer systems, capable of rudimentary intelligent behavior.
Although we have not yet built machines approaching human levels of
intelligence, nevertheless we can talk about how such machines can be said
to possess knowledge. Because we design and build these machines, We
oug.ht to be able to decide what it means for them to know about their
environments,

There are two major ways we can think about a machine having
knowledge about its world. Although our ideas about the distinction
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between these two points of view are still being clarified, it seems that,
in some of our machines, the knowledge is implicit; in other machines, it is
represented explicitly.

We would be inclined to say, for example, that the mathematical
knowledge built into a computer program for inverting matrices is implicit
knowledge, “stored,” as it is, in the sequence of operations performed
by the program. Knowledge represented in this way is manifest in the
actual running or execution of the matrix-inverting program. It would be
difficult to extract it from the text of the computer code itself for other
uses. Computer scientists have come to call knowledge represented in this
way procedural knowledge, because it is inextricably contained in the very
procedures that use it.

On the other hand, consider a tabular database of salary data. In this
case, we would be inclined to say that the knowledge is explicit. Programs
designed to represent their knowledge explicitly have turned out to be
more versatile in performing the complex tasks that we usually think
of as requiring intelligence. Particularly useful explicit representations
of knowledge are those that can be interpreted as making declarative
statements. We call knowledge represented in this way declarative
knowledge because it is contained in declarations about the world. Such
statements typically are stored in symbol structures that are accessed by
the procedures that use this knowledge.

There are several reasons to prefer declaratively represented knowledge
when designing intelligent machines. One advantage is that such knowledge
can be changed more easily. To make a small change to a machine’s
declarative knowledge, usually we need to change just a few statements.
Even small adjustments to procedural knowledge, on the other hand,
may require extensive changes to the program. Knowledge represented
declaratively can be used for several different purposes, even purposes
not explicitly anticipated at the time the knowledge is assembled. The
knowledge base itself does not have to be repeated for each application, nor
does it have to be specifically designed for each application. Declarative
knowledge often can be extended, beyond that explicitly represented, by
reasoning processes that derive additional knowledge. Finally, declarative
knowledge can be accessed by introspective programs, so that a machine
can answer questions (for itself or for others) about what it knows. A price
is paid for these advantages, however. Using declarative knowledge usually
is more costly and slower than is directly applying procedural knowledge.
We give up efficiency to gain flexibility.

It is tempting to speculate about the roles of these two kinds of
knowledge in biological organisms. Many insects and other not-very-brainy
creatures seem so well attuned to their environments that it is difficult to
avoid saying that they have a great deal of knowledge about their worlds.
A spider, for example, must use quite a bit of knowledge about materials
and structures in spinning a web. Once we understand such creatures
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In any case, intelligent machines will need both procedural and declara-
tive knowledge. Thus, it is difficult to see how we can study them properly
without involving all of computer science. The most flexible kinds of intel-
ligence, however, seem to depend strongly on declarative knowledge, and
Al has concerned itself more and more with that subject. Our emphasis
on declarative knowledge in this book should not be taken to imply that
we think procedural knowledge unimportant. For example, when declara-
tive knowledge is used over and over again for the same specific purpose, it
would be advisable to compile it into a procedure tailored for that purpose.
Nevertheless, the study of representing and using declarative knowledge is
such a large and important subject in itself that it deserves book-length
treatment.

The book is divided roughly into four parts. In the first five chapters,
we present the main features of what is commonly called the logicist
approach to AI. We begin by describing conceptualizations of the subject
matter about which we want our intelligent systems to have knowledge.
Then we present the syntax and semantics of the first-order predicate
calculus, a declarative language in which we can write sentences about these
conceptualizations. We then formalize the process of inference. Finally, we
discuss a simple but powerful inference procedure called resolution, and we
show how it can be used in reasoning systems.

In the next three chapters, we broaden the logical approach in various
ways to dea.l with several inadequacies of strict logical deduction. First,
we describe methods that allow nonmonotonic reasoning; i.e., reasoning in
which I.ent-ative conclusions can be derived. Next, we discuss extensions
that permit systems to learn new facts, Then, we show how to represent
and reason with knowledge that is not certain.
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In the final three chapters, we concern ourselves with agents that can
perceive and act in the world. We first discuss the representation of
knowledge about states and actions. Then, we show how this knowledge can
be used to derive plans to achieve goals. Finally, we present a framework
that allows us to relate sensory knowledge and inferred knowledge and that
allows us to say how this knowledge affects an intelligent agent’s choice of
actions.

