Cse352
Artificial Intelligence
Short Review
for Midterm

Professor Anita Wasilewska
Computer Science Department
Stony Brook University
Midterm

• Midterm INCLUDES Lectures 1-10 and Homeworks 1,2, Resolution

• LOGIC

• PRODUCTION SYSTEMS

• PROPOSITIONAL RESOLUTION
 (as material you needed for Q1)

• CLASSIFICATION

• CLASSIFICATION by Decision TREES
LOGIC: Restricted Domain Quantifiers

Translation for **existential** quantifier

\[\exists_{A(x)} B(x) \equiv \exists x(A(x) \land B(x)) \]

↑ restricted ↑ logic, not restricted

Example (mathematical formulas):
\[\exists x \neq 1 (x > 0 \Rightarrow x + y > 5) \] - restricted
\[\exists x ((x \neq 1) \land (x > 0 \Rightarrow x + y > 5)) \] - not restricted

↑ B(x, y)

English statement:
Some students are good.

Logic Translation (restricted domain):

\[\exists_{S(x)} G(x) \]

Predicates are:
S(x) – x is a student
G(x) – x is good

TRANSLATION:

\[\exists x(S(X) \land G(x)) \]
LOGIC: Restricted Quantifiers

Translation for **universal** quantifier

Restricted Logic (non-restricted)

\[\forall_{A(x)} B(x) \equiv \forall x (A(x) \Rightarrow B(x)) \]

Example (mathematical statement)

\[\forall x \in N (x = 1 \lor x < 0) \] restricted domain

\[\equiv \forall x (x \in N \Rightarrow (x = 1 \lor x < 0)) \] – non-restricted
Translations to Logic

Rules:
1. **Identify** the domain: always a set $X \neq \phi$
2. **Identify** predicates (simple: atomic)
3. **Identify** functions (if needed)
4. **Identify** the connectives $\lor, \land, \Rightarrow, \neg, \leftrightarrow$
5. **Identify** the quantifiers $\forall x, \exists x$ or Restricted Quantifiers $\forall P(x), \exists Q(x)$
6. Write a formula using only symbols for 2, 3, 4, 5
 Use restricted domain quantifier translation rules, where needed to write
7. Write **LOGIC formula** – formula without Restricted Quantifiers
Translation to Logic

• Translations from Natural Language

• Translate: "No house is red"

1. Domain: $X \neq \emptyset$

2. Predicates: $A(x) \rightarrow x$ is a House $B(x) \rightarrow x$ is red

3. Functions: (none)

4. Connectives: \neg - "not"

5. Quantifiers: $\exists_{A(x)}$ - "some houses" (restricted)

6. RESTRICTED FORMULA: $\neg \exists_{A(x)} B(x)$

7. LOGIC FORMULA: $\neg \exists x (A(x) \land B(x))$
PREDICATE LOGIC TRANSLATION

• Translations from Natural Language

• BE CAREFUL!

• YOU MUST ALWAYS DO DIRECT TRANSLATION

• Never translate some logically EQUIVALENT statements such as

• “All houses are not red”

• instead of (via de Morgan Laws)

• “No house is red”
Translate: **Some patients like all doctors**

Predicates:
- \(P(x) \) – \(x \) is a patient in the domain \(X \neq \phi \)
- \(D(x) \) – \(x \) is a doctor in the domain \(X \neq \phi \)
- \(L(x, y) \) – \(x \) likes \(y \) in the domain \(X \neq \phi \)

There is a **patient**(\(x \)), such that for all **doctors**(\(y \)), \(x \) likes \(y \)

\[\exists P(x) \ \forall D(y) \ L(x, y) \]

Non-restricted quantifiers

\[\exists x (P(x) \land \forall y (D(y) \Rightarrow L(x, y))) \]
Learning Process

• Short Questions:

• Describe all stages of the Learning Process

• Describe the role of Preprocessing stage and its main methods

• Discuss the Learning Proper stage
Learning Models

• Describe what is **Descriptive*/ non **Descriptive Learning**

• List some **Descriptive*/ non **Descriptive Models**

• How and what decides **which type** of Learning is the best to use (implement)

• Give examples of **types of applications** and the **best Models** (algorithms) for them
Classification

• Describe what is CLASSIFICATION; type of data, goals and applications

• Describe all stages of the classification process

• Describe and discuss basic classification Models and their differences
Classification

- Discuss the Decision Tree Induction and its strengths and weaknesses

- Define a CLASSIFIER

- Describe a process of building a CLASSIFIER
Given a **classification** dataset **DB** with a set

\[A = \{a_1, a_2, \ldots, a_n\} \] of **attributes** and a **class** attribute **C**

with values

\[\{c_1, c_2, \ldots, c_k\} - k \text{ classes} \]

Definition 1

Any expression \(a_1 = v_1 \& \ldots \& a_k = v_k \) where \(a_i \in A \) and \(v_i \) are corresponding values of attributes from \(A \)

is called a **DESCRIPTION**

Any expression \(C = c_i \) is for \(c_i \in \{c_1, c_2, \ldots, c_k\} \)

Is called a **CLASS DESCRIPTION**
Definition 2

A CHARACTERISTIC FORMULA is any expression

\[C = c_k \implies a_1 = v_1 \land ... \land a_k = v_k \]

We write is as

\[\text{CLASS} \implies \text{DESCRIPTION} \]

Definition 3

A DETERMINANT FORMULA is any expression

\[a_1 = v_1 \land ... \land a_k = v_k \implies C = c_k \]

We write it as

\[\text{DESCRIPTION} \implies \text{CLASS} \]
Definition 4

A characteristic formula

\[
\text{CLASS} \Rightarrow \text{DESCRIPTION}
\]

is called a \textbf{CHARACTERISTIC RULE} of the classification dataset \textbf{DB}

\text{iff}

it is \textbf{TRUE} in \textbf{DB}, i.e. when the following holds

\[
\{o: \text{DESCRIPTION}\} \cap \{o: \text{CLASS}\} \neq \emptyset
\]

Where

\[
\{o: \text{DESCRIPTION}\}
\]

is the set of all records of DB corresponding to the \textbf{DESCRIPTION}

\[
\{o: \text{CLASS}\}
\]

is the set of all records of DB corresponding to the \textbf{CLASS}
Definition 5

A discriminant formula

\[\text{DESCRIPTION} \implies \text{CLASS} \]

is called a \textbf{DISCRIMINANT RULE} of DB

\[\text{iff} \]

it is \textbf{TRUE in DB}, i.e. the following conditions hold

1. \(\{ o : \text{DESCRIPTION} \} \neq \emptyset \)

2. \(\{ o : \text{DESCRIPTION} \} \subseteq \{ o : \text{CLASS} \} \)
PROBLEM 1

Prove
that for any classification data base DB
and any of its DISCRIMINANT RULES of the form

\[\text{DESCRIPTION} \Rightarrow \text{CLASS} \]

the formula

\[\subseteq \]

\[\text{CLASS} \Rightarrow \text{DESCRIPTION} \]

is a CHARACTERISTIC RULE of the DB
By definition 5, for any database DB:

\[\text{DESCRIPTION} \Rightarrow \text{CLASS} \]

is a **DISCRIMINANT RULE** iff

1. \(\{o: \text{DESCRIPTION}\} \neq \emptyset \)

2. \(\{o: \text{DESCRIPTION}\} \subseteq \{o: \text{CLASS}\} \)

Therefore,

\[\{o: \text{DESCRIPTION}\} \cap \{o: \text{CLASS}\} \neq \emptyset \]

and by **Definition 4**

\[\text{CLASS} \Rightarrow \text{DESCRIPTION} \]

Is the **CHARACTERISTIC RULE**
Given a dataset:

<table>
<thead>
<tr>
<th>Record</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>a4</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>O2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>O3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>O5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Find the set \{o : DESCRIPTION\} for the following descriptions

1) \ a1 = 2 & a2 = 1
2) \ a3 = 1 & a4 = 0
3) \ a2 = 0 & a3 = 2
4) \ c=1
5) \ c=0
Find the set \(\{ o \text{ : DESCRIPTION} \} \) for the following descriptions

1) \(a_1 = 2 \) & \(a_2 = 1 \)
 Answer: \(\{ o_1 \} \)

2) \(a_3 = 1 \) & \(a_4 = 0 \)
 Answer: \(\{ o_1, o_5 \} \)

3) \(a_2 = 0 \) & \(a_3 = 2 \)
 Answer: \(\{ o_4 \} \)

4) \(c = 1 \)
 Answer: \(\{ o_1, o_5 \} \)

5) \(c = 0 \)
 Answer: \(\{ o_3, o_5 \} \)
PROBLEM 3

For the following formulae use proper definitions to determine (it means prove) whether they are / are not DISCRIMINANT / CHARACTERISTIC RULES of our dataset.

6) \(a_1 = 1 \& a_2 = 1 \Rightarrow C = 1 \)

7) \(C = 1 \Rightarrow a_1 = 0 \& a_2 = 1 \& a_3 = 1 \)

8) \(C = 2 \Rightarrow a_1 = 1 \)

9) \(C = 0 \Rightarrow a_1 = 1 \& a_4 = 0 \)

10) \(a_1 = 2 \& a_2 = 1 \& a_3 = 1 \Rightarrow C = 0 \)

11) \(a_1 = 0 \& a_3 = 2 \Rightarrow C = 1 \)
For the following formulae use proper definitions to determine (it means prove) whether they are / are not DISCRIMINANT / CHARACTERISTIC RULES of our dataset.

6) \(a_1 = 1 \& a_2 = 1 \Rightarrow C = 1\)
 \(\{o_1\}\) is a subset of \(\{o_1, o_5\}\) so this is a DISCRIMINANT rule

7) \(C = 1 \Rightarrow a_1 = 0 \& a_2 = 1 \& a_3 = 1\)
 \(\{o: a_1 = 0 \& a_2 = 1 \& a_3 = 1\}\) is an empty set so this is not a CHARACTERISTIC rule

8) \(C = 2 \Rightarrow a_1 = 1\)
 As the intersection is empty so this is not a CHARACTERISTIC rule

9) \(C = 0 \Rightarrow a_1 = 1 \& a_4 = 0\)
 \(\{o_3, o_4\} \setminus \{o_5\}\) is empty set so this is not a CHARACTERISTIC rule

10) \(a_1 = 2 \& a_2 = 1 \& a_3 = 1 \Rightarrow C = 0\)
 \(\{o_5\}\) is not a subset of \(\{o_3, o_4\}\), so this is not a DISCRIMINANT rule

11) \(a_1 = 0 \& a_3 = 2 \Rightarrow C = 1\)
 \(\{o_4\}\) is not a subset of \(\{o_1, o_5\}\), so this is not a DISCRIMINANT rule
Classification

• Describe what is Classification; which is the goal, what data one needs etc....
• Describe all stages of the Classification Process
• Describe basic methods of training and testing
• Describe the process of building a CLASSIFIER
• What is a CLASSIFIER?
Problem: Classification by DTREE

1. Use the data below build a CLASSIFIER by basic DTREE algorithm
2. Use 2 different testing Method of your choice and compare the results

CLASSIFICATION DATA

<table>
<thead>
<tr>
<th>Record</th>
<th>A1</th>
<th>A2</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Data Mining Process

1. Data
2. Target data
3. Processed Data
4. Transformed data
5. Knowledge
6. Rules, Patterns models
7. INTERPRETATION AND EVALUATION
8. DATA MINING (proper)
9. Data Preparation
10. CLEANING
11. SELECTION
Preprocessing stage

