cse352 ARTIFICIAL INTELLIGENCE Fall 2019 MIDTERM

SOLUTIONS

PROBLEM 1. (10pts)

Translate to Logic following the statement

"Every man likes all tasty apples "

- 1. Domain: $X \neq \varphi$
- 2. Predicates:

A(x) - x is an Apple,M(x) - x is a man,T(x) - x is tasty.L(x,y) - x likes y

- 4. Connectives: Λ , \Rightarrow
- 5. Quantifiers: $\forall_{M(x)} -$ "**Every** man",

 \forall (A(y) \land T(y)) – "All tasty apples" (restricted)

6. RESTRICTED FORMULA:

 $\forall_{M}(x) \forall (A(y) \land T(y)) L(x,y)$

7. LOGIC FORMULA:

 $(\forall_x (M(x) \Rightarrow \forall_y ((A(y) \land T(y)) \Rightarrow L(x,y)))$

Write your Logic formula as the Intended Interpretation Formula

 $(\forall_x (Men(x) \Rightarrow \forall_y ((Apple(y) \land Tasty(y)) \Rightarrow Likes(x,y)))$

PROBLEM 2: RESOLUTION (10pts)

Q1. Find all resolvents of the set $CL = \{ C1, C2 \}$ of clauses for $C1 = \{a, b, c, \neg d\}$ and $C2 = \{\neg a, \neg b, d\}$ It means locate all clauses in CL that are Complementary Pairs and Resolve them

C1(a) and C2(\neg a) resolves on { b, c, \neg d, \neg b, d}

C1(b) and C2(\neg b) resolves on { a, c, \neg d, \neg a, d}

C1(\neg d) and C2(d) resolves on {a, b,c, \neg a, \neg b}

Q2. Use the Resolution Completeness to prove that the set

CL = { { a, b }, { \neg a, c }, { \neg b, c } } of clauses is SATISFIABLE.

There are only two possible derivations

D1: { a, b}, {
$$\neg$$
 a, c}, { \neg b, c}
{b, c}, { \neg b, c}
{c}

D1: { a, b}, {
$$\neg$$
 a, c}, { \neg b, c}
{a, c}, { \neg a, c}
{c}

We can never get a derivation of {}- so by **Completeness** the set CL is **satisfiable**

PROBLEM 3: RULE BASED SYSTEMS (10pts)

Here is a small set of RULES proposed for a simple **rule-based system** for financial advise.

R1 IF savings are not adequate THEN invest in savings

R2 IF savings are adequate AND income is adequate THEN invest in stock

- **R3** IF there is no children THEN savings are adequate
- **R4** IF there is a partner AND partner has a job THEN income is adequate

Q1. (5pts) Conceptualize the rules **R1-R4** in **propositional** convention that **admits negation**. Explain your solution.

We define.

- S = savings_adequate
- V = invest_savings
- I = income_adequate
- K = invest_stocks
- C = has_children
- P = has_partner
- J = partner_has_job

Here are the rules expressed in propositional logic conceptualization

- R1: \neg S \rightarrow V
- R2: $S \land I \rightarrow K$
- R3: $\neg C \rightarrow S$
- R4: $P \land J \rightarrow I$

Q2. (5pts)

1. Conceptualize the rules **R1-R4** in **predicate** convention using predicates attribute(x, value of attribute), attribute(object, value of attribute).

We have the following ATTRIBUTES:

Savings Values: adequate, not adequate Income Values: adequate, not adequate InvestStocks Values: yes, no InvestSavings Values: yes, no Children Values: yes, no Partner Values: yes, no PartnerJob Values: yes, no

RULES:

R1: Savings(x, not adequate) \rightarrow InvestSavings(x, yes)

R2: Savings(x, adequate) \land Income(x, adequate) \rightarrow InvestStocks(x, yes)

R3: Children(x, no) \rightarrow Savings(x, adequate)

R4: Partner(x, yes) \land PartnerJob(x, yes) \rightarrow Income(x, adequate)

2.Write a format of a database TABLE needed for the conceptualization

DATA TABLE - example of a record

record	Savings	Income	Children	Partner	PartnerJob	InvestSavings	InvestStocks
0	not adequate	adequate	no	yes	no	yes	no

PROBLEM 4: Classification Rules 10pts

Q1 (5pts)

Given a dataset **DB**: **C** – class attribute

Record	<i>a</i> ₁	a_2	<i>a</i> ₃	<i>a</i> ₄	С
01	1	1	1	0	1
02	2	1	2	0	2
03	0	0	0	0	0
04	0	0	2	1	0
05	2	1	1	0	1

For the following formulas use the proper definitions to **prove** whether they are or they are not **discriminant or characteristic rules** in the dataset **DB**