1.1 Bibliographical and Historical Remarks

The quest to build machines that think like people has a long tradition.
Gardner [Gardner 1982] attributed to Leibniz the dream of “a universal
algebra by which all knowledge, including moral and metaphysical truths,
can some day be brought within a single deductive system.” Frege, one
of the founders of modern symbolic logic, proposed a notational system
for mechanical reasoning [Frege 1879]. When digital computers were
first being developed in the 1940s and 1950s, several researchers wrote
programs that could perform elementary reasoning tasks, such as proving
mathematical theorems, answering simple questions, and playing board
games such as chess and checkers. In 1956, several of these researchers
attended a workshop on Al at Dartmouth College, organized by McCarthy
(who, incidentally, suggested the name Artificial Intelligence for the field)
[McCorduck 1979]. (McCorduck’s book is an interesting, nontechnical
history of early AI work and workers.) Many of the important first
papers about Al are contained in the collection Computers and Thought
[Feigenbaum 1963].

From AI’s very beginnings, people have pursued many approaches to
the discipline. One, based on building parallel machines that could learn
to recognize patterns, occupied many Al researchers during the 1960s and
continues as one strand of what has come to be called connectionism. See
[Nilsson 1965] for an example of some of the early work using this approach,
and [Rumelhart 1986] for a collection of connectionist papers.

The computational manipulation of arbitrary symbolic structures (as
opposed to operations on numbers) is at the heart of much work in AL
The idea that symbol manipulation is a sufficient process for explaining
intelligence was forcefully stated in the physical symbol system hypothesis
of Newell and Simon [Newell 1976]. The need for manipulating symbols
led to the development of special computer languages. LISP, invented by
McCarthy in the late 1950s [McCarthy 1960], continues to be the most
popular of these languages. PROLOG [Colmerauer 1973, Warren 1977],
stemming from ideas proposed by Green [Green 1969a], Hayes [Hayes
1973b], and Kowalski [Kowalski 1974, Kowalski 1979a] is rapidly gaining
adherents. Much of the work in Al still is characterized mainly by the use
of sophisticated symbol manipulation to perform complex reasoning tasks.
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One articulation of the symbol-manipulating approach uses production
systems, a term that has been used rather loosely in AL Production
systems derive from a computational formalism proposed by Post [Post
1943] based on string-replacement rules. The close'ly relfated idea of g
Markov algorithm [Markov 1954, Galler 1970] involves imposing an order on
the replacement rules and using this order to decide which applicable rule
to apply next. Newell and Simon [Newell 1972, Newell 1973] used string-
modifying production rules, with a simple control strategy, to model certain
types of human problem-solving behavior. An earlier textbook by Nilsson
[Nilsson 1980] used production systems as an organizing theme. More
recently, the ops family of symbol-manipulating computer-programming
languages has been based on production rules [Forgy 1981, Brownston
1985]. Work on SOAR by Laird, Newell, and Rosenbloom [Laird 1987] and
on blackboard systems by a variety of researchers [Erman 1982, Hayes-Roth
1985] can be regarded as following the production system approach.

Another important aspect of Al is heuristic search. Search methods
are described as a control strategy for production systems in [Nilsson
1980). Pearl’s book [Pearl 1984] gave a thorough mathematical treatment
of heuristic search, and his review article summarized the subject [Pearl
1987). Lenat’s work [Lenat 1982, Lenat 1983a, Lenat 1983b] on the nature
of heuristics resulted in systems that exploit general heuristic properties in

specific problems.
The view taken toward Al in this book follows the theme hinted at

by Leibniz and Frege and then substantially elaborated and developed
into specific proposals by McCarthy [McCarthy 1958 (the advice taker
paper), McCarthy 1963]. It is based on two related ideas. First, the
knowledge needed by intelligent programs can be expressed as declarative
sentences in a form that is more or less independent of the uses to which
that knowledge might later be put. Second, the reasoning performed by
intelligent programs involves logical operations on these sentences. Good
accounts of the importance of logic in Al, for representation and for
reasoning, have been written by Hayes [Hayes 1977], Israel [Israel 1983],
Moore [Moore 1982, Moore 1986], and Levesque [Levesque 1986].

Several people, however, have argued that logic has severe limitations as
a foundation for AI. McDermott’s article contained several cogent criticisms
of logic [McDermott 1987a], whereas Simon emphasized the role of search
in AI [Simon 1983). Many AI researchers have stressed the importance
of specialized procedures and of procedural (as opposed to declarative)
representations of knowledge (see, for example, [Winograd 1975, Winograd
1980]). Minsky has claimed that intelligence in humans is the result of
the interaction of a very large and complex assembly of loosely connected
subunits operating much like a society but within a single individual
[Minsky 1986].