• Preprocessing:
• includes all the operations that have to be performed before a data mining algorithm is applied

• Data in the real world is dirty: incomplete, noisy and inconsistent.
• Quality decisions must be based on quality Data.
Preprocessing stage

• **Data cleaning**
 – Fill in missing values, smooth noisy data (binning, clustering, regression), identify or remove outliers, and resolve inconsistencies

• **Data integration**
 – Integration of multiple databases, data cubes, or files
Preprocessing stage: Data transformation

• Data reduction and attribute selection
• Obtains reduced presentation in volume but produces the same or similar analytical results (stratified sampling, PCA, cluster)

• Data discretization
• Part of data reduction but reduces the number of values of the attributes by dividing the range of attributes into intervals (segmentation by natural partition, hierarchy generation)

• Normalization and aggregation
Learning Proper

• **Learning proper** is a step in the DM process in which algorithms are applied to obtain patterns in data.

• It can be re-iterated- and usually is
Descriptive / non descriptive models

• Statistical - descriptive
• **Statistical** data mining uses historical data to predict some unknown or missing numerical values
• **Descriptive** data mining aims to find patterns in the data that provide some information about what the data contains
• often presents the knowledge as a set of rules of the form **IF.... THEN...**
Models

- **Descriptive**: Decision Trees, Rough Sets, Classification by Association
- **Statistical**: Neural Networks, Bayesian Networks, Cluster, Outlier analysis, Trend and evolution analysis
- **Optimization method**: Genetic Algorithms – can be descriptive
Classification

- **Classification:**
- Finding models (rules) that describe (characterize) or/and distinguish (discriminate) classes or concepts for future prediction.

- **Classification Data Format:**
- A data table with key attribute removed.
- Special attribute, called a class attribute must be distinguished.
- The values: c1, c2, ...cn of the class attribute C are called class labels.
- The class label attributes are discrete valued and unordered.
Classification

• **Goal:**

• **FIND** a minimal set of characteristic and/or discriminant rules, *or* other descriptions of the class \(C \), or all, or some other classes

• We also want the found rules to involve as few attributes as it is possible
Classification and Classifiers

- An algorithm (model, method) is called a classification algorithm

- if it uses the classification data to build a set of patterns:
 - discriminant and/or characteristic rules
 - or other pattern descriptions

- These patterns are structured in such a way that we can use them to classify unknown sets of objects: unknown tuples, records
Classification and Classifiers

• For the reason that
• we can use discovered patterns to classify unknown sets of objects a classification algorithm is often called shortly a classifier

• Remember that the name classifier implies more than just a classification algorithm

• A classifier is a final product of a process that uses data set and a classification algorithm
Building a Classifier

- Building a **classifier** consists of two phases:

 training and testing

In both phases we use
- **training data set** and **disjoint** with it
- **test data set** for both of which the **class labels** are **known for all** of the records
Building a Classifier

• We use the **training data** set to **create patterns**: rules, trees, or to **train a Neural or Bayesian network**

• **We evaluate** created **patterns** with the use of **test data**

• The **measure** for a **trained classifier** is called **predictive accuracy**

• **The classifier is build** i.e. **we terminate** the process if it has been **trained and tested** and the **predictive accuracy** is on an **acceptable level**
Classification Stages

• **Stage 1**: build the basic patterns structure-
 training

• **Stage 2**: optimize parameter settings; can use
 (N:N) re-substitution- parameter tuning

• Re-substitution error rate = training data error rate

• **Stage 3**: use **test data** to compute-
 predictive accuracy/error rate – testing

• **Stage 4**: finish building the classifier
Decision Tree

• DECISION TREE
• A flow-chart-like tree structure;
• Internal node denotes an attribute;
• Branch represents the values of the node attribute;
• Leaf nodes represent class labels
DT Basic Algorithm

- The **basic DT algorithm** for decision tree construction is a greedy algorithm that constructs decision trees in a top-down recursive divide-and-conquer manner.