1) $a_1 = 1 \& a_2 = 1 \implies C = 1$ {01} is a subset of {01, 05} so this is a DISCRIMINANT rule

2) $C = 1 \implies a_1 = 0 \& a_2 = 1 \land a_3 = 1$ {o: a1 = 0 & a2 = 1 & a3 = 1} is an empty set so this is **not** a CHARACTERISTIC rule 3) $a_1 = 1 \implies C = 1$ {01} is a subset of {01, 05} so this is a DISCRIMINANT rule

4) $C = 1 \implies a_1 = 1$ {o1, o5} intersection with {o1} is non-empty

5) $a_1 = 2 \& a_2 = 1 \& a_3 = 1 \Longrightarrow C = 2$ {o5} is not a subset of {o2}, so this is not a DISCRIMINANT rule

Q2 (5pts)

1. Prove that in any classification DB the **inverse implication** to the discriminant rule is a characteristic rule

```
By definition, for any database DB :

DESCRIPTION ⇒ CLASS
```

is a discriminant rule iff

1. {o: DESCRIPTION} is not empty

2. {o: DESCRIPTION} is included in {o: CLASS}

We know that for any non-empty sets A, B, if A is included in B, then their intersection is non-empty.

Hence

{o: DESCRIPTION} intersection with {o: CLASS} is not empty and by Definition then inverse implication

$CLASS \Rightarrow DESCRIPTION$

is a CHARACTERISITIC RULE

SHORT QUESTIONS (10pts)

Q1: (5pts) Define a Classifier

A classifier is a final product of a process that uses data set and a classification algorithm

The classifier is build i.e. we terminate the process if it has been trained and tested and the predictive accuracy is on an acceptable level

Q2: (5pts) Write down termination conditions for Decision Tree Model

- 1. All records (samples) for the given node belong to the same class
- There are no remaining attributes on which the samples (records in the data table) may be further partitioned – a LEAF is created with majority vote for training sample

3. There is no records (samples) left – a LEAF is created with **majority vote for training sample**

Majority voting involves converting node N into a leaf and labeling it with the most common class in D which is a set of training tuples and their associated class labels

POBLEM 5: Classification by Decision Tree Algorithm(20pts)Given the following DATA

TRAIN			
Record	a_1	a_2	C
0 1	1	1	1
02	0	0	0
03	0	1	0
04	0	0	0
05	1	1	1
06	1	1	0
07	0	0	0
08	1	0	1

TEST					
Record	<i>a</i> ₁	a_2	C		
0 1	1	1	1		
02	1	0	0		
03	0	0	1		
04	0	0	0		

Use the TRAIN data to **build a CLASSIFIER** using the basic **Decision Tree** Algorithm with **a1** as the ROOT. **Here are the STEPS you must follow**

STEP 1: (5pts) Build the Decision Tree and write Rules in Predicate Form **STEP 2: (10pts)**

Evaluate: (i) rules accuracy, (ii) predictive accuracy.

(iii) Write down a **TEST** data that would give a 100% predictive accuracy for your set of rules.

STEP 3: (5pts) Give your answer under a title: MY CLASSIFIER IS

Solutions

STEP 1: Build the Decision Tree and write Rules in Predicate Form

R1: $a1(x,1) \land a2(x,1) \rightarrow C(x,0)$ R2: $a1(x,1) \land a2(x,0) \rightarrow C(x,0)$ R3: $a1(x,0) \rightarrow C(x,0)$

STEP 2:

Evaluate: (i) **rules accuracy**, o₁ is misclassified o₂ is classified by R3 o₃ is classified by R3 o₄ is classified by R3 o₅ is misclassified o₆ is classified by R1 o₇ is classified by R3 o₈ is misclassified 5 Passed/out of 8=62.5% rule accuracy

(ii) predictive accuracy.

o1 is misclassified
o2 is classified by R2
o3 is misclassified
o4 is classified by R3
2 Passed/out of 4=50% predictive accuracy

(iii) Write down a **TEST** data that would give a 100% predictive accuracy for your set of rules.

Record	a ₁	a_2	С
01	1	1	0
O ₂	1	0	0
03	0	1	0
04	0	0	0

STEP 3: Give your answer under a title: **MY CLASSIFIER IS**

(Answer 1): There is no classifier because predictive accuracy is only 50% and we do not accept the rules.

(Answer 2): I decide to accept predictive accuracy of 50%. **MY CLASSIFIER IS** R1: $a1(x,1) \land a2(x,1) \rightarrow C(x,0)$, R2: $a1(x,1) \land a2(x,0) \rightarrow C(x,0)$, R3: $a1(x,0) \rightarrow C(x,0)$