Notwithstanding the various criticisms of logic, there does seem to be an
emerging consensus among researchers that logical tools are important, at
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the very least, for helping us to analyze and understand Al systems. Newell
[Newell 1982] made that point in his article about the knowledge level. The
work of Rosenschein and Kaelbling on situated automnata is a good example
of an approach to Al that acknowledges the analytic utility of logic while
pursuing an alternative implementational strategy [Rosenschein 1986]. The
assertion that predicate calculus and logical operations can also usefully
serve directly in the implementation of AI systems as a representation
language and as reasoning processes, respectively, is a much stronger claim.

Several thinkers have claimed that none of the techniques currently be-
ing explored will ever achieve true, human-level intelligence. Prominent
among these are the Dreyfuses, who argued that symbol manipulation op-
erations are not the foundation of intelligence [Dreyfus 1972, Dreyfus 1981,
Dreyfus 1986] (although their suggestions about what might be needed
seem compatible with the claims of the connectionists). Winograd and
Flores argued, mainly, that whatever mechanistic processes are involved in
thinking, they are probably too complicated to be fully expressed in ar-
tificial machines designed and built by human engineers [Winograd 1986].
Searle attempted to distinguish between real thought and mere simula-
tions of thought by rule-like computations [Searle 1980]. He also seemed
to claim that computer-like machines built of silicon, for example, will not
do, although machines built according to different principles out of protein
might. Taking a somewhat different tack, Weizenbaum argued that, even
if we could build intelligent machines to perform many human functions,
it might be unethical to do so [Weizenbaum 1976).

There are several other good Al textbooks. Most of them differ from this
one in that they do not emphasize logic as much as we do, and they describe
applications of Al such as natural-language processing, expert systems, and
vision. The books by Charniak and McDermott, Winston, and Rich are
three such texts [Charniak 1984, Winston 1977, Rich 1983]. The book by
Boden [Boden 1977] treats some of the philosophical issues related to Al
In addition to these books, the reader might also refer to encyclopedic
collections of short articles about key ideas in AI [Shapiro 1987, Barr 1982,
Cohen 1982].

Many important articles describing AI research appear in the journal
Artificial Intelligence. In addition, there are several other relevant journals,
including the Journal of Automated Reasoning, Machine Learning, and
Cognitive Science. Several articles are reprinted in special collections.
The American Association for Artificial Intelligence and other national
organizations hold annual conferences with published proceedings [AAAI
1980]. The International Joint Council on Artificial Intelligence holds
biannual conferences with published proceedings [IJCAI 1969]. Technical
notes and memoranda published by the several university and industrial
laboratories performing research in Al are available in microfilm from

Scientific DataLink (a division of Comtex Scientific Corporation) in New
York.
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Exercises

1. Structure and behavior.
artifacts to distinguish betwe
and their interconnections) an

a. Give a brief description of a thermostat

It is common in discussing the design of
en the structure of a device (i.e., its parts
d its behavior (i.e., its external effects).

. Describe both its external

behavior and its internal structure. Explain how its structure

achieves its behavior.

. Is it possible to determine the purpose of an artifact unambiguously,
given its behavior? Provide examples to justify your answer.

. In his paper “Ascribing Mental Qualities to Machines,” John

McCarthy[McCarthy 1979b] suggests that it is convenient to talk
about artifacts (such as thermostats and computers) as having

mental qualities (such as beliefs and desires). For example, according
to McCarthy, a thermostat believes it is too hot, too cold, or just
right, and desires that it be just right. Try to adopt McCarthy’s
viewpoint and indicate the beliefs and desires you think an alarm

clock possesses.

9. Missionaries and cannibals. Three missionaries and three cannibals
seek to cross a river. A boat is available that can hold two people
and can be navigated by any combination of missionaries and cannibals
involving one or two people. If at any time the missionaries on either
bank of the river or en route on the river are outnumbered by cannibals,
the cannibals will indulge their anthropophagic tendencies and do away
with the missionaries.

a. Find the simplest schedule of crossings that will permit all the

b.

missionaries and cannibals to cross the river safely.

Staf:]a at least three facts about the world you used in solving the
problem. For example, you had to know that a person can be in

only one place at a time.