- **Tree STARTS** as a single node representing all training dataset (data table with records called samples).

- **IF** the samples (records in the data table) are all in the same class, **THEN** the node becomes a leaf and is labeled with that class.

- The algorithm uses the same **process recursively** to form a **decision tree** at each partition.
DT Basic Algorithm

- The recursive partitioning **STOPS** only when any one of the following conditions is TRUE
- **1.** All records (samples) for the given node belong to the same class
- **2.** There are no remaining attributes on which the samples (records in the data table) may be further partitioned – a **LEAF** is created with **majority vote** for training sample
- **3.** There is no records (samples) left – a **LEAF** is created with **majority vote** for training sample

- **Majority voting** involves converting node N into a leaf and labeling it with the most common class in D which is a set of training tuples and their associated class labels
Attribute Selection Measures

- Some Heuristics:
 - DTree: some Attribute Selection Measures
 - Information Gain, Gini Index

- We use them for selecting the attribute that “best” discriminates the given tuples according to class
Exercise 1

Here are three simple expert rules:

- **R1**: If your savings are small, then don’t invest in stocks
- **R2**: If you have no children and large income, then invest in stocks
- **R3**: If you have children and small income, then invest in savings
Exercise 1

- Conceptualize rules R1, R2, R3 in **Predicate Form** using predicates
 - `attribute(x, value of attribute)`
 - `attribute(object, value of attribute)`

 WRITE a format of a database **TABLE** needed for your conceptualization

REMARK: In order to express the rules **Predicate Form**, we must first define appropriate **ATTRIBUTES** and their **values**
Exercise 1

- We have the following ATTRIBUTES:

- **Savings**
 Values: *small*, *large*

- **Income**
 Values: *small*, *large*

- **InvestStocks**
 Values: *yes*, *no*

- **InvestSavings**
 Values: *yes*, *no*

- **Children**
 Values: *yes*, *no*
Exercise 1: Predicate Form Conceptualization

Data Table Example

<table>
<thead>
<tr>
<th>Records</th>
<th>Savings</th>
<th>Income</th>
<th>InvesrStocks</th>
<th>InvestSavings</th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₁</td>
<td>small</td>
<td>small</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>O₂</td>
<td>large</td>
<td>small</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>O₃</td>
<td>small</td>
<td>large</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Exercise 1: Rules in Predicate Form

• **RULES:**

• **R1:** Savings(x, small) \rightarrow InvestStock (x, no)

• **R2:** Children(x, no) \land Income(x, large)\rightarrow InvestStocks(x, yes)

• **R3:** Children(x, yes) \lor Income(x, small)\rightarrow InvestSavings(x, yes)
Exercise 2

• Exercise 2
• The initial database has the following FACTS
 • F1: Savings(John, small)
 • F2: Children(John, no)
 • F3: Income(John, large)
• 1. Are these FACTS true in Exercise 1 Data Table for a record o = John?
• 2. Design a Data Table 2 in which the above FACTS are true
• 3. Can you deduce InvestStocks(John, yes) on the base of the Data Table 2
Part 3: Exercise 3

- Given rules from Exercise 1:
 - **R1**: If your savings are small, then don’t invest in stocks
 - **R2**: If you have no children and large income, then invest in stocks
 - **R3**: If you have children and small income, then invest in savings
• Conceptualize rules R1, R2, R3

In Propositional Logic in two ways:

1. Rules admit only atomic formulas; i.e. rules are built from propositional variables only – call the set of rules PR1
2. Rules admit atomic formulas and negation of atomic formulas – call obtained set of rules PR2
Exercise 3

• Write initial databases B1 and B2 of facts corresponding to the facts F1, F2, F3 from Exercise 2 for
• (1) propositional conceptualization 1.
• (2) propositional conceptualization 2.
• (3) use corresponding rules from sets PR1, PR2 to deduce all facts from B1 and B2, respectively
Use Conflict Resolution from Busse Handout