" zgicr;lésoiget Etelf)s that you toolf to solve the problem. For each
you ,drew Thee BetA. o aSSu.mptmns you used and the conclusions
. abt;ut thel?’urpose of this Part of the problem is to get you to
the final soluti plgce?s of solving a problem, not just to arrive a

1on. Do just enough to get a feel for this distinction.



CHAPTER 2

Declarative Knowledge

AS WE HAVE ALREADY ARGUED, intelligent behavior depends on the
knowledge an entity has about its ervironment. Much of this knowledge
is descriptive and can be expre:scd in declarative form. The goal of this
chapter is to elucidate the issues invclved in formally expressing declarative
knowledge.

Our approach to formalizing knowledge is much the same as that of
scientists who describe the physical world; in fact, our language is similar
to that used to state results in mathematics and the natural sciences.
The difference is that in this book we are concerned with the issues of
formalizing knowledge, rather than with discovering the knowledge to be
formalized.

2.1 Conceptualization

The formalization of knowledge in declarative form begins with a concep-
tualization. This includes the objects presumed or hypothesized to exist in
the world and their interrelationships.

The notion of an object used here is quite broad. Objects can be concrete
(e.g., this book, Confucius, the sun) or abstract (e.g., the number 2, the
set of all integers, the concept of justice). Objects can be primitive or
composite (e.g., a circuit that consists of many subcircuits). Objects can
even be fictional (e.g., a unicorn, Sherlock Holmes, Miss Right). In short,
an object can be anything about which we want to say something.
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Figure 2.1 A scene from the Blocks World.

Not all knowledge-representation tasks require that we consider all the
objects in the world; in some cases, only those objects in a particular set
are relevant. For example, number theorists usually are concerned with the
properties of numbers and usually are not concerned with physical objects
such as resistors and transistors. Electrical engineers usually are concerned
with resistors and transistors and usually are not concerned with buildings
and bridges. The set of objects about which knowledge is being expressed
is often called a universe of discourse.

As an example, consider the Blocks World scene in Figure 2.1. Most
people looking at this figure interpret it as a configuration of toy blocks.
Some people conceptualize the table on which the blocks are resting as an
object as well; but, for simplicity, we ignore it here.

The universe of discourse corresponding to this conceptualization is the
set consisting of the five blocks in the scene.

{a! ba ¢y d; e}

Although in this example there are finitely many elements in our universe
of discourse, this need not always be the case. It is common in mathematics,
for example, to consider the set of all integers, or the set of all real numbers,
or the set of all n-tuples of real numbers, as universes with infinitely many
elements.

A function is one kind of interrelationship among the objects in a
universe of discourse. Although we can define many functions for a given set
of objects, in conceptualizing a portion of the world we usually emphasize
some functions and ignore others. The set of functions emphasized in a
conceptualization is called the functional basis set.

For example, in thinking about the Blocks World, it would make sense
to conceptualize the partial function hat that maps a block into the block
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on top of it, if any such block exists. The tuples corresponding to this
partial function are as follows:

{(ba a)v (C, b)v (e, d)}

When concentrating on spatial relationships, we would probably ignore
functions that do not have any spatial significance, such as the rotate
function that maps blocks into blocks according to the alphabetic order
of their labels.

{{a, b), (b, c), (c, d), (d, e), (e, a)}

A relation is the second kind of interrelationship among objects in a
universe of discourse. As we do with functions, in conceptualizing a portion
of the world, we emphasize some relations and ignore others. The set of
relations in a conceptualization is called the relational basis set.

In a spatial conceptualization of the Blocks World, there are numerous
meaningful relations. For example, it makes sense to think about the on
relation that holds between two blocks if and only if one is immediately
above the other. For the scene in Figure 2.1, on is defined by the following

set of tuples.
{(a, ), (b,c),(d,e)}

We might also think about the above relation that holds between two
blocks if and only if one is anywhere above the other.

{{a,8), (b}, {2, 2}. {d, €}

The clear relation holds of a block if and only if there is no block on top
of it. For the scene in Figure 2.1, this relation has the following elements.

{a, d}

The table relation holds of a block if and only if that block is resting on
the table.
{c,e}

The generality of relations can be determined by comparing their
elements. Thus, the on relation is less general than the above relation
since, when viewed as a set of tuples, it is a subset of the above relation. Of
course, some relations are empty (e.g., the unsupported relation), whereas
others consist of all n-tuples over the universe of discourse (e.g., the block
relation). -

It is worthwhile to note that, for a finite universe of discourse, there is
an upper bound on the number of possible n-ary relations. In particular,
for a universe of discourse of size b, there are b™ distinct n-tuples. Every
n-ary relation is a subset of these b™ tuples. Therefore, an n-ary relation
must be one of at most 2(®") possible sets.
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Formally, a conceptualization is a triple consisifing of a universe of dis.
course, a functional basis set for that universe of discourse, and a relatiop,)
basis set. For example, the following triple is one conceptualization of the

world in Figure 2.1.
({a,b,c,d, e}, {hat},{on, above, clear, table})

Note that, although we have have written the' names of objects, functions,
and relations here, the conceptualization consists of the objects, functions,
and relations themselves.

No matter how we choose to conceptualize the world, it is important
to realize that there are other conceptualizations as well. Furthermore,
there need not be any correspondence between the objects, functions, and
relations in one conceptualization and the objects, functions, and relations
in another.

In some cases, changing one’s conceptualization of the world can make
it impossible to express certain kinds of knowledge. A famous example
of this is the controversy in the field of physics between the view of
light as a wave phenomenon and the view of light in terms of particles.
Each conceptualization allowed physicists to explain different aspects of
the behavior of light, but neither alone sufficcd. Not until the two views
were merged in modern quantum physics were the discrepancies resolved.

In other cases, changing one’s conceptualization can make it more
difficult to express knowledge, without necessarily making it impossible.
A good example of this, once again in the ficld of physics, is changing
one’s frame of reference. Given Aristotle’s geoccutric view of the universe,
astronomers had great difficulty explaining the motions of the moon and
other planets. The data were explained (with epicycles, etc.) in the
Aristotelian conceptualization, although the explanation was extremely
cumbersome. The switch to a heliocentric view quickly led to a more
perspicuous theory.

This raises the question of what makes one conceptualization more
appropriate than another for knowledge formalization. Currently, there
is no comprehensive answer to this question. However, there are a few
issues that are especially noteworthy.

One such issue is the grain size of the objects associated with a
conceptualization. Choosing too small a grain can make knowledge
formalization prohibitively tedious. Choosing too large a grain can
make it impossible. As an example of the former problem, consider 8
cor.lceptualization of the scene in Figure 2.1 in which the objects in the
universe of q&gcomse are the atoms composing the blocks in the picture:
E.ach bloc.k 18 composed of enormously many atoms, so the universe of
discourse is extremely large. Although it is in principle possible to describe
the scene at this level of detail, it is senseless if we are interested in only the
vertlcal' rel.atxonship of the blocks made up of those atoms. Of course; for
a chemist interested in the composition of blocks, the atomic view of the
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scene might be more appropriate. For this purpose, our conceptualization
in terms of blocks has too large a grain.

Finally, there is the issue of reification of functions and relations as
objects in the universe of discourse. The advantage of this is that it
allows us to consider properties of properties. As an example, consider a
Blocks World conceptualization in which there are five blocks, no functions,
and three unary relations, each corresponding to a different color. This
conceptualization allows us to consider the colors of blocks but not the
properties of those colors.

({a,b,c,d,e},{}, {red, white, blue})

We can remedy this deficiency by reifying various color relations as
objects in their own right and by adding a partial function—such as color—
to relate blocks to colors. Because the colors are objects in the universe of
discourse, we can then add relations that characterize them; e.g., nice.

({a,b, c,d, e, red, white, blue}, {color}, {nice})

Note that, in this discussion, no attention has been paid to the question
of whether the objects in one’s conceptualization of the world really exist.
We have adopted neither the standpoint of realism, which posits that the
objects in one’s conceptualization really exist, nor that of nominalism,
which holds that one’s concepts have no necessary external existence.
Conceptualizations are our inventions, and their justification is based solely
on their utility. This lack of commitment indicates the essential ontological
promiscuity of AI: Any conceptualization of the world is accommodated,
and we seek those that are useful for our purposes.

2.2 Predicate Calculus

Given a conceptualization of the world, we can begin to formalize knowledge
as sentences in a language appropriate to that conceptualization. In this
section, we define a formal language called predicate calculus.

All the sentences in predicate calculus are strings of characters arranged
according to precise rules of grammar. For example, we can express the fact
that block a is above block b by taking a relation symbol such as Above and
object symbols A and B and combining them with appropriate parentheses
and commas, as follows.

Above(A,B)

One source of expressiveness in predicate calculus is the availability of
logical operators that allow us to form complex sentences from simple ones
without specifying the truth or falsity of the constituent sentences. For
example, the following sentence using the operator v states that